IN3070/4070 - Logic - Autumn 2020

Lecture 2: Propositional Logic & Sequent Calculus

Martin Giese

27th August 2020

Motivation

Outline

- Motivation
- Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- ► Sequent Calculus
- ▶ Decision Procedure
- Summary

Today's Plan

- Motivation
- Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- Sequent Calculus
- ▶ Decision Procedure
- Summary

IN3070/4070 :: Autumn 2020

Lecture 2 :: 27th August

Motivation

- / --

Propositional Logic

- ➤ simple "logical system" and basis for all others (first-order, description, modal, ...)
- ▶ logical systems formalize reasoning similar to programming languages that formalize computation
- consequent separation of syntactical notions (formulae, proofs) and semantical notions (truth values, models)
- ▶ syntax defines what strings of symbols are "legal" formulae
- semantics assign meanings to legal formulae (through an interpretation of its symbols)

3070/4070 :: Autumn 2020 Lecture 2 :: 27th August 3 / 43 IN3070/4070 :: Autumn 2020 Lecture 2 :: 27th August 4 / 43

Semantics

► Logical Equivalence

► Satisfiability & Validity

Summary

Motivation

► Sequent Calculus

▶ Decision Procedure

Summary

IN3070/4070 :: Autumn 2020

Lecture 2 :: 27th Augus

Syntax

Syntax — Formulae

Definition 2.3 (Equivalence Connective).

$$A \leftrightarrow B := ((A \rightarrow B) \land (B \rightarrow A))$$

In order make formulae easier to read, parentheses can be omitted:

- ▶ the order of precedence of the logical connectives is as follows (from high to low): \neg , \land , \lor , \rightarrow , \leftrightarrow
- ▶ connectives are assumed to be right-associative, i.e., $A \lor B \lor C$ means $(A \lor (B \lor C))$

Examples:

$$((p \to q) \leftrightarrow ((\neg p) \to (\neg q)))$$
 is a (legal) formula, identical to $(p \to q) \leftrightarrow (\neg p \to \neg q)$ and $p \to q \leftrightarrow \neg p \to \neg q$
#, $f(a, P \to \textcircled{\odot})!$ is not a formula

Alternative connectives: \Rightarrow and \supset (for \rightarrow), \Leftrightarrow (for \leftrightarrow), & (for \land)

Synta

Syntax — Formulae

Formulae are made up of atomic formulae and the logical connectives \neg (negation), \land (conjunction), \lor (disjunction), \rightarrow (implication).

Definition 2.1 (Atomic Formulae).

Let $\mathcal{P} = \{p_1, p_2, ...\}$ be a countable set of symbols called atomic formulae (or atoms), denoted by lower case letters p, q, r, ...

Definition 2.2 (Propositional Formulae).

The propositional formulae, denoted A, B, C, F, G, H, are inductively defined as follows:

- 1. Every atom $A \in \mathcal{P}$ is a formula.
- 2. If A and B are formulae, then $(\neg A)$, $(A \land B)$, $(A \lor B)$ and $(A \to B)$ are formulae.

Let \mathcal{F} be the set of all (legal) formulae.

IN3070/4070 :: Autumn 2020

ecture 2 :: 27th August

6 / 43

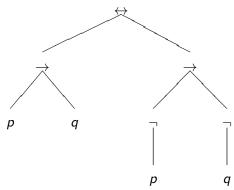
Syntax

Formula Trees

Definition 2.4 (Formula Tree).

A formula can be presented as formula tree.

Example: $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow \neg q)$



IN3070 /4070 ·· Autumn 202

Lecture 2 :: 27th August

Semantics

Outline

- Motivation
- Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- ► Sequent Calculus
- ▶ Decision Procedure
- Summary

N3070/4070 :: Autumn 2020

Lecture 2 :: 27th Augus

9 / 43

Sen

Semantics—Truth Value

Definition 3.2 (Truth Value).

Let \mathcal{I} be an interpretation. The truth value $v_{\mathcal{I}}(A)$ of A under \mathcal{I} is defined inductively as follows.

- ▶ If $A \in \mathcal{P}$ is an atom, then $v_{\mathcal{I}}(A) = \mathcal{I}(A)$
- \triangleright $v_{\mathcal{I}}(\neg A) = T$ if $v_{\mathcal{I}}(A) = F$ and F otherwise.
- $ightharpoonup v_{\mathcal{I}}(A \wedge B) = T$ if $v_{\mathcal{I}}(A) = T$ and $v_{\mathcal{I}}(B) = T$, and F otherwise.
- $ightharpoonup v_{\mathcal{I}}(A \lor B) = F \text{ if } v_{\mathcal{I}}(A) = F \text{ and } v_{\mathcal{I}}(B) = F, \text{ and } T \text{ otherwise.}$
- $ightharpoonup v_{\mathcal{I}}(A o B) = F$ if $v_{\mathcal{I}}(A) = T$ and $v_{\mathcal{I}}(B) = F$, and T otherwise.

Note: For the equivalence connective, it follows that

 \triangleright $v_{\mathcal{I}}(A \leftrightarrow B) = T$ if $v_{\mathcal{I}}(A) = v_{\mathcal{I}}(B)$, and F otherwise.

Semant

Semantics—Interpretation

Truth values are assigned to the atoms of a formula in order to evaluate the truth value of the formula.

Definition 3.1 (Interpretation).

Let \mathcal{P} be a set of atoms.

An interpretation is a total function $\mathcal{I}: \mathcal{P} \to \{T, F\}$ that assigns one of the truth values T or F to every atom in \mathcal{P} .

Note: Ben-Ari defines \mathcal{P}_A , the atoms in A and \mathcal{I}_A an "interpretation for A" Simplifies some places, complicates things in others.

IN3070/4070 :: Autumn 2020

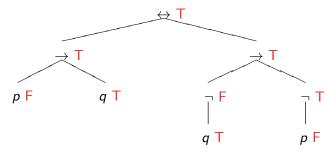
Lecture 2 :: 27th August

10 / 40

Semanti

Semantics — Truth Value

Example: Let $A = (p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$ with $\mathcal{I}(p) = F$ and $\mathcal{I}(q) = T$.



Truth Tables

A truth table is a format for displaying the semantics of a formula A by showing its truth value for every possible interpretation of A.

Definition 3.3 (Truth Table).

Let $A \in \mathcal{F}$ with n atoms. A truth table has n+1 columns and 2^n rows. There is a column for each atom in A, plus a column for the formula A. The first n columns specify all possible interpretations \mathcal{I} that map atoms in A to $\{T,F\}$. The last column shows $v_{\mathcal{I}}(A)$, the truth value of A for each interpretation \mathcal{I} .

p_1	<i>p</i> ₂		p _n	Α
T	T	• • •	T	$v_{\mathcal{I}}(A)$
T	T		F	$v_{\mathcal{I}}(A)$
:	:	:	:	:
F	F		F	$v_{\mathcal{I}}(A)$

IN3070/4070 :: Autumn 2020

Lecture 2 :: 27th Augus

13 / 43

Semantics

Material Implication

The operator of $p \rightarrow q$ is called material implication.

- \triangleright p is the antecedent and q is the consequent
- ▶ it does not claim causation; i.e., it does not assert that the antecedent causes the consequent (or is even related to the consequent in any way)
- ▶ only states: if the antecedent is true, the consequent must be true
- ightharpoonup it is false only if p is true and q is false

Example:

"Earth is farther from the sun than Venus" \to "1 + 1 = 3" is false since the antecedent is true and the consequent is false, but:

"Earth is farther from the sun than Mars" \to "1 + 1 = 3" is true(!) as the falsity of the antecedent by itself is sufficient to ensure the truth of the implication

Semantic

Truth Tables

Example: $p \rightarrow q$

р	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Example: $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$

p	q	p o q	$\neg p$	$\neg q$	eg q o eg p	$(p ightarrow q) \leftrightarrow (\lnot q ightarrow \lnot p)$
T	T	T	F	F	T	T
T	F	F	F	T	F	T
F	T	T	T	F	T	T
F	F	T	T	T	T	T

IN3070/4070 :: Autumn 2020

_ecture 2 :: 27th Augus

14 / 42

Logical Equivaler

Outline

- Motivation
- Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- Sequent Calculus
- ▶ Decision Procedure
- Summary

16 15 / 43 103070/4070 :: Autumn 2020 Lecture 2 :: 27th August 15 / 43 103070/4070 :: Autumn 2020 Lecture 2 :: 27th August 16

Logical Equivalence

Logical Equivalence

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Theorem 4.1 (Logical Equivalence "Commutativity").

Let $A, B \in \mathcal{F}$. Then $A \vee B \equiv B \vee A$.

Proof.

Let ${\mathcal I}$ be an arbitrary interpretation.

- ▶ If $v_{\mathcal{I}}(A \vee B) = T$, then $v_{\mathcal{I}}(A) = T$ or $v_{\mathcal{I}}(B) = T$. Thus, $v_{\mathcal{I}}(B \vee A) = T$.
- ▶ If $v_{\mathcal{I}}(A \vee B) = F$, then $v_{\mathcal{I}}(A) = F$ and $v_{\mathcal{I}}(B) = F$. Thus, $v_{\mathcal{I}}(B \vee A) = F$.

Since \mathcal{I} was chosen arbitrarily, $v_{\mathcal{I}}(A \vee B) = v_{\mathcal{I}}(B \vee A)$ for all interpretations. \square

IN3070/4070 :: Autumn 2020

Lecture 2 :: 27th August

17 / 43

Logical Equivalence

Logically Equivalent Formulae

Extend syntax to include the two constant atoms true and false.

Definition 4.2 (Logical Constants).

Let true and false be two constant atoms with $\mathcal{I}(\text{true}) = T$ and $\mathcal{I}(\text{false}) = F$ for any interpretation \mathcal{I} (\top and \bot are also used).

The following formulae are logical equivalent (more in [Ben-Ari, 2.3.3]):

 $A \wedge true \equiv A$ $A \vee true \equiv true$ $A \vee false \equiv A$ $A \wedge false \equiv false$ $A \rightarrow true \equiv true$ true $\rightarrow A \equiv A$ $A \rightarrow \mathit{false} \equiv \neg A$ $false \rightarrow A \equiv true$ $A \equiv A \wedge A$ $A \equiv A \vee A$ $A \vee B \equiv B \vee A$ $A \wedge B \equiv B \wedge A$ $A \lor (B \lor C) \equiv (A \lor B) \lor C$ $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$ $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$ $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$

Contrapositive: $A \rightarrow B \equiv \neg B \rightarrow \neg A$

Logical Equivaler

Relationship between \leftrightarrow and \equiv

- ightharpoonup equivalence, \leftrightarrow , is a binary connective that appears in formulae
- ightharpoonup logical equivalence, \equiv , is a property of pairs of formulae
- ightharpoonup similar vocabulary, but \leftrightarrow is part of the object language, whereas \equiv is part of the metalanguage that we use to reason about the object language

Theorem 4.2 (Relation between \equiv and \leftrightarrow).

 $A \equiv B$ iff $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for every interpretation \mathcal{I} .

Proof.

Suppose that $A \equiv B$ and let \mathcal{I} be an arbitrary interpretation; then $v_{\mathcal{I}}(A) = v_{\mathcal{I}}(B)$ by definition of logical equivalence. From the Defn. of truth value, $v_{\mathcal{I}}(A \leftrightarrow B) = T$. Since \mathcal{I} was arbitrary, $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for all interpretations \mathcal{I} . The proof of the other direction is similar.

IN3070/4070 :: Autumn 2020

ecture 2 :: 27th August

10 / 42

Satisfiability & Validity

Outline

- Motivation
- Syntax
- Semantics
- ► Logical Equivalence
- Satisfiability & Validity
- Summary
- Motivation
- Sequent Calculus
- ▶ Decision Procedure
- Summary

IN3070/4070 :: Autumn 2020 Lecture 2 :: 27th August 19 / 43 IN3070/4070 :: Autumn 2020 Lecture 2 :: 27th August 2

Satisfiability and Validity

Definition 5.1 (Satisfiable, Model, Valid, Unsatisfiable, Invalid).

Let $A \in \mathcal{F}$.

- ▶ A is satisfiable iff $v_{\mathcal{I}}(A) = T$ for some interpretation \mathcal{I} . A satisfying interpretation \mathcal{I} is a model for A.
- ▶ A is valid, denoted \models A, iff $v_{\mathcal{I}}(A) = T$ for all interpretations \mathcal{I} . A valid propositional formula is also called a tautology.
- ▶ A is unsatisfiable iff it is not satisfiable, that is, if $v_{\mathcal{I}}(A) = F$ for all interpretations \mathcal{I} .
- ▶ A is invalid (or falsifiable), denoted $\not\models A$, iff it is not valid, that is, if $v_{\mathcal{I}}(A) = F$ for some interpretation \mathcal{I} .
- ▶ A set of formulae $U = \{A_1, ...\}$ is (simultaneously) satisfiable iff there exists an interpretation \mathcal{I} such that $v_{\mathcal{I}}(A_i) = T$ for all i; otherwise U is unsatisfiable. The satisfying interpretation is a model of U.

N3070/4070 :: Autumn 2020

Lecture 2 :: 27th August

21 / 43

Satisfiability and Validity True in some interpretations; false in others. False in all interpretations. True in all interpretations. Valid Satisfiable Falsifiable Unsatisfiable Ns070/4070 :: Autumn 2020 Lecture 2 :: 27th August 23 / 43

Satisfiability & Validi

Satisfiability and Validity

There is a close relation between these four semantical concepts.

Theorem 5.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

Let $A \in F$. A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is invalid.

Proof.

Let \mathcal{I} be an arbitrary interpretation. $v_{\mathcal{I}}(A) = T$ if and only if $v_{\mathcal{I}}(\neg A) = F$ by definition of the truth value of negation. Since \mathcal{I} was arbitrary, $v_{\mathcal{I}}(A) = T$ for all interpretations if and only if $v_{\mathcal{I}}(\neg A) = F$ for all interpretations, that is, iff $\neg A$ is unsatisfiable.

If A is satisfiable then for some interpretation \mathcal{I} , $v_{\mathcal{I}}(A) = T$. By definition of the truth value of negation, $v_{\mathcal{I}}(\neg A) = F$ so that $\neg A$ is invalid. Conversely, if $v_{\mathcal{I}}(\neg A) = F$ then $v_{\mathcal{I}}(A) = T$.

N3070/4070 :: Autumn 2020

ecture 2 :: 27th August

22 / 42

Satisfiability & Validity

Decidability

Definition 5.2 (Decision Procedure).

Let $\mathcal{U} \subseteq \mathcal{F}$ be a set of (propositional) formulae. An algorithm is a decision procedure for \mathcal{U} if given a formula $A \in \mathcal{F}$, it terminates and returns the answer "yes" if $A \in \mathcal{U}$ and the answer "no" if $A \notin \mathcal{U}$.

Theorem 5.2 (Truth Tables as Decision Procedure).

Truth tables are a decision procedure for $\{A \in \mathcal{F} \mid A \text{ is a tautology}\}$.

Proof.

For a given formula A with n atoms, use truth tables to evaluate truth values for A. If $v_{\mathcal{I}}(A) = T$ for all 2^n possible interpretations \mathcal{I} , then answer "yes"; otherwise answer "no".

This method is not very efficient; more efficient procedures will be introduced later.

IN3070 /4070 ·· Autumn 2020 Lecture 2 ·· 27th August

Logical Consequence

Definition 5.3 (Logical Consequence).

Let U be a set of formulas, A be a formula. A is a logical consequence of U, denoted $U \models A$, iff every model of U is a model of A.

Formula A need not be true in every possible interpretation, only in those interpretations which satisfy U, that is, only those which satisfy every formula in U. If U is empty, logical consequence is the same as validity.

Example: Let $A = (p \lor r) \land (\neg q \lor \neg r)$. A is a logical consequence of $\{p, \neg q\}$, denoted $\{p, \neg q\} \models A$, as $v_{\mathcal{I}}(A) = T$ for all interpretations \mathcal{I} such that $\mathcal{I}(p) = T$ and $\mathcal{I}(q) = F$. But A is not valid, as $v_{\mathcal{I}}(A) = F$ for the interpretation \mathcal{I} where $\mathcal{I}(p) = F$, $\mathcal{I}(q) = T$, $\mathcal{I}(r) = T$.

Theorem 5.3 (Deduction Theorem).

Let $U = \{A_1, ..., A_n\}$. Then $U \models A$ iff $\models \bigwedge_i A_i \rightarrow A$.

Proof. Left as an exercise.

IN3070/4070 :: Autumn 2020

Lecture 2 :: 27th August

25 / 43

Summary

Summary

- \triangleright syntax of propositional logic: atomic formulae, \neg , \land , \lor , \rightarrow , \leftrightarrow
- ► semantics of propositional logic: interpretation assigns truth value to atomic formulae and inductively to formulae in general
- ▶ truth tables can be used to evaluate the truth value of formulae
- ► material implication: not necessarily a causal relation between antecedent and consequent
- ▶ two formulae *A* and *B* are logically equivalent iff their truth value is identical for all interpretations
- ▶ four semantical concepts: satisfiable, valid, unsatisfiable, invalid
- ▶ these properties are decidable for propositional logic
- ▶ deduction theorem connects logical consequence and validity

Outline

- Motivation
- Syntax
- Semantic
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- ► Sequent Calculus
- ▶ Decision Procedure
- Summary

N3070/4070 :: Autumn 2020

Lecture 2 :: 27th August

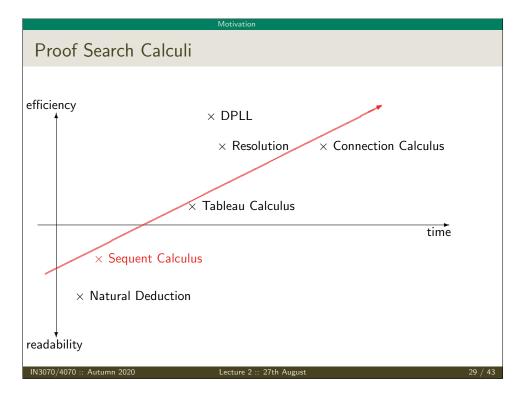
26 / 42

Motivation

Outline

- Motivation
- Syntax
- Semantic
- Logical Equivalence
- Satisfiability & Validity
- Summary
- Motivation
- Sequent Calculus
- ▶ Decision Procedure
- Summary

3070/4070 :: Autumn 2020 Lecture 2 :: 27th August 27 / 43 IN3070/4070 :: Autumn 2020 Lecture 2 :: 27th August 28 / 43



Sequent Calculus

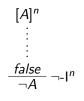
Natural Deduction: Rules for Implication and Negation

ightharpoonup rules for ightharpoonup (implication)

$$\begin{bmatrix}
A \end{bmatrix}^n \\
\vdots \\
B \\
A \to B$$

$$\to I^n$$

▶ rules for ¬ (negation)



Sequent Calculi

Outline

- Motivation
- Syntax
- Semantic
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- Sequent Calculus
- Decision Procedure
- Summary

IN3070/4070 :: Autumn 2020

Lecture 2 :: 27th August

30 / 43

Sequent Calcul

Gentzen's Sequent Calculus

Goal: A derivation system similar to natural deduction but with "built-in" assumptions

"In order to prove the Hauptsatz, I had to introduce a suitable logical calculus. Hence, in this paper I will introduce another calculus of logical reasoning that has all desired properties." [G. Gentzen]

- ► Natural Deduction and Sequent calculus was developed by Gehard Gentzen in the 1930's
- ▶ Tools for investigating mathematical reasoning.

170/4070 :: Autumn 2020 Lecture 2 :: 27th August 31 / 43 IN3070/4070 :: Autumn 2020 Lecture 2 :: 27th August 32 / 43

Sequents

Definition 8.1 (Sequent).

A sequent has the form $\Gamma \Longrightarrow \Delta$ in which Γ and Δ are finite (possibly empty) multisets of formulae. The left side of the sequent is called the antecedent, the right side is called the succedent.

- $ightharpoonup \Gamma \cup \{A\}$ or $\Delta \cup \{B\}$ are usually written as Γ, A and Δ, B , respectively
- ightharpoonup intuitively, a sequent represents "provable from" in the sense that the formulae in Γ are assumptions for the set of formulae Δ to be proven
 - \triangleright IF ALL of the formulae in Γ are true.
 - ▶ THEN SOME of the formulae in \triangle are true

IN3070/4070 :: Autumn 2020

Lecture 2 :: 27th August

33 / 43

Sequent Calculus

LK — Rules for Conjunction and Disjunction

► rules for ∧ (conjunction)

$$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A \land B \implies \Delta} \land \text{-left} \qquad \frac{\Gamma \implies A, \Delta \qquad \Gamma \implies B, \Delta}{\Gamma \implies A \land B, \Delta} \land \text{-right}$$

▶ rules for ∨ (disjunction)

$$\frac{\Gamma, A \implies \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \vee B \implies \Delta} \vee \text{-left} \qquad \frac{\Gamma \implies A, B, \Delta}{\Gamma \implies A \vee B, \Delta} \vee \text{-right}$$

Sequent Calculu

The Sequent Calculus LK

- ▶ Sequent proofs are trees labeled with sequents.
- ► Example:

$$\begin{array}{c} p \implies p,q \text{ axiom} & \hline p,q \implies q \text{ axiom} \\ \hline \frac{p,p \rightarrow q \implies q}{p \land (p \rightarrow q) \implies q} \land \text{-left} \\ \hline \implies p \land (p \rightarrow q) \rightarrow q \rightarrow \text{-right} \\ \hline \implies p \land (p \rightarrow q) \rightarrow q \\ \end{array}$$

- ▶ The formula we try to show is at the root (bottom)
- ▶ Rules can cause branches to "grow"
- Some rules split a branch into two branches
- ▶ When we have a sequent like $A, \ldots \implies A, \ldots$ the branch is done
- ► So let's look at the rules in detail!

IN3070/4070 :: Autumn 2020

_ecture 2 :: 27th Augus

3/ //

Sequent Calcul

LK — Rules for Implication and Negation, Axiom

▶ rules for → (implication)

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left} \qquad \frac{\Gamma, A \implies B, \Delta}{\Gamma \implies A \rightarrow B, \Delta} \rightarrow -\text{right}$$

▶ rules for ¬ (negation)

$$\frac{\Gamma \implies A, \Delta}{\Gamma, \neg A \implies \Delta} \neg \text{-left} \qquad \frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

▶ the axiom

$$\Gamma, A \implies A, \Delta$$
 axiom

Examples of LK Proofs

Example: $(p \land q) \rightarrow p$

Example:
$$p \land (p \rightarrow q) \rightarrow q$$

Example:
$$(\neg p \lor q) \to (p \to q)$$

The Sequent Calculus LK

Definition 8.4 (Proofs in LK).

A proof of a formula A in the LK calculus is a proof of the sequent ⇒ A using the rules and axiom of LK. A formula A is provable, written \vdash A, iff there is a proof for A.

Lecture 2 :: 27th August

Theorem 8.1 (Soundness and Completeness of LK).

The calculus of natural deduction LK is sound and complete, i.e.

- ▶ if A is provable in LK, then A is valid (if \vdash A then \models A)
- ▶ if A is valid, then A is provable in LK (if \models A then \vdash A)

Proof.

Next week!

Calculus and Proof — General Definitions

Definition 8.2 (Calculus/Deductive System).

A calculus consists of axioms and inference rules.

Axioms have the form \overline{w} ; rules have the form $\frac{w_1 \cdots w_n}{w}$ (w_1, \ldots, w_n) are the premises, w is the conclusion).

An "instance" of a rule is the result of replacing all formula variables A, B, and set variables Γ , Δ by concrete formulae and sets of formulae

Definition 8.3 (Proof, Derivation).

Let $A=\{A_1,\ldots\}$ be axioms and $R=\{R_1,\ldots\}$ be rules of a calculus.

- 1. Let \overline{w} be an instance of an axiom $A_i \in A$. Then \overline{w} is a proof of w.
- 2. Let $\frac{w_1\cdots w_n}{w}$ be an instance of a rule $R_i\in\mathcal{R}$ and $\mathcal{D}_1,...,\mathcal{D}_n$ proofs of $w_1, ..., w_n$. Then $\frac{\mathcal{D}_1 \cdots \mathcal{D}_n}{w}$ is a proof of w.

A derivation is defined similarly, but leaves do not need to be axioms.

Decision Procedure

Outline

- Motivation
- ▶ Svntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Motivation
- ► Sequent Calculus
- ▶ Decision Procedure
- Summary

Decision Procedure

Sequent Calculus as Decision Procedure

The sequent calculus can be used as a decision procedure.

- ightharpoonup Starting from the root \implies A, apply the rules of the sequent calculus LK to every sequent until no more rules can be applied
 - ▶ induction: this will stop
 - ▶ magic: order does not matter. I.e. won't show this now
- now, the sequents in all leaves of the derivation contain only atomic formulae
- ▶ if all leaf sequents are axioms, then the formula is valid; otherwise, it is invalid (A is satisfiable iff $\neg A$ is invalid)

Example: $p \land (p \rightarrow q) \rightarrow r$

$$\frac{\overline{p, \implies p, r} \text{ axiom } \overline{p, q} \xrightarrow{\overline{p}, \overline{r}} \overrightarrow{r}}{\underbrace{p, p \rightarrow q \implies r}_{p \land (p \rightarrow q) \implies r} \land \text{-left}} \xrightarrow{p \land (p \rightarrow q) \rightarrow r} \rightarrow \text{-right}$$

IN3070/4070 :: Autumn 2020

.ecture 2 :: 27th Augus

41 / 43

Summar

Summary

- ▶ Gentzen's sequent calculus uses sequents $\Gamma \Longrightarrow \Delta$ to formalize logical reasoning; Γ are the assumptions in order to prove Δ
- ▶ it was originally invented as a tool to study natural deduction
- ► the sequent calculus consists of one axiom and two inference rules for each logical connective; it is sound and complete
- ▶ it can be used as a decision procedure for validity of propositional formulae in a straightforward way.
- ▶ Next week: Soundness and Completeness proofs

Sum

Outline

- Motivation
- Syntax
- Semantic
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- ► Sequent Calculus
- ▶ Decision Procedure
- Summary

N3070/4070 :: Autumn 2020

_ecture 2 :: 27th Augus

42 / 43

IN3070/4070 ·· Autumn 2020 | Lecture 2 ·· 27th Augus

43 / 43