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Motivation

Propositional Logic

I simple “logical system” and basis for all others (first-order, description,
modal, ...)

I logical systems formalize reasoning similar to programming languages
that formalize computation

I consequent separation of syntactical notions (formulae, proofs) and
semantical notions (truth values, models)

I syntax defines what strings of symbols are “legal” formulae

I semantics assign meanings to legal formulae (through an interpretation
of its symbols)
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Syntax

Syntax — Formulae

Formulae are made up of atomic formulae and the logical connectives
¬ (negation), ∧ (conjunction), ∨ (disjunction), → (implication).

Definition 2.1 (Atomic Formulae).

Let P = {p1, p2, ...} be a countable set of symbols called atomic formulae
(or atoms), denoted by lower case letters p, q, r , ....

Definition 2.2 (Propositional Formulae).

The propositional formulae, denoted A,B,C ,F ,G ,H, are inductively
defined as follows:

1. Every atom A ∈ P is a formula.

2. If A and B are formulae, then (¬A), (A ∧ B), (A ∨ B) and (A→ B)
are formulae.

Let F be the set of all (legal) formulae.
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Syntax

Syntax — Formulae

Definition 2.3 (Equivalence Connective).

A↔ B := ((A→ B) ∧ (B → A))

In order make formulae easier to read, parentheses can be omitted:

I the order of precedence of the logical connectives is as follows (from
high to low): ¬, ∧, ∨, →, ↔

I connectives are assumed to be right-associative, i.e., A ∨ B ∨ C means
(A ∨ (B ∨ C ))

Examples:
((p → q)↔ ((¬p)→ (¬q))) is a (legal) formula, identical to
(p → q)↔ (¬p → ¬q) and p → q ↔ ¬p → ¬q
#, f (a,P → qqj! is not a formula

Alternative connectives: ⇒ and ⊃ (for →), ⇔ (for ↔), & (for ∧)
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Syntax

Formula Trees

Definition 2.4 (Formula Tree).

A formula can be presented as formula tree.

Example: (p → q)↔ (¬p → ¬q)
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Semantics

Semantics—Interpretation

Truth values are assigned to the atoms of a formula in order to evaluate
the truth value of the formula.

Definition 3.1 (Interpretation).

Let P be a set of atoms.
An interpretation is a total function I : P → {T ,F} that assigns one of
the truth values T or F to every atom in P.

Note: Ben-Ari defines PA, the atoms in A and IA an “interpretation for A”

Simplfies some places, complicates things in others.
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Semantics

Semantics—Truth Value

Definition 3.2 (Truth Value).

Let I be an interpretation. The truth value vI(A) of A under I is defined
inductively as follows.

I If A ∈ P is an atom, then vI(A) = I(A)

I vI(¬A) = T if vI(A) = F and F otherwise.

I vI(A ∧ B) = T if vI(A) = T and vI(B) = T , and F otherwise.

I vI(A ∨ B) = F if vI(A) = F and vI(B) = F , and T otherwise.

I vI(A→ B) = F if vI(A) = T and vI(B) = F , and T otherwise.

Note: For the equivalence connective, it follows that

I vI(A↔ B) = T if vI(A) = vI(B), and F otherwise.

IN3070/4070 :: Autumn 2020 Lecture 2 :: 27th August 11 / 43



Semantics

Semantics — Truth Value

Example: Let A = (p → q)↔ (¬q → ¬p)
with I(p) = F and I(q) = T .

p F q T
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Semantics

Truth Tables

A truth table is a format for displaying the semantics of a formula A by
showing its truth value for every possible interpretation of A.

Definition 3.3 (Truth Table).

Let A ∈ F with n atoms. A truth table has n + 1 columns and 2n rows.
There is a column for each atom in A, plus a column for the formula A.
The first n columns specify all possible interpretations I that map atoms
in A to {T ,F}. The last column shows vI(A), the truth value of A for
each interpretation I .

p1 p2 . . . pn A

T T . . . T vI(A)

T T . . . F vI(A)
...

...
...

...
...

F F . . . F vI(A)
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Semantics

Truth Tables

Example: p → q

p q p → q

T T T
T F F
F T T
F F T

Example: (p → q)↔ (¬q → ¬p)

p q p → q ¬p ¬q ¬q → ¬p (p → q)↔ (¬q → ¬p)

T T T F F T T
T F F F T F T
F T T T F T T
F F T T T T T
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Semantics

Material Implication

The operator of p → q is called material implication.

I p is the antecedent and q is the consequent

I it does not claim causation; i.e., it does not assert that the antecedent
causes the consequent (or is even related to the consequent in any way)

I only states: if the antecedent is true, the consequent must be true

I it is false only if p is true and q is false

Example:

“Earth is farther from the sun than Venus” → “1 + 1 = 3”
is false since the antecedent is true and the consequent is false, but:

“Earth is farther from the sun than Mars” → “1 + 1 = 3”
is true(!) as the falsity of the antecedent by itself is sufficient to ensure
the truth of the implication
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Logical Equivalence

Logical Equivalence

Definition 4.1 (Logical Equivalence).

Let A1,A2 ∈ F . If vI(A1) = vI(A2) for all interpretations I, then A1 is
logically equivalent to A2, denoted A1 ≡ A2.

Example: p ∨ q ≡ q ∨ p (proof by truth table)

Theorem 4.1 (Logical Equivalence “Commutativity”).

Let A,B ∈ F . Then A ∨ B ≡ B ∨ A.

Proof.

Let I be an arbitrary interpretation.

I If vI(A ∨ B) = T , then vI(A) = T or vI(B) = T . Thus, vI(B ∨ A) = T .

I If vI(A ∨ B) = F , then vI(A) = F and vI(B) = F . Thus, vI(B ∨ A) = F .

Since I was chosen arbitrarily, vI(A ∨ B) = vI(B ∨ A) for all interpretations.
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Logical Equivalence

Relationship between ↔ and ≡

I equivalence, ↔, is a binary connective that appears in formulae

I logical equivalence, ≡, is a property of pairs of formulae

I similar vocabulary, but ↔ is part of the object language, whereas ≡ is
part of the metalanguage that we use to reason about the object
language

Theorem 4.2 (Relation between ≡ and ↔).

A ≡ B iff vI(A↔ B) = T for every interpretation I.

Proof.

Suppose that A ≡ B and let I be an arbitrary interpretation; then vI(A) = vI(B)
by definition of logical equivalence. From the Defn. of truth value,
vI(A↔ B) = T . Since I was arbitrary, vI(A↔ B) = T for all interpretations I.
The proof of the other direction is similar.
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Logical Equivalence

Logically Equivalent Formulae

Extend syntax to include the two constant atoms true and false.

Definition 4.2 (Logical Constants).

Let true and false be two constant atoms with I(true) = T and
I(false) = F for any interpretation I (> and ⊥ are also used).

The following formulae are logical equivalent (more in [Ben-Ari, 2.3.3]):

A ∨ true ≡ true
A ∨ false ≡ A
A→ true ≡ true
A→ false ≡ ¬A
A ≡ A ∧ A
A ∨ B ≡ B ∨ A
A ∨ (B ∨ C ) ≡ (A ∨ B) ∨ C
A ∨ (B ∧ C ) ≡ (A ∨ B) ∧ (A ∨ C )

A ∧ true ≡ A
A ∧ false ≡ false
true → A ≡ A
false → A ≡ true
A ≡ A ∨ A
A ∧ B ≡ B ∧ A
A ∧ (B ∧ C ) ≡ (A ∧ B) ∧ C
A ∧ (B ∨ C ) ≡ (A ∧ B) ∨ (A ∧ C )

Contrapositive: A→ B ≡ ¬B → ¬A
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Satisfiability & Validity

Satisfiability and Validity

Definition 5.1 (Satisfiable, Model, Valid, Unsatisfiable, Invalid).

Let A ∈ F .

I A is satisfiable iff vI(A) = T for some interpretation I.
A satisfying interpretation I is a model for A.

I A is valid, denoted |= A, iff vI(A) = T for all interpretations I. A
valid propositional formula is also called a tautology.

I A is unsatisfiable iff it is not satisfiable, that is, if vI(A) = F for all
interpretations I.

I A is invalid (or falsifiable), denoted 6|= A, iff it is not valid, that is, if
vI(A) = F for some interpretation I.

I A set of formulae U = {A1, ...} is (simultaneously) satisfiable iff there exists
an interpretation I such that vI(Ai ) = T for all i ; otherwise U is
unsatisfiable. The satisfying interpretation is a model of U.
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Satisfiability & Validity

Satisfiability and Validity

There is a close relation between these four semantical concepts.

Theorem 5.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

Let A ∈ F . A is valid iff ¬A is unsatisfiable. A is satisfiable iff
¬A is invalid.

Proof.

Let I be an arbitrary interpretation. vI(A) = T if and only if vI(¬A) = F
by definition of the truth value of negation. Since I was arbitrary,
vI(A) = T for all interpretations if and only if vI(¬A) = F for all
interpretations, that is, iff ¬A is unsatisfiable.

If A is satisfiable then for some interpretation I, vI(A) = T . By definition
of the truth value of negation, vI(¬A) = F so that ¬A
is invalid. Conversely, if vI(¬A) = F then vI(A) = T .
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Satisfiability & Validity

Satisfiability and Validity
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Satisfiability & Validity

Decidability

Definition 5.2 (Decision Procedure).

Let U ⊆ F be a set of (propositional) formulae. An algorithm is a decision
procedure for U if given a formula A ∈ F , it terminates and returns the
answer “yes” if A ∈ U and the answer “no” if A 6∈ U .

Theorem 5.2 (Truth Tables as Decision Procedure).

Truth tables are a decision procedure for {A ∈ F |A is a tautology}.

Proof.

For a given formula A with n atoms, use truth tables to evaluate truth
values for A. If vI(A) = T for all 2n possible interpretations I, then
answer “yes”; otherwise answer “no”.

This method is not very efficient; more efficient procedures will be
introduced later.
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Satisfiability & Validity

Logical Consequence

Definition 5.3 (Logical Consequence).

Let U be a set of formulas, A be a formula. A is a logical consequence of
U, denoted U |= A, iff every model of U is a model of A.

Formula A need not be true in every possible interpretation, only in those

interpretations which satisfy U, that is, only those which satisfy every formula in

U. If U is empty, logical consequence is the same as validity.

Example: Let A = (p ∨ r) ∧ (¬q ∨ ¬r). A is a logical consequence of
{p,¬q}, denoted {p,¬q} |= A, as vI(A)=T for all interpretations I such
that I(p)=T and I(q)=F . But A is not valid, as vI(A)=F for the
interpretation I where I(p)=F , I(q)=T , I(r)=T .

Theorem 5.3 (Deduction Theorem).

Let U = {A1, ...,An}. Then U |= A iff |=
∧

i Ai → A.

Proof. Left as an exercise.
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Summary

Summary

I syntax of propositional logic: atomic formulae, ¬, ∧, ∨, →, ↔
I semantics of propositional logic: interpretation assigns truth value to

atomic formulae and inductively to formulae in general

I truth tables can be used to evaluate the truth value of formulae

I material implication: not necessarily a causal relation between
antecedent and consequent

I two formulae A and B are logically equivalent iff their truth value is
identical for all interpretations

I four semantical concepts: satisfiable, valid, unsatisfiable, invalid

I these properties are decidable for propositional logic

I deduction theorem connects logical consequence and validity
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Motivation
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Sequent Calculus

Natural Deduction: Rules for Implication and Negation

I rules for → (implication)

[A]n
......
B →-In

A→ B
I rules for ¬ (negation)

[A]n
......

false ¬-In¬A
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Sequent Calculus

Gentzen’s Sequent Calculus

Goal: A derivation system similar to natural deduction but with
“built-in” assumptions

“In order to prove the Hauptsatz,
I had to introduce a suitable logi-
cal calculus. Hence, in this paper
I will introduce another calculus
of logical reasoning that has all
desired properties.” [G. Gentzen]

I Natural Deduction and Sequent calculus was developed by Gehard
Gentzen in the 1930’s

I Tools for investigating mathematical reasoning.
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Sequent Calculus

Sequents

Definition 8.1 (Sequent).

A sequent has the form Γ =⇒ ∆ in which Γ and ∆ are finite (possibly
empty) multisets of formulae. The left side of the sequent is called the
antecedent, the right side is called the succedent.

I Γ∪{A} or ∆∪{B} are usually written as Γ,A and ∆,B, respectively

I intuitively, a sequent represents “provable from“ in the sense that the
formulae in Γ are assumptions for the set of formulae ∆ to be proven

I IF ALL of the formulae in Γ are true,
I THEN SOME of the formulae in ∆ are true
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Sequent Calculus

The Sequent Calculus LK

I Sequent proofs are trees labeled with sequents.

I Example:
axiomp =⇒ p, q axiomp, q =⇒ q

→-leftp, p → q =⇒ q
∧-left

p ∧ (p → q) =⇒ q
→-right

=⇒ p ∧ (p → q)→ q

I The formula we try to show is at the root (bottom)

I Rules can cause branches to “grow”

I Some rules split a branch into two branches

I When we have a sequent like A, . . . =⇒ A, . . . the branch is done

I So let’s look at the rules in detail!
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Sequent Calculus

LK — Rules for Conjunction and Disjunction

I rules for ∧ (conjunction)

Γ,A,B =⇒ ∆
∧-left

Γ,A ∧ B =⇒ ∆

Γ =⇒ A,∆ Γ =⇒ B,∆
∧-right

Γ =⇒ A ∧ B,∆

I rules for ∨ (disjunction)

Γ,A =⇒ ∆ Γ,B =⇒ ∆
∨-left

Γ,A ∨ B =⇒ ∆

Γ =⇒ A,B,∆
∨-right

Γ =⇒ A ∨ B,∆
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Sequent Calculus

LK — Rules for Implication and Negation, Axiom

I rules for → (implication)

Γ =⇒ A,∆ Γ,B =⇒ ∆
→-left

Γ,A→ B =⇒ ∆

Γ,A =⇒ B,∆
→-right

Γ =⇒ A→ B,∆

I rules for ¬ (negation)

Γ =⇒ A,∆
¬-left

Γ,¬A =⇒ ∆

Γ,A =⇒ ∆
¬-right

Γ =⇒ ¬A,∆

I the axiom

axiom
Γ,A =⇒ A,∆
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Sequent Calculus

Examples of LK Proofs

Example: (p ∧ q)→ p

axiomp, q =⇒ p
∧-leftp ∧ q =⇒ p

→-right
=⇒ (p ∧ q)→ p

Example: p ∧ (p → q)→ q

axiomp, =⇒ p, q axiomp, q =⇒ q
→-leftp, p → q =⇒ q

∧-left
p ∧ (p → q) =⇒ q

→-right
=⇒ p ∧ (p → q)→ q

Example: (¬p ∨ q)→ (p → q)

axiomp =⇒ p, q
¬-left¬p, p =⇒ q axiomq, p =⇒ q

∨-left¬p ∨ q, p =⇒ q
→-right¬p ∨ q =⇒ p → q

→-right
=⇒ (¬p ∨ q)→ (p → q)
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Sequent Calculus

Calculus and Proof — General Definitions

Definition 8.2 (Calculus/Deductive System).

A calculus consists of axioms and inference rules.

Axioms have the form w ; rules have the form
w1 · · ·wn

w
(w1, . . . ,wn are the premises, w is the conclusion).

An “instance” of a rule is the result of replacing all formula variables A, B,
and set variables Γ, ∆ by concrete formulae and sets of formulae

Definition 8.3 (Proof, Derivation).

Let A={A1, . . .} be axioms and R={R1, . . .} be rules of a calculus.

1. Let w be an instance of an axiom Ai ∈ A. Then w is a proof of w .

2. Let
w1 · · ·wn

w be an instance of a rule Ri ∈ R and D1, ...,Dn proofs

of w1, ...,wn. Then D1 · · · Dn
w

is a proof of w .

A derivation is defined similarly, but leaves do not need to be axioms.
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Sequent Calculus

The Sequent Calculus LK

Definition 8.4 (Proofs in LK).

A proof of a formula A in the LK calculus is a proof of the sequent
=⇒ A using the rules and axiom of LK. A formula A is provable, written
` A, iff there is a proof for A.

Theorem 8.1 (Soundness and Completeness of LK).

The calculus of natural deduction LK is sound and complete, i.e.

I if A is provable in LK, then A is valid (if ` A then |= A)

I if A is valid, then A is provable in LK (if |= A then ` A)

Proof.

Next week!
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Decision Procedure

Sequent Calculus as Decision Procedure

The sequent calculus can be used as a decision procedure.

I Starting from the root =⇒ A, apply the rules of the sequent calculus
LK to every sequent until no more rules can be applied

I induction: this will stop
I magic: order does not matter. I.e. won’t show this now

I now, the sequents in all leaves of the derivation contain only atomic
formulae

I if all leaf sequents are axioms, then the formula is valid; otherwise, it is
invalid (A is satisfiable iff ¬A is invalid)

Example: p ∧ (p → q)→ r

axiomp, =⇒ p, r ?p, q =⇒ r
→-leftp, p → q =⇒ r

∧-left
p ∧ (p → q) =⇒ r

→-right
=⇒ p ∧ (p → q)→ r
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Summary
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Summary

Summary

I Gentzen’s sequent calculus uses sequents Γ =⇒ ∆ to formalize logical
reasoning; Γ are the assumptions in order to prove ∆

I it was originally invented as a tool to study natural deduction

I the sequent calculus consists of one axiom and two inference rules for
each logical connective; it is sound and complete

I it can be used as a decision procedure for validity of propositional
formulae in a straightforward way.

I Next week: Soundness and Completeness proofs
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