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What is Logic?

What is Logic?

Wikipedia

Logic (from the Ancient Greek: λoγική) is the systematic study of the
form of valid inference, and the most general laws of truth.

Richard Smullyan

“To make precise the notion of a proof.”

Bertrand Russell

“The subject in which nobody knows what one is talking about, nor
whether what one is saying is true.”

Confusing. . . let’s be computer scientists and compute something!
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What is Logic?

Computation

I What is computation?

A owns x Bs
A gets another y Bs

A now owns (x + y) Bs

e.g.

Peter owns 1 apple
Peter gets another 4 apples

Peter now owns 5 apples

I Computation is algorithmic manipulation of numbers. . .

I . . . where the meaning of the numbers is not needed

I Can compute 1 + 4 = 5 without knowing what is counted

I Abstraction!

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 5 / 42



What is Logic?

Computation

I What is computation?

A owns x Bs
A gets another y Bs

A now owns (x + y) Bs

e.g.

Peter owns 1 apple
Peter gets another 4 apples

Peter now owns 5 apples

I Computation is algorithmic manipulation of numbers. . .

I . . . where the meaning of the numbers is not needed

I Can compute 1 + 4 = 5 without knowing what is counted

I Abstraction!

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 5 / 42



What is Logic?

Computation

I What is computation?

A owns x Bs
A gets another y Bs

A now owns (x + y) Bs

e.g.

Peter owns 1 apple
Peter gets another 4 apples

Peter now owns 5 apples

I Computation is algorithmic manipulation of numbers. . .

I . . . where the meaning of the numbers is not needed

I Can compute 1 + 4 = 5 without knowing what is counted

I Abstraction!

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 5 / 42



What is Logic?

Computation

I What is computation?

A owns x Bs
A gets another y Bs

A now owns (x + y) Bs

e.g.

Peter owns 1 apple
Peter gets another 4 apples

Peter now owns 5 apples

I Computation is algorithmic manipulation of numbers. . .

I . . . where the meaning of the numbers is not needed

I Can compute 1 + 4 = 5 without knowing what is counted

I Abstraction!

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 5 / 42



What is Logic?

Computation

I What is computation?

A owns x Bs
A gets another y Bs

A now owns (x + y) Bs

e.g.

Peter owns 1 apple
Peter gets another 4 apples

Peter now owns 5 apples

I Computation is algorithmic manipulation of numbers. . .

I . . . where the meaning of the numbers is not needed

I Can compute 1 + 4 = 5 without knowing what is counted

I Abstraction!

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 5 / 42



What is Logic?

Computation

I What is computation?

A owns x Bs
A gets another y Bs

A now owns (x + y) Bs

e.g.

Peter owns 1 apple
Peter gets another 4 apples

Peter now owns 5 apples

I Computation is algorithmic manipulation of numbers. . .

I . . . where the meaning of the numbers is not needed

I Can compute 1 + 4 = 5 without knowing what is counted

I Abstraction!

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 5 / 42



What is Logic?

Computation

I What is computation?

A owns x Bs
A gets another y Bs

A now owns (x + y) Bs

e.g.

Peter owns 1 apple
Peter gets another 4 apples

Peter now owns 5 apples

I Computation is algorithmic manipulation of numbers. . .

I . . . where the meaning of the numbers is not needed

I Can compute 1 + 4 = 5 without knowing what is counted

I Abstraction!

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 5 / 42



What is Logic?

Computation with Knowledge

I Can be traced back to Aristotle (384–322 BC)

I Modus Barbara:
All A are B
All B are C

All A are C

e.g.
All Greeks are men
All men are mortal

All Greeks are mortal

I Algorithmic manipulation of knowledge. . .

I . . . where the meaning of the words is not needed!

I Also an abstraction!
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What is Logic?

Logic as an abstraction

Logic as an abstraction

Logic is the subject that investigates valid reasoning while abstracting
away from what is being reasoned about.

So Russell was right after all:

I Nobody knows what one is talking about. . . (A? B? C?)

I . . . nor what one is saying is true (what does “Greek” mean?)

And that is great, because it means that:

Computers can do this!

Sure, cool, but why bother?

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 7 / 42



What is Logic?

Logic as an abstraction

Logic as an abstraction

Logic is the subject that investigates valid reasoning while abstracting
away from what is being reasoned about.

So Russell was right after all:

I Nobody knows what one is talking about. . . (A? B? C?)

I . . . nor what one is saying is true (what does “Greek” mean?)

And that is great, because it means that:

Computers can do this!

Sure, cool, but why bother?

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 7 / 42



What is Logic?

Logic as an abstraction

Logic as an abstraction

Logic is the subject that investigates valid reasoning while abstracting
away from what is being reasoned about.

So Russell was right after all:

I Nobody knows what one is talking about. . . (A? B? C?)

I . . . nor what one is saying is true (what does “Greek” mean?)

And that is great, because it means that:

Computers can do this!

Sure, cool, but why bother?

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 7 / 42



What is Logic?

Logic as an abstraction

Logic as an abstraction

Logic is the subject that investigates valid reasoning while abstracting
away from what is being reasoned about.

So Russell was right after all:

I Nobody knows what one is talking about. . . (A? B? C?)

I . . . nor what one is saying is true (what does “Greek” mean?)

And that is great, because it means that:

Computers can do this!

Sure, cool, but why bother?

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 7 / 42



Logic in Computer Science
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Logic in Computer Science

Models

I A model is a simplified representation of certain aspects of the real
world.

I Also an abstraction

I Made for

I understanding
I structuring
I predicting
I communicating

I Can be

I Taxonomies (e.g. species, genus, family, etc. in biology)
I Domain models, e.g. in UML
I Numerical Models (Newtonian mechanics, Quantum mechanics)
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Logic in Computer Science

Models in Computer Science

Models can be
I used to construct (parts of) software

I Generate classes from UML diagrams
I Generate code from UML sequence diagrams or state charts

I executed directly (sometimes)

I Maude programs
I Prolog programs
I Models driving simulations

I used to check data

I Database constraints = information model
I XSD file = document model

So you also want algorithms to

I Check various properties of models

I Check consistency between models

I Transform models from one language to another

I Check that programs conform to models (verification)

I . . .
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Logic in Computer Science

What is a Good Modelling Language

For a model that can be used by a computer. . .

I there has to be a ‘language’

I language says what is a model and what not
I programs (and humans. . . ) need to know what to expect
I often defined by some grammar
I UML, ER, ORM, OWL, SQL, Java, etc. are all languages

I the meaning of models should be very clear

I otherwise, different implementations do different things
I sometimes, 100s of pages of technical text (e.g. JLS)
I sometimes meaning given by mathematical definitions
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Logic in Computer Science

Models and Statements

Observation: much of the content of many models can be given as
statements:

Animal

Human Pet
1. . . *

owns

I Every Human is an Animal.

I Every Pet is an Animal.

I Every Pet is owned by at least one Human.

I Everybody owning a Pet is a Human (?)
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Logic in Computer Science

Modeling with Logic

I Logical languages are made for expressing statements

I They are more general than most other modeling languages

I Logical languages have a precise (mathematical) meaning

I Implementation-independent by design

I Many things we do with models can be understood in terms of logical
consequence

E.g.

I ∀x .Human(x)→ Animal(x)

I ∀x .Pet(x)→ Animal(x)

I ∀x .Pet(x)→ ∃y .(Human(y) ∧ owns(y , x))

I ∀x , y .((Pet(x) ∧ owns(y , x))→ Human(y))

Logics are a very expressive and precise
family of modelling languages
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Three Ingredients

Outline

I What is Logic?

I Logic in Computer Science

I Three Ingredients

I Applications

I Course Information
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Three Ingredients

Three Central Ingredients

I Syntax (i.e. the language)

I Semantics (i.e. the meaning)

I Calculus (i.e. method, algorithm, usually rules)
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Three Ingredients

Syntax

Most logics have some kind of formulas.
The syntax says which strings of characters are formulas.

Syntax of Propositional Formulae

Propositional formulas are defined inductively as follows

I Every lower case letter (p, q, r ,. . . ) is a formula

I If A and B are formulae, then ¬A, (A ∧ B), (A ∨ B) and (A→ B) are
formulae.

Inductively defined (remember IN1150): only what can be constructed
using these rules is a formula.

p, (p ∧ ¬p), (p → q) ∨ (q → p), . . .

But not: ((p, ¬ → q,. . .
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Three Ingredients

Model Semantics

We usually define some kind of interpretation or model or structure. . .
Always the same idea:

I We don’t know what we talk about (p, q, r , x , y , z)

I We don’t know what is true (p or ¬q?)

I So we use a mathematical object that tells us what they mean and
what is true or not

Interpretation

An interpretation is a function I : Letters → {T ,F} that assigns one of
the truth values T or F to every lower case letter
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Three Ingredients

Model Semantics (cont.)

Truth Value

The truth value of formulas vI(A) is defined inductively by

I vI(A) = I(A) for letters A

I vI(¬A) = T if vI(A) = F and
vI(¬A) = F if vI(A) = T

I vI(A ∧ B) = T if vI(A) = T and vI(B) = T
vI(A ∧ B) = F otherwise

I . . .

Entailment

Formula A entails formula B (A |= B) if for every I with vI(A) = T it
also holds that vI(B) = T .
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Three Ingredients

Model Semantics: Take Aways

Model Semantics defines the meaning of logical formulas. . .

I i.e. truth/falsity in some interpretation/model/. . .

I relations between formulas like entailment, equivalence. . .

. . . by mathematical definitions.

I We assume that maths, set theory, etc. “work”

I We assume that people can read formulas, understand words like
“and” or “not” or “otherwise,” look up truth values in tables, etc.

I The definitions can often not be implemented directly

I E.g. loop over infinitely many interpretations in 1st order logic
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Three Ingredients

Calculi

I A calculus works on formulas, i.e. syntax

I Usually by inference rules saying how to derive new formulas

A→ B A

B

I Always with some machinery that says how to use the rules

I Can be used to check entailment etc. between formulas

I Can be implemented on a computer
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Three Ingredients

Natural Deduction for Propositional Logic

I rules for ∧ (conjunction)

A B ∧-I
A ∧ B

A ∧ B ∧-E
A

A ∧ B ∧-E
B

I rules for → (implication)

[

A

]n

......
B →-I

n

A→ B

A→ B A →-E
B
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Three Ingredients

Calculi: Take Aways

Calculi allow to determine

I semantic properties like equivalence, satisfiability etc.

I by syntactic means

. . . i.e. in ways that can be implemented
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Three Ingredients

Semantics vs. Calculus

I Entailment (A |= B): semantic notion

I Derivability (A ` B): syntactic notion

Soundness

What can be derived is entailed

A ` B =⇒ A |= B

Completeness

What is entailed can be derived

A |= B =⇒ A ` B

Two central properties; we will study how to prove them

I for different logics

I for different calculi

Learn techniques to handle languages and their semantics
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Three Ingredients

Logic without Semantics?

I Much of mathematical logic stems from attempts at a formal
foundation of mathematics itself

I End of 19th, beginning og 20th century

I Try to use logic to build mathematics from the bottom up

I But without mathematics. . .

I . . . how do we define model semantics!?

Foundational mathematics considers logics without (model) semantics

I More focus on manipulating proofs

I Known as the ‘proof theoretic approach’

I We concentrate on ‘model theoretic approach’

I As computer scientists, we take maths for granted.

I Foundations are not (usually) our problem :-)
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Applications

SAT

I SAT-solving: given a propositional formula A, is there an
interpretation I such that vI(A) = T?

I https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

I NP-hard, i.e. takes time exponential in size of A

I Can often be done for very large problems, over 1M variables

I Will learn more about how in a later lecture

I See here for a talk about applications
http://www.carstensinz.de/talks/RISC-2005.pdf
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Applications

SAT applications: circuit verification

Are these two circuits the same?

(A ∧ B) ∨ ((B ∨ C ) ∧ (B ∧ C )) vs. (A ∨ C ) ∧ B

Logically equivalent?

Today, theorem provers are routinely used to check Boolean circuits
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Applications

SAT applications: program verification

I A 32 bit int can be encoded as 32 boolean variables

I If SAT can handle 1M boolean variables, it can handle thousands of
32 bit words.

I Properties of programs (without loops) can be handled by SAT solvers

I Experimental, but works in many cases
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Applications

SAT applications: puzzle solving

I Use 4 bits to encode the number in each of the 81 squares (≤ 324
bits)

I Add axioms that ensure each number 1–9 occurs in each square, each
row, each column

I A satisfying interpretation is a solution of the puzzle

SAT: problems that require finding one of a large, fixed
number of combinations, but checking is easy
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Applications

First-order logic

I ∀x∀y∃z(p(x , y)→ p(x , z) ∧ p(z , y))

I Undecidable in general

I More ‘brittle’ than SAT: small changes in formulation can make a big
difference for a prover

I Therefore fewer ‘industrial’ applications

I Can be used to formalise parts of mathematics (algebra)

I Add induction to reason about numbers and datatypes

I First-order theorem provers have been used to prove difficult open
problems in (unintuitive parts of) mathematics

I In combination with other techniques, first-order logic can used to
reason about programs
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Applications

The KeY tool

I https://www.key-project.org/

I Verify behaviour of Java programs

I Based on 1st-order logic

I Extended with program operators

I 〈Prog〉 p
Prog terminates and p holds afterwards

I Based on a Sequent Calclus

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 31 / 42

https://www.key-project.org/


Applications

The TimSort bug

http:

//www.envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/
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Applications

The World In Between

I Many logics are stronger than propositional logic, but still decidable.

I Often efficiently in practice

I E.g. Description Logics

I “A ProudMother is a Person who is Female and has at least one child
who is a Professor”

I ProudMother ≡ Person u Female u ∃ hasChild.Professor
I Can define and reason about terminologies of up to 100.000s of

concepts
I Applications in semantic web, data integration,. . .

I E.g. Temporal Logic

I “Every request is eventually followed by an acknowledgement”
I 2(Req → 3Ack)
I Can check properties of systems with hundreds of variables
I Applications in dynamic circuit verification etc.

I Knowledge logics, probabilistic logics, alternating logics, belief logics, . . .
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Course Information

Outline
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Course Information

When, Where, and Who

When and Where

I Lectures

I Tuesdays 10:15–12:00 in OJD 2458, Postscript and/or
I Thursdays 10:15–12:00 in KN Store Aud
I When fewer students, move to OJD 3438, Caml

I Homepage: https://www.uio.no/studier/emner/matnat/ifi/

IN3070/index-eng.html

Lecturer

Martin Giese (martingi@ifi.uio.no)
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Course Information

Exercises

Exercises

I Practical exercises every week,

I Thursdays 12:15–14:00 in OJD 3468 Fortress, from 27 August and

I Tuesdays 10:15–12:00 in OJD 2458, Postscript, from 1 Sept.

I Exercises available on website well in advance. Come prepared!

I In general: part repetition of lectures, part exercises

Teacher

Ida Sandberg Motzfeldt
(idasmot@ifi.uio.no)
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Mandatory Assignments

Assignments

I Two mandatory assignments (obliger)

I Will be in October/November

I Corrected by teacher.

I Pass/Fail

I Must have passed all assignments in order to attend exam

I For IN4070 (MSc version): one extra question in each oblig
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Course Information

Prover Hacking

– Competition?

I One of your assignments will be to program a simple prover.

I Doesn’t need to be very powerful to get ‘pass.’

I But hacking is fun, right?

I May organise a little prover competition at the end of the semester.

I Strictly for fun, no influence on grade.

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 38 / 42



Course Information

Prover Hacking

– Competition?

I One of your assignments will be to program a simple prover.

I Doesn’t need to be very powerful to get ‘pass.’

I But hacking is fun, right?

I May organise a little prover competition at the end of the semester.

I Strictly for fun, no influence on grade.

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 38 / 42



Course Information

Prover Hacking

– Competition?

I One of your assignments will be to program a simple prover.

I Doesn’t need to be very powerful to get ‘pass.’

I But hacking is fun, right?

I May organise a little prover competition at the end of the semester.

I Strictly for fun, no influence on grade.

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 38 / 42



Course Information

Prover Hacking – Competition?

I One of your assignments will be to program a simple prover.

I Doesn’t need to be very powerful to get ‘pass.’

I But hacking is fun, right?

I May organise a little prover competition at the end of the semester.

I Strictly for fun, no influence on grade.

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 38 / 42



Course Information

Prover Hacking – Competition?

I One of your assignments will be to program a simple prover.

I Doesn’t need to be very powerful to get ‘pass.’

I But hacking is fun, right?

I May organise a little prover competition at the end of the semester.

I Strictly for fun, no influence on grade.

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 38 / 42



Course Information

Padlet

https://uio.padlet.org/martingi/8swc2uezt4sy2nsk
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Exam

I Four hours written home exam

I In case of few students, might be oral exam instead

I Same exam for IN3070 and IN4070

I Grades A–F

I Probably 4 December – Check semester page!

I Unsure, due to Corona
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Textbook

I Mordechai Ben-Ari
Mathematical Logic for Computer Science
3rd edition, Springer, 2012.

I only chapters 1–4 and 6–12;
not part of the curriculum:
chapter 5 (binary decision diagrams) and
chapters 13–16 (temporal logic, verification of programs)

I download for free (within the UiO network) from Springer’s website at
http://www.springer.com/gp/book/9781447141280

IN3070/4070 :: Autumn 2020 Lecture 1 :: 20th August 41 / 42

http://www.springer.com/gp/book/9781447141280


Course Information

Next weeks. . .

I Propositional Logic

I Tableaux/Sequent calculi for propositional Logic

I Soundness and Completeness

I Resolution calculus for propositional Logic

I Soundness and Completeness

I First-order logic

I Tableaux/Sequent calculi and resolution for 1st order logic

I Soundness and Completeness for those calculi
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