IN3070/4070 - Logic - Autumn 2020

Lecture 2: Propositional Logic & Sequent Calculus

Martin Giese

27th August 2020

Today's Plan

- Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- ► Sequent Calculus
- Decision Procedure
- Summary

Outline

- Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- ► Sequent Calculus
- Decision Procedure
- Summary

Propositional Logic

- simple "logical system" and basis for all others (first-order, description, modal, ...)
- ▶ logical systems formalize reasoning similar to programming languages that formalize computation

Propositional Logic

- simple "logical system" and basis for all others (first-order, description, modal, ...)
- ▶ logical systems formalize reasoning similar to programming languages that formalize computation
- consequent separation of syntactical notions (formulae, proofs) and semantical notions (truth values, models)
- syntax defines what strings of symbols are "legal" formulae
- semantics assign meanings to legal formulae (through an interpretation of its symbols)

Outline

- Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- ► Sequent Calculus
- Decision Procedure
- Summary

Formulae are made up of atomic formulae and the logical connectives \neg (negation), \land (conjunction), \lor (disjunction), \rightarrow (implication).

Formulae are made up of atomic formulae and the logical connectives \neg (negation), \land (conjunction), \lor (disjunction), \rightarrow (implication).

Definition 2.1 (Atomic Formulae).

Let $\mathcal{P} = \{p_1, p_2, ...\}$ be a countable set of symbols called atomic formulae (or atoms), denoted by lower case letters p, q, r, ...

Formulae are made up of atomic formulae and the logical connectives \neg (negation), \land (conjunction), \lor (disjunction), \rightarrow (implication).

Definition 2.1 (Atomic Formulae).

Let $\mathcal{P} = \{p_1, p_2, ...\}$ be a countable set of symbols called atomic formulae (or atoms), denoted by lower case letters p, q, r, ...

Definition 2.2 (Propositional Formulae).

The propositional formulae, denoted A, B, C, F, G, H, are inductively defined as follows:

- 1. Every atom $A \in \mathcal{P}$ is a formula.
- 2. If A and B are formulae, then $(\neg A)$, $(A \land B)$, $(A \lor B)$ and $(A \to B)$ are formulae.

Let \mathcal{F} be the set of all (legal) formulae.

Definition 2.3 (Equivalence Connective).

$$A \leftrightarrow B := ((A \to B) \land (B \to A))$$

Definition 2.3 (Equivalence Connective).

$$A \leftrightarrow B := ((A \rightarrow B) \land (B \rightarrow A))$$

In order make formulae easier to read, parentheses can be omitted:

- the order of precedence of the logical connectives is as follows (from high to low): ¬, ∧, ∨, →, ↔
- ▶ connectives are assumed to be right-associative, i.e., $A \lor B \lor C$ means $(A \lor (B \lor C))$

Definition 2.3 (Equivalence Connective).

$$A \leftrightarrow B := ((A \to B) \land (B \to A))$$

In order make formulae easier to read, parentheses can be omitted:

- the order of precedence of the logical connectives is as follows (from high to low): ¬, ∧, ∨, →, ↔
- ▶ connectives are assumed to be right-associative, i.e., $A \lor B \lor C$ means $(A \lor (B \lor C))$

Examples:

$$\begin{array}{l} ((p \to q) \leftrightarrow ((\neg p) \to (\neg q))) \ \ \text{is a (legal) formula, identical to} \\ (p \to q) \leftrightarrow (\neg p \to \neg q) \ \ \text{and} \ \ p \to q \leftrightarrow \neg p \to \neg q \end{array}$$

Definition 2.3 (Equivalence Connective).

$$A \leftrightarrow B := ((A \to B) \land (B \to A))$$

In order make formulae easier to read, parentheses can be omitted:

- the order of precedence of the logical connectives is as follows (from high to low): ¬, ∧, ∨, →, ↔
- ▶ connectives are assumed to be right-associative, i.e., $A \lor B \lor C$ means $(A \lor (B \lor C))$

Examples:

$$((p \to q) \leftrightarrow ((\neg p) \to (\neg q)))$$
 is a (legal) formula, identical to $(p \to q) \leftrightarrow (\neg p \to \neg q)$ and $p \to q \leftrightarrow \neg p \to \neg q$
#, $f(a, P \to \textcircled{\circ})!$ is not a formula

Definition 2.3 (Equivalence Connective).

$$A \leftrightarrow B := ((A \to B) \land (B \to A))$$

In order make formulae easier to read, parentheses can be omitted:

- the order of precedence of the logical connectives is as follows (from high to low): ¬, ∧, ∨, →, ↔
- ▶ connectives are assumed to be right-associative, i.e., $A \lor B \lor C$ means $(A \lor (B \lor C))$

Examples:

$$((p \rightarrow q) \leftrightarrow ((\neg p) \rightarrow (\neg q)))$$
 is a (legal) formula, identical to $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow \neg q)$ and $p \rightarrow q \leftrightarrow \neg p \rightarrow \neg q$
#, $f(a, P \rightarrow \textcircled{!})!$ is not a formula

Alternative connectives: \Rightarrow and \supset (for \rightarrow), \Leftrightarrow (for \leftrightarrow), & (for \land)

Formula Trees

Definition 2.4 (Formula Tree).

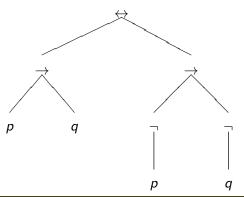
A formula can be presented as formula tree.

Formula Trees

Definition 2.4 (Formula Tree).

A formula can be presented as formula tree.

Example: $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow \neg q)$



Outline

- Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- Satisfiability & Validity
- Summary
- Motivation
- Sequent Calculus
- Decision Procedure
- Summary

Semantics—Interpretation

Truth values are assigned to the atoms of a formula in order to evaluate the truth value of the formula.

Definition 3.1 (Interpretation).

Let \mathcal{P} be a set of atoms.

An interpretation is a total function $\mathcal{I}: \mathcal{P} \to \{T, F\}$ that assigns one of the truth values T or F to every atom in \mathcal{P} .

Semantics—Interpretation

Truth values are assigned to the atoms of a formula in order to evaluate the truth value of the formula.

Definition 3.1 (Interpretation).

Let \mathcal{P} be a set of atoms.

An interpretation is a total function $\mathcal{I}: \mathcal{P} \to \{T, F\}$ that assigns one of the truth values T or F to every atom in \mathcal{P} .

Note: Ben-Ari defines \mathcal{P}_A , the atoms in A and \mathcal{I}_A an "interpretation for A"

Semantics—Interpretation

Truth values are assigned to the atoms of a formula in order to evaluate the truth value of the formula.

Definition 3.1 (Interpretation).

Let \mathcal{P} be a set of atoms.

An interpretation is a total function $\mathcal{I}: \mathcal{P} \to \{T, F\}$ that assigns one of the truth values T or F to every atom in \mathcal{P} .

Note: Ben-Ari defines \mathcal{P}_A , the atoms in A and \mathcal{I}_A an "interpretation for A" Simplfies some places, complicates things in others.

Semantics—Truth Value

Definition 3.2 (Truth Value).

Let \mathcal{I} be an interpretation. The truth value $v_{\mathcal{I}}(A)$ of A under \mathcal{I} is defined inductively as follows.

- ▶ If $A \in \mathcal{P}$ is an atom, then $v_{\mathcal{I}}(A) = \mathcal{I}(A)$
- \triangleright $v_{\mathcal{I}}(\neg A) = T$ if $v_{\mathcal{I}}(A) = F$ and F otherwise.
- $ightharpoonup v_{\mathcal{I}}(A \wedge B) = T$ if $v_{\mathcal{I}}(A) = T$ and $v_{\mathcal{I}}(B) = T$, and F otherwise.
- ▶ $v_{\mathcal{I}}(A \lor B) = F$ if $v_{\mathcal{I}}(A) = F$ and $v_{\mathcal{I}}(B) = F$, and T otherwise.
- $ightharpoonup v_{\mathcal{I}}(A o B) = F$ if $v_{\mathcal{I}}(A) = T$ and $v_{\mathcal{I}}(B) = F$, and T otherwise.

Semantics—Truth Value

Definition 3.2 (Truth Value).

Let \mathcal{I} be an interpretation. The truth value $v_{\mathcal{I}}(A)$ of A under \mathcal{I} is defined inductively as follows.

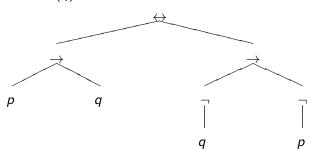
- ▶ If $A \in \mathcal{P}$ is an atom, then $v_{\mathcal{I}}(A) = \mathcal{I}(A)$
- $ightharpoonup v_{\mathcal{I}}(\neg A) = T$ if $v_{\mathcal{I}}(A) = F$ and F otherwise.
- $ightharpoonup v_{\mathcal{I}}(A \wedge B) = T$ if $v_{\mathcal{I}}(A) = T$ and $v_{\mathcal{I}}(B) = T$, and F otherwise.
- $ightharpoonup v_{\mathcal{I}}(A \lor B) = F$ if $v_{\mathcal{I}}(A) = F$ and $v_{\mathcal{I}}(B) = F$, and T otherwise.
- $ightharpoonup v_{\mathcal{I}}(A o B) = F$ if $v_{\mathcal{I}}(A) = T$ and $v_{\mathcal{I}}(B) = F$, and T otherwise.

Note: For the equivalence connective, it follows that

▶ $v_{\mathcal{I}}(A \leftrightarrow B) = T$ if $v_{\mathcal{I}}(A) = v_{\mathcal{I}}(B)$, and F otherwise.

Semantics — Truth Value

Example: Let
$$A = (p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$
 with $\mathcal{I}(p) = F$ and $\mathcal{I}(q) = T$.



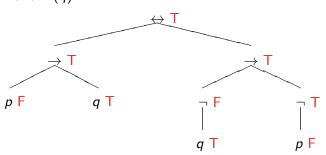
Semantics — Truth Value

Example: Let
$$A = (p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$
 with $\mathcal{I}(p) = F$ and $\mathcal{I}(q) = T$.



Semantics — Truth Value

Example: Let
$$A = (p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$
 with $\mathcal{I}(p) = F$ and $\mathcal{I}(q) = T$.



A truth table is a format for displaying the semantics of a formula A by showing its truth value for every possible interpretation of A.

A truth table is a format for displaying the semantics of a formula A by showing its truth value for every possible interpretation of A.

Definition 3.3 (Truth Table).

Let $A \in \mathcal{F}$ with n atoms. A truth table has n+1 columns and 2^n rows. There is a column for each atom in A, plus a column for the formula A. The first n columns specify all possible interpretations \mathcal{I} that map atoms in A to $\{T,F\}$. The last column shows $v_{\mathcal{I}}(A)$, the truth value of A for each interpretation \mathcal{I} .

p_1	<i>p</i> ₂		p _n	Α
T	T		T	$v_{\mathcal{I}}(A)$
T	T		F	$v_{\mathcal{I}}(A)$
:	:	:	:	:
F	F	• • •	F	$v_{\mathcal{I}}(A)$

Example: $p \rightarrow q$

Example: $p \rightarrow q$

р	q	p o q
T	T	
T	F	
F	T	
F	F	

Example: $p \rightarrow q$

р	q	p o q	
T	T	T	
T	F	F	
F	T	T	
F	F	T	

Example: $p \rightarrow q$

р	q	p o q
T	T	T
T	F	F
F	T	T
F	F	T

Example: $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$

Example: $p \rightarrow q$

р	q	p o q
T	T	T
T	F	F
F	T	T
F	F	T

Example: $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$

р	q	$p \rightarrow q$	$\neg p$	$\neg q$	eg q o eg p	$(p ightarrow q) \leftrightarrow (\lnot q ightarrow \lnot p)$
T	T					
T	F					
F	T					
F	F					

Example: $p \rightarrow q$

р	q	p o q
T	T	T
T	F	F
F	T	T
F	F	T

Example: $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$

р	q	$p \rightarrow q$	$\neg p$	$\neg q$	eg q o eg p	$(p ightarrow q) \leftrightarrow (\lnot q ightarrow \lnot p)$
T	T	T	F	F	Τ	T
T	F	F	F	T	F	T
F	T	T	T	F	T	T
F	F	T	T	T	T	T

Material Implication

The operator of $p \rightarrow q$ is called material implication.

- p is the antecedent and q is the consequent
- ▶ it does not claim causation; i.e., it does not assert that the antecedent causes the consequent (or is even related to the consequent in any way)

Material Implication

The operator of $p \rightarrow q$ is called material implication.

- p is the antecedent and q is the consequent
- ▶ it does not claim causation; i.e., it does not assert that the antecedent causes the consequent (or is even related to the consequent in any way)
- ▶ only states: if the antecedent is true, the consequent must be true
- ▶ it is false only if p is true and q is false

Material Implication

The operator of $p \rightarrow q$ is called material implication.

- p is the antecedent and q is the consequent
- ▶ it does not claim causation; i.e., it does not assert that the antecedent causes the consequent (or is even related to the consequent in any way)
- ▶ only states: if the antecedent is true, the consequent must be true
- ▶ it is false only if p is true and q is false

Example:

"Earth is farther from the sun than Venus" \to "1 + 1 = 3" is false since the antecedent is true and the consequent is false, but:

Material Implication

The operator of $p \rightarrow q$ is called material implication.

- p is the antecedent and q is the consequent
- it does not claim causation; i.e., it does not assert that the antecedent causes the consequent (or is even related to the consequent in any way)
- ▶ only states: if the antecedent is true, the consequent must be true
- ightharpoonup it is false only if p is true and q is false

Example:

"Earth is farther from the sun than Venus" \to "1 + 1 = 3" is false since the antecedent is true and the consequent is false, but:

"Earth is farther from the sun than Mars" \to "1 + 1 = 3" is true(!) as the falsity of the antecedent by itself is sufficient to ensure the truth of the implication

Outline

- Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- Sequent Calculus
- Decision Procedure
- Summary

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Theorem 4.1 (Logical Equivalence "Commutativity").

Let $A, B \in \mathcal{F}$. Then $A \vee B \equiv B \vee A$.

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Theorem 4.1 (Logical Equivalence "Commutativity").

Let $A, B \in \mathcal{F}$. Then $A \vee B \equiv B \vee A$.

Proof.

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Theorem 4.1 (Logical Equivalence "Commutativity").

Let $A, B \in \mathcal{F}$. Then $A \vee B \equiv B \vee A$.

Proof.

$$\blacktriangleright \text{ If } v_{\mathcal{I}}(A \vee B) = T,$$

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Theorem 4.1 (Logical Equivalence "Commutativity").

Let $A, B \in \mathcal{F}$. Then $A \vee B \equiv B \vee A$.

Proof.

▶ If
$$v_{\mathcal{I}}(A \vee B) = T$$
, then $v_{\mathcal{I}}(A) = T$ or $v_{\mathcal{I}}(B) = T$.

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Theorem 4.1 (Logical Equivalence "Commutativity").

Let $A, B \in \mathcal{F}$. Then $A \vee B \equiv B \vee A$.

Proof.

Let \mathcal{I} be an arbitrary interpretation.

▶ If $v_{\mathcal{I}}(A \vee B) = T$, then $v_{\mathcal{I}}(A) = T$ or $v_{\mathcal{I}}(B) = T$. Thus, $v_{\mathcal{I}}(B \vee A) = T$.

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Theorem 4.1 (Logical Equivalence "Commutativity").

Let $A, B \in \mathcal{F}$. Then $A \vee B \equiv B \vee A$.

Proof.

- ▶ If $v_{\mathcal{I}}(A \vee B) = T$, then $v_{\mathcal{I}}(A) = T$ or $v_{\mathcal{I}}(B) = T$. Thus, $v_{\mathcal{I}}(B \vee A) = T$.
- $\blacktriangleright \text{ If } v_{\mathcal{I}}(A \vee B) = F,$

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Theorem 4.1 (Logical Equivalence "Commutativity").

Let $A, B \in \mathcal{F}$. Then $A \vee B \equiv B \vee A$.

Proof.

- ▶ If $v_{\mathcal{I}}(A \vee B) = T$, then $v_{\mathcal{I}}(A) = T$ or $v_{\mathcal{I}}(B) = T$. Thus, $v_{\mathcal{I}}(B \vee A) = T$.
- ▶ If $v_{\mathcal{I}}(A \vee B) = F$, then $v_{\mathcal{I}}(A) = F$ and $v_{\mathcal{I}}(B) = F$.

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Theorem 4.1 (Logical Equivalence "Commutativity").

Let $A, B \in \mathcal{F}$. Then $A \vee B \equiv B \vee A$.

Proof.

- ▶ If $v_{\mathcal{I}}(A \vee B) = T$, then $v_{\mathcal{I}}(A) = T$ or $v_{\mathcal{I}}(B) = T$. Thus, $v_{\mathcal{I}}(B \vee A) = T$.
- ▶ If $v_{\mathcal{I}}(A \vee B) = F$, then $v_{\mathcal{I}}(A) = F$ and $v_{\mathcal{I}}(B) = F$. Thus, $v_{\mathcal{I}}(B \vee A) = F$.

Definition 4.1 (Logical Equivalence).

Let $A_1, A_2 \in \mathcal{F}$. If $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Example: $p \lor q \equiv q \lor p$ (proof by truth table)

Theorem 4.1 (Logical Equivalence "Commutativity").

Let $A, B \in \mathcal{F}$. Then $A \vee B \equiv B \vee A$.

Proof.

Let \mathcal{I} be an arbitrary interpretation.

- ▶ If $v_{\mathcal{I}}(A \vee B) = T$, then $v_{\mathcal{I}}(A) = T$ or $v_{\mathcal{I}}(B) = T$. Thus, $v_{\mathcal{I}}(B \vee A) = T$.
- ▶ If $v_{\mathcal{I}}(A \vee B) = F$, then $v_{\mathcal{I}}(A) = F$ and $v_{\mathcal{I}}(B) = F$. Thus, $v_{\mathcal{I}}(B \vee A) = F$.

Since \mathcal{I} was chosen arbitrarily, $v_{\mathcal{I}}(A \vee B) = v_{\mathcal{I}}(B \vee A)$ for all interpretations. \square

- ightharpoonup equivalence, \leftrightarrow , is a binary connective that appears in formulae
- logical equivalence, ≡, is a property of pairs of formulae

- ▶ equivalence, ↔, is a binary connective that appears in formulae
- logical equivalence, ≡, is a property of pairs of formulae
- ightharpoonup similar vocabulary, but \leftrightarrow is part of the object language, whereas \equiv is part of the metalanguage that we use to reason about the object language

- ightharpoonup equivalence, \leftrightarrow , is a binary connective that appears in formulae
- ightharpoonup logical equivalence, \equiv , is a property of pairs of formulae
- Similar vocabulary, but ↔ is part of the object language, whereas ≡ is part of the metalanguage that we use to reason about the object language

Theorem 4.2 (Relation between \equiv and \leftrightarrow).

$$A \equiv B$$
 iff $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for every interpretation \mathcal{I} .

- ▶ equivalence, ↔, is a binary connective that appears in formulae
- ightharpoonup logical equivalence, \equiv , is a property of pairs of formulae
- Similar vocabulary, but ↔ is part of the object language, whereas ≡ is part of the metalanguage that we use to reason about the object language

Theorem 4.2 (Relation between \equiv and \leftrightarrow).

$$A \equiv B$$
 iff $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for every interpretation \mathcal{I} .

Proof.

Suppose that $A \equiv B$

- ▶ equivalence, ↔, is a binary connective that appears in formulae
- logical equivalence, ≡, is a property of pairs of formulae
- ightharpoonup similar vocabulary, but \leftrightarrow is part of the object language, whereas \equiv is part of the metalanguage that we use to reason about the object language

Theorem 4.2 (Relation between \equiv and \leftrightarrow).

 $A \equiv B$ iff $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for every interpretation \mathcal{I} .

Proof.

Suppose that $A \equiv B$ and let \mathcal{I} be an arbitrary interpretation;

- ▶ equivalence, ↔, is a binary connective that appears in formulae
- ightharpoonup logical equivalence, \equiv , is a property of pairs of formulae
- Similar vocabulary, but ↔ is part of the object language, whereas ≡ is part of the metalanguage that we use to reason about the object language

Theorem 4.2 (Relation between \equiv and \leftrightarrow).

 $A \equiv B$ iff $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for every interpretation \mathcal{I} .

Proof.

Suppose that $A \equiv B$ and let \mathcal{I} be an arbitrary interpretation; then $v_{\mathcal{I}}(A) = v_{\mathcal{I}}(B)$ by definition of logical equivalence.

- ▶ equivalence, ↔, is a binary connective that appears in formulae
- ightharpoonup logical equivalence, \equiv , is a property of pairs of formulae
- ▶ similar vocabulary, but ↔ is part of the object language, whereas ≡ is part of the metalanguage that we use to reason about the object language

Theorem 4.2 (Relation between \equiv and \leftrightarrow).

 $A \equiv B$ iff $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for every interpretation \mathcal{I} .

Proof.

Suppose that $A \equiv B$ and let \mathcal{I} be an arbitrary interpretation; then $v_{\mathcal{I}}(A) = v_{\mathcal{I}}(B)$ by definition of logical equivalence. From the Defn. of truth value, $v_{\mathcal{I}}(A \leftrightarrow B) = T$.

- ▶ equivalence, ↔, is a binary connective that appears in formulae
- ▶ logical equivalence, \equiv , is a property of pairs of formulae
- ightharpoonup similar vocabulary, but \leftrightarrow is part of the object language, whereas \equiv is part of the metalanguage that we use to reason about the object language

Theorem 4.2 (Relation between \equiv and \leftrightarrow).

 $A \equiv B$ iff $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for every interpretation \mathcal{I} .

Proof.

Suppose that $A \equiv B$ and let \mathcal{I} be an arbitrary interpretation; then $v_{\mathcal{I}}(A) = v_{\mathcal{I}}(B)$ by definition of logical equivalence. From the Defn. of truth value, $v_{\mathcal{I}}(A \leftrightarrow B) = T$. Since \mathcal{I} was arbitrary, $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for all interpretations \mathcal{I} .

- ▶ equivalence, ↔, is a binary connective that appears in formulae
- ▶ logical equivalence, \equiv , is a property of pairs of formulae
- ▶ similar vocabulary, but ↔ is part of the object language, whereas ≡ is part of the metalanguage that we use to reason about the object language

Theorem 4.2 (Relation between \equiv and \leftrightarrow).

 $A \equiv B$ iff $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for every interpretation \mathcal{I} .

Proof.

Suppose that $A \equiv B$ and let \mathcal{I} be an arbitrary interpretation; then $v_{\mathcal{I}}(A) = v_{\mathcal{I}}(B)$ by definition of logical equivalence. From the Defn. of truth value, $v_{\mathcal{I}}(A \leftrightarrow B) = T$. Since \mathcal{I} was arbitrary, $v_{\mathcal{I}}(A \leftrightarrow B) = T$ for all interpretations \mathcal{I} . The proof of the other direction is similar.

Logically Equivalent Formulae

Extend syntax to include the two constant atoms *true* and *false*.

Logically Equivalent Formulae

Extend syntax to include the two constant atoms *true* and *false*.

Definition 4.2 (Logical Constants).

Let true and false be two constant atoms with $\mathcal{I}(true) = T$ and $\mathcal{I}(false) = F$ for any interpretation $\mathcal{I}(T + T) = T$ and T + T are also used).

Logically Equivalent Formulae

Extend syntax to include the two constant atoms *true* and *false*.

Definition 4.2 (Logical Constants).

Let true and false be two constant atoms with $\mathcal{I}(\text{true}) = T$ and $\mathcal{I}(\text{false}) = F$ for any interpretation $\mathcal{I}(T) = T$ and T = T are also used).

The following formulae are logical equivalent (more in [Ben-Ari, 2.3.3]):

```
A \lor true \equiv true
A \lor false \equiv A
A \to true \equiv true
A \to false \equiv \neg A
A \equiv A \land A
A \lor B \equiv B \lor A
A \lor (B \lor C) \equiv (A \lor B) \lor C
A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)
```

$$A \wedge true \equiv A$$

 $A \wedge false \equiv false$
 $true \rightarrow A \equiv A$
 $false \rightarrow A \equiv true$
 $A \equiv A \vee A$
 $A \wedge B \equiv B \wedge A$

$$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$$

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

Outline

- Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- Sequent Calculus
- Decision Procedure
- Summary

Definition 5.1 (Satisfiable, Model, Valid, Unsatisfiable, Invalid).

Let $A \in \mathcal{F}$.

▶ A is satisfiable iff $v_{\mathcal{I}}(A) = T$ for some interpretation \mathcal{I} . A satisfying interpretation \mathcal{I} is a model for A.

Definition 5.1 (Satisfiable, Model, Valid, Unsatisfiable, Invalid).

- ▶ A is satisfiable iff $v_{\mathcal{I}}(A) = T$ for some interpretation \mathcal{I} . A satisfying interpretation \mathcal{I} is a model for A.
- ▶ A is valid, denoted \models A, iff $v_{\mathcal{I}}(A) = T$ for all interpretations \mathcal{I} . A valid propositional formula is also called a tautology.

Definition 5.1 (Satisfiable, Model, Valid, Unsatisfiable, Invalid).

- ▶ A is satisfiable iff $v_{\mathcal{I}}(A) = T$ for some interpretation \mathcal{I} . A satisfying interpretation \mathcal{I} is a model for A.
- ▶ A is valid, denoted \models A, iff $v_{\mathcal{I}}(A) = T$ for all interpretations \mathcal{I} . A valid propositional formula is also called a tautology.
- ▶ A is unsatisfiable iff it is not satisfiable, that is, if $v_{\mathcal{I}}(A) = F$ for all interpretations \mathcal{I} .

Definition 5.1 (Satisfiable, Model, Valid, Unsatisfiable, Invalid).

- ▶ A is satisfiable iff $v_{\mathcal{I}}(A) = T$ for some interpretation \mathcal{I} . A satisfying interpretation \mathcal{I} is a model for A.
- ▶ A is valid, denoted \models A, iff $v_{\mathcal{I}}(A) = T$ for all interpretations \mathcal{I} . A valid propositional formula is also called a tautology.
- ▶ A is unsatisfiable iff it is not satisfiable, that is, if $v_{\mathcal{I}}(A) = F$ for all interpretations \mathcal{I} .
- ▶ A is invalid (or falsifiable), denoted $\not\models$ A, iff it is not valid, that is, if $v_{\mathcal{I}}(A) = F$ for some interpretation \mathcal{I} .

Definition 5.1 (Satisfiable, Model, Valid, Unsatisfiable, Invalid).

- ▶ A is satisfiable iff $v_{\mathcal{I}}(A) = T$ for some interpretation \mathcal{I} . A satisfying interpretation \mathcal{I} is a model for A.
- ▶ A is valid, denoted \models A, iff $v_{\mathcal{I}}(A) = T$ for all interpretations \mathcal{I} . A valid propositional formula is also called a tautology.
- ▶ A is unsatisfiable iff it is not satisfiable, that is, if $v_{\mathcal{I}}(A) = F$ for all interpretations \mathcal{I} .
- ▶ A is invalid (or falsifiable), denoted $\not\models$ A, iff it is not valid, that is, if $v_{\mathcal{I}}(A) = F$ for some interpretation \mathcal{I} .
- ▶ A set of formulae $U = \{A_1, ...\}$ is (simultaneously) satisfiable iff there exists an interpretation \mathcal{I} such that $v_{\mathcal{I}}(A_i) = T$ for all i; otherwise U is unsatisfiable. The satisfying interpretation is a model of U.

There is a close relation between these four semantical concepts.

Theorem 5.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

Let $A \in F$. A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is invalid.

There is a close relation between these four semantical concepts.

Theorem 5.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

Let $A \in F$. A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is invalid.

Proof.

Let \mathcal{I} be an arbitrary interpretation. $v_{\mathcal{I}}(A) = T$ if and only if $v_{\mathcal{I}}(\neg A) = F$ by definition of the truth value of negation. Since \mathcal{I} was arbitrary, $v_{\mathcal{I}}(A) = T$ for all interpretations if and only if $v_{\mathcal{I}}(\neg A) = F$ for all interpretations, that is, iff $\neg A$ is unsatisfiable.

There is a close relation between these four semantical concepts.

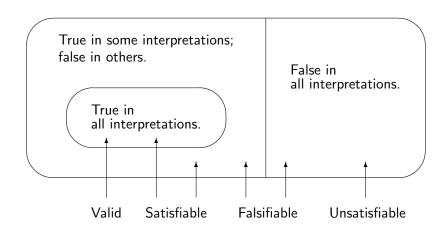
Theorem 5.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

Let $A \in F$. A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is invalid.

Proof.

Let \mathcal{I} be an arbitrary interpretation. $v_{\mathcal{I}}(A) = T$ if and only if $v_{\mathcal{I}}(\neg A) = F$ by definition of the truth value of negation. Since \mathcal{I} was arbitrary, $v_{\mathcal{I}}(A) = T$ for all interpretations if and only if $v_{\mathcal{I}}(\neg A) = F$ for all interpretations, that is, iff $\neg A$ is unsatisfiable.

If A is satisfiable then for some interpretation \mathcal{I} , $v_{\mathcal{I}}(A) = T$. By definition of the truth value of negation, $v_{\mathcal{I}}(\neg A) = F$ so that $\neg A$ is invalid. Conversely, if $v_{\mathcal{I}}(\neg A) = F$ then $v_{\mathcal{I}}(A) = T$.



Decidability

Definition 5.2 (Decision Procedure).

Let $\mathcal{U} \subseteq \mathcal{F}$ be a set of (propositional) formulae. An algorithm is a decision procedure for \mathcal{U} if given a formula $A \in \mathcal{F}$, it terminates and returns the answer "yes" if $A \in \mathcal{U}$ and the answer "no" if $A \notin \mathcal{U}$.

Decidability

Definition 5.2 (Decision Procedure).

Let $\mathcal{U} \subseteq \mathcal{F}$ be a set of (propositional) formulae. An algorithm is a decision procedure for \mathcal{U} if given a formula $A \in \mathcal{F}$, it terminates and returns the answer "yes" if $A \in \mathcal{U}$ and the answer "no" if $A \notin \mathcal{U}$.

Theorem 5.2 (Truth Tables as Decision Procedure).

Truth tables are a decision procedure for $\{A \in \mathcal{F} \mid A \text{ is a tautology}\}$.

Decidability

Definition 5.2 (Decision Procedure).

Let $\mathcal{U} \subseteq \mathcal{F}$ be a set of (propositional) formulae. An algorithm is a decision procedure for \mathcal{U} if given a formula $A \in \mathcal{F}$, it terminates and returns the answer "yes" if $A \in \mathcal{U}$ and the answer "no" if $A \notin \mathcal{U}$.

Theorem 5.2 (Truth Tables as Decision Procedure).

Truth tables are a decision procedure for $\{A \in \mathcal{F} \mid A \text{ is a tautology}\}$.

Proof.

For a given formula A with n atoms, use truth tables to evaluate truth values for A. If $v_{\mathcal{I}}(A) = T$ for all 2^n possible interpretations \mathcal{I} , then answer "yes"; otherwise answer "no".

Decidability

Definition 5.2 (Decision Procedure).

Let $\mathcal{U} \subseteq \mathcal{F}$ be a set of (propositional) formulae. An algorithm is a decision procedure for \mathcal{U} if given a formula $A \in \mathcal{F}$, it terminates and returns the answer "yes" if $A \in \mathcal{U}$ and the answer "no" if $A \notin \mathcal{U}$.

Theorem 5.2 (Truth Tables as Decision Procedure).

Truth tables are a decision procedure for $\{A \in \mathcal{F} \mid A \text{ is a tautology}\}$.

Proof.

For a given formula A with n atoms, use truth tables to evaluate truth values for A. If $v_{\mathcal{I}}(A) = T$ for all 2^n possible interpretations \mathcal{I} , then answer "yes"; otherwise answer "no".

This method is not very efficient; more efficient procedures will be introduced later.

Definition 5.3 (Logical Consequence).

Let U be a set of formulas, A be a formula. A is a logical consequence of U, denoted $U \models A$, iff every model of U is a model of A.

Definition 5.3 (Logical Consequence).

Let U be a set of formulas, A be a formula. A is a logical consequence of U, denoted $U \models A$, iff every model of U is a model of A.

Formula A need not be true in every possible interpretation, only in those interpretations which satisfy U, that is, only those which satisfy every formula in U. If U is empty, logical consequence is the same as validity.

Definition 5.3 (Logical Consequence).

Let U be a set of formulas, A be a formula. A is a logical consequence of U, denoted $U \models A$, iff every model of U is a model of A.

Formula A need not be true in every possible interpretation, only in those interpretations which satisfy U, that is, only those which satisfy every formula in U. If U is empty, logical consequence is the same as validity.

Example: Let $A = (p \lor r) \land (\neg q \lor \neg r)$. A is a logical consequence of $\{p, \neg q\}$, denoted $\{p, \neg q\} \models A$, as $v_{\mathcal{I}}(A) = T$ for all interpretations \mathcal{I} such that $\mathcal{I}(p) = T$ and $\mathcal{I}(q) = F$. But A is not valid, as $v_{\mathcal{I}}(A) = F$ for the interpretation \mathcal{I} where $\mathcal{I}(p) = F$, $\mathcal{I}(q) = T$, $\mathcal{I}(r) = T$.

Definition 5.3 (Logical Consequence).

Let U be a set of formulas, A be a formula. A is a logical consequence of U, denoted $U \models A$, iff every model of U is a model of A.

Formula A need not be true in every possible interpretation, only in those interpretations which satisfy U, that is, only those which satisfy every formula in U. If U is empty, logical consequence is the same as validity.

Example: Let $A = (p \lor r) \land (\neg q \lor \neg r)$. A is a logical consequence of $\{p, \neg q\}$, denoted $\{p, \neg q\} \models A$, as $v_{\mathcal{I}}(A) = T$ for all interpretations \mathcal{I} such that $\mathcal{I}(p) = T$ and $\mathcal{I}(q) = F$. But A is not valid, as $v_{\mathcal{I}}(A) = F$ for the interpretation \mathcal{I} where $\mathcal{I}(p) = F$, $\mathcal{I}(q) = T$, $\mathcal{I}(r) = T$.

Theorem 5.3 (Deduction Theorem).

Let $U = \{A_1, ..., A_n\}$. Then $U \models A$ iff $\models \bigwedge_i A_i \rightarrow A$.

Definition 5.3 (Logical Consequence).

Let U be a set of formulas, A be a formula. A is a logical consequence of U, denoted $U \models A$, iff every model of U is a model of A.

Formula A need not be true in every possible interpretation, only in those interpretations which satisfy U, that is, only those which satisfy every formula in U. If U is empty, logical consequence is the same as validity.

Example: Let $A = (p \lor r) \land (\neg q \lor \neg r)$. A is a logical consequence of $\{p, \neg q\}$, denoted $\{p, \neg q\} \models A$, as $v_{\mathcal{I}}(A) = T$ for all interpretations \mathcal{I} such that $\mathcal{I}(p) = T$ and $\mathcal{I}(q) = F$. But A is not valid, as $v_{\mathcal{I}}(A) = F$ for the interpretation \mathcal{I} where $\mathcal{I}(p) = F$, $\mathcal{I}(q) = T$, $\mathcal{I}(r) = T$.

Theorem 5.3 (Deduction Theorem).

Let $U = \{A_1, ..., A_n\}$. Then $U \models A$ iff $\models \bigwedge_i A_i \to A$.

Proof. Left as an exercise.

Outline

- Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- Sequent Calculus
- Decision Procedure
- Summary

- ightharpoonup syntax of propositional logic: atomic formulae, \neg , \land , \lor , \rightarrow , \leftrightarrow
- semantics of propositional logic: interpretation assigns truth value to atomic formulae and inductively to formulae in general

- ▶ syntax of propositional logic: atomic formulae, \neg , \land , \lor , \rightarrow , \leftrightarrow
- ► semantics of propositional logic: interpretation assigns truth value to atomic formulae and inductively to formulae in general
- truth tables can be used to evaluate the truth value of formulae
- material implication: not necessarily a causal relation between antecedent and consequent
- ▶ two formulae *A* and *B* are logically equivalent iff their truth value is identical for all interpretations

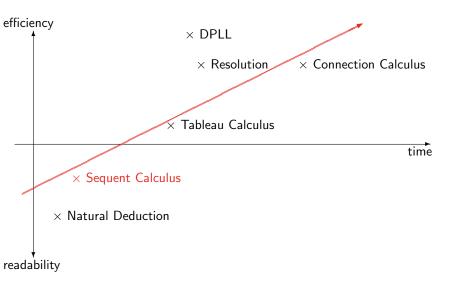
- ▶ syntax of propositional logic: atomic formulae, \neg , \land , \lor , \rightarrow , \leftrightarrow
- ► semantics of propositional logic: interpretation assigns truth value to atomic formulae and inductively to formulae in general
- ▶ truth tables can be used to evaluate the truth value of formulae
- material implication: not necessarily a causal relation between antecedent and consequent
- ▶ two formulae *A* and *B* are logically equivalent iff their truth value is identical for all interpretations
- four semantical concepts: satisfiable, valid, unsatisfiable, invalid
- ▶ these properties are decidable for propositional logic
- deduction theorem connects logical consequence and validity

- ▶ syntax of propositional logic: atomic formulae, \neg , \land , \lor , \rightarrow , \leftrightarrow
- ► semantics of propositional logic: interpretation assigns truth value to atomic formulae and inductively to formulae in general
- ▶ truth tables can be used to evaluate the truth value of formulae
- material implication: not necessarily a causal relation between antecedent and consequent
- ▶ two formulae *A* and *B* are logically equivalent iff their truth value is identical for all interpretations
- ▶ four semantical concepts: satisfiable, valid, unsatisfiable, invalid
- ▶ these properties are decidable for propositional logic
- ▶ deduction theorem connects logical consequence and validity

Outline

- ▶ Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- Satisfiability & Validity
- **▶** Summary
- Motivation
- ► Sequent Calculus
- Decision Procedure
- Summary

Proof Search Calculi



Outline

- ▶ Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- Satisfiability & Validity
- Summary
- Motivation
- ► Sequent Calculus
- Decision Procedure
- Summary

▶ rules for → (implication)

▶ rules for → (implication)

4 :: *B*

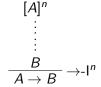
ightharpoonup rules for ightharpoonup (implication)

ightharpoonup rules for ightarrow (implication)

ightharpoonup rules for ightarrow (implication)

$$\begin{bmatrix}
A \end{bmatrix}^n \\
\vdots \\
B \\
A \to B
\end{bmatrix} \to -1^n$$

ightharpoonup rules for ightarrow (implication)



ightharpoonup rules for ightarrow (implication)

$$\begin{bmatrix}
A
\end{bmatrix}^{n}
\vdots
\vdots$$

$$\frac{B}{A \to B} \to -\mathbb{I}^{n}$$

ightharpoonup rules for ightarrow (implication)

$$\begin{array}{c}
[A]^n \\
\vdots \\
\vdots \\
B \\
A \to B
\end{array} \to -\mathbf{I}^n$$

Gentzen's Sequent Calculus

Goal: A derivation system similar to natural deduction but with "built-in" assumptions

Gentzen's Sequent Calculus

Goal: A derivation system similar to natural deduction but with "built-in" assumptions

"In order to prove the Hauptsatz, I had to introduce a suitable logical calculus. Hence, in this paper I will introduce another calculus of logical reasoning that has all desired properties." [G. Gentzen]

► Natural Deduction and Sequent calculus was developed by Gehard Gentzen in the 1930's

Gentzen's Sequent Calculus

Goal: A derivation system similar to natural deduction but with "built-in" assumptions

"In order to prove the Hauptsatz, I had to introduce a suitable logical calculus. Hence, in this paper I will introduce another calculus of logical reasoning that has all desired properties." [G. Gentzen]

- ► Natural Deduction and Sequent calculus was developed by Gehard Gentzen in the 1930's
- ▶ Tools for investigating mathematical reasoning.

Definition 8.1 (Sequent).

Definition 8.1 (Sequent).

A sequent has the form $\Gamma \Longrightarrow \Delta$ in which Γ and Δ are finite (possibly empty) multisets of formulae. The left side of the sequent is called the antecedent, the right side is called the succedent.

▶ $\Gamma \cup \{A\}$ or $\Delta \cup \{B\}$ are usually written as Γ, A and Δ, B , respectively

Definition 8.1 (Sequent).

- ▶ $\Gamma \cup \{A\}$ or $\Delta \cup \{B\}$ are usually written as Γ, A and Δ, B , respectively
- ightharpoonup intuitively, a sequent represents "provable from" in the sense that the formulae in Γ are assumptions for the set of formulae Δ to be proven

Definition 8.1 (Sequent).

- ▶ $\Gamma \cup \{A\}$ or $\Delta \cup \{B\}$ are usually written as Γ, A and Δ, B , respectively
- ightharpoonup intuitively, a sequent represents "provable from" in the sense that the formulae in Γ are assumptions for the set of formulae Δ to be proven
 - ▶ IF ALL of the formulae in Γ are true,

Definition 8.1 (Sequent).

- ▶ $\Gamma \cup \{A\}$ or $\Delta \cup \{B\}$ are usually written as Γ, A and Δ, B , respectively
- ightharpoonup intuitively, a sequent represents "provable from" in the sense that the formulae in Γ are assumptions for the set of formulae Δ to be proven
 - ▶ IF ALL of the formulae in Γ are true,
 - ightharpoonup THEN SOME of the formulae in Δ are true

▶ Sequent proofs are trees labeled with sequents.

- Sequent proofs are trees labeled with sequents.
- ► Example:

$$\begin{array}{c|c} \hline p \implies p,q \text{ axiom} & \hline p,q \implies q \\ \hline \hline \hline p,p \rightarrow q \implies q & \rightarrow \text{-left} \\ \hline \hline p \land (p \rightarrow q) \implies q & \land \text{-left} \\ \hline \hline \Rightarrow p \land (p \rightarrow q) \rightarrow q & \rightarrow \text{-right} \\ \hline \end{array}$$

- Sequent proofs are trees labeled with sequents.
- Example:

$$\frac{p \implies p, q \text{ axiom}}{p, q \implies q} \xrightarrow{\text{axiom}} \frac{p, q \implies q}{p, p \rightarrow q \implies q} \xrightarrow{\text{\rightarrow-left}} \frac{p \land (p \rightarrow q) \implies q}{p \land (p \rightarrow q) \rightarrow q} \xrightarrow{\text{\rightarrow-right}}$$

▶ The formula we try to show is at the root (bottom)

- Sequent proofs are trees labeled with sequents.
- Example:

- ▶ The formula we try to show is at the root (bottom)
- ► Rules can cause branches to "grow"

- Sequent proofs are trees labeled with sequents.
- Example:

- ▶ The formula we try to show is at the root (bottom)
- ▶ Rules can cause branches to "grow"

- Sequent proofs are trees labeled with sequents.
- Example:

- ▶ The formula we try to show is at the root (bottom)
- Rules can cause branches to "grow"
- Some rules split a branch into two branches

- Sequent proofs are trees labeled with sequents.
- Example:

- ▶ The formula we try to show is at the root (bottom)
- Rules can cause branches to "grow"
- Some rules split a branch into two branches

- Sequent proofs are trees labeled with sequents.
- Example:

- ▶ The formula we try to show is at the root (bottom)
- Rules can cause branches to "grow"
- Some rules split a branch into two branches
- ▶ When we have a sequent like $A, \ldots \implies A, \ldots$ the branch is done

- Sequent proofs are trees labeled with sequents.
- Example:

$$\frac{ \begin{array}{c} p \implies p, q^{-} \text{ axiom} & \overline{p, q} \implies q \\ \hline \begin{array}{c} p, p \rightarrow q \implies q \\ \hline \begin{array}{c} p, p \rightarrow q \implies q \\ \hline \begin{array}{c} \\ p \land (p \rightarrow q) \implies q \end{array} & \land \text{-left} \\ \hline \end{array} } \xrightarrow{p \land (p \rightarrow q) \rightarrow q} \land \text{-right}$$

- ▶ The formula we try to show is at the root (bottom)
- Rules can cause branches to "grow"
- Some rules split a branch into two branches
- \blacktriangleright When we have a sequent like $A, \ldots \implies A, \ldots$ the branch is done
- So let's look at the rules in detail!

▶ rules for ∧ (conjunction)

▶ rules for ∧ (conjunction)

$$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A \land B \implies \Delta} \land \text{-left}$$

▶ rules for ∧ (conjunction)

$$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A \land B \implies \Delta} \land \text{-left} \qquad \frac{\Gamma \implies A, \Delta \qquad \Gamma \implies B, \Delta}{\Gamma \implies A \land B, \Delta} \land \text{-right}$$

▶ rules for ∧ (conjunction)

$$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A \land B \implies \Delta} \land \text{-left} \qquad \frac{\Gamma \implies A, \Delta \qquad \Gamma \implies B, \Delta}{\Gamma \implies A \land B, \Delta} \land \text{-right}$$

▶ rules for ∨ (disjunction)

▶ rules for ∧ (conjunction)

$$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A \land B \implies \Delta} \land \text{-left} \qquad \frac{\Gamma \implies A, \Delta \qquad \Gamma \implies B, \Delta}{\Gamma \implies A \land B, \Delta} \land \text{-right}$$

▶ rules for ∨ (disjunction)

$$\frac{\Gamma, A \implies \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \lor B \implies \Delta} \lor \text{-left}$$

▶ rules for ∧ (conjunction)

$$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A \land B \implies \Delta} \land \text{-left} \qquad \frac{\Gamma \implies A, \Delta \qquad \Gamma \implies B, \Delta}{\Gamma \implies A \land B, \Delta} \land \text{-right}$$

▶ rules for ∨ (disjunction)

$$\frac{\Gamma, A \implies \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \vee B \implies \Delta} \vee \text{-left} \qquad \frac{\Gamma \implies A, B, \Delta}{\Gamma \implies A \vee B, \Delta} \vee \text{-right}$$

▶ rules for → (implication)

▶ rules for → (implication)

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow \text{-left}$$

▶ rules for → (implication)

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow \text{-left} \qquad \frac{\Gamma, A \implies B, \Delta}{\Gamma \implies A \rightarrow B, \Delta} \rightarrow \text{-right}$$

▶ rules for → (implication)

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow \text{-left} \qquad \frac{\Gamma, A \implies B, \Delta}{\Gamma \implies A \rightarrow B, \Delta} \rightarrow \text{-right}$$

▶ rules for ¬ (negation)

▶ rules for → (implication)

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \to B \implies \Delta} \to \mathsf{-left} \qquad \frac{\Gamma, A \implies B, \Delta}{\Gamma \implies A \to B, \Delta} \to \mathsf{-right}$$

▶ rules for ¬ (negation)

$$\frac{\Gamma \implies A, \Delta}{\Gamma, \neg A \implies \Delta} \neg \text{-left}$$

▶ rules for → (implication)

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \to B \implies \Delta} \to \mathsf{-left} \qquad \frac{\Gamma, A \implies B, \Delta}{\Gamma \implies A \to B, \Delta} \to \mathsf{-right}$$

▶ rules for ¬ (negation)

$$\frac{\Gamma \implies A, \Delta}{\Gamma, \neg A \implies \Delta} \neg \text{-left}$$

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

▶ rules for → (implication)

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \to B \implies \Delta} \to \mathsf{-left} \qquad \frac{\Gamma, A \implies B, \Delta}{\Gamma \implies A \to B, \Delta} \to \mathsf{-right}$$

▶ rules for ¬ (negation)

$$\frac{\Gamma \implies A, \Delta}{\Gamma, \neg A \implies \Delta} \neg \text{-left} \qquad \qquad \frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

▶ the axiom

▶ rules for → (implication)

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow \text{-left} \qquad \frac{\Gamma, A \implies B, \Delta}{\Gamma \implies A \rightarrow B, \Delta} \rightarrow \text{-right}$$

▶ rules for ¬ (negation)

$$\frac{\Gamma \implies A, \Delta}{\Gamma, \neg A \implies \Delta} \neg \text{-left} \qquad \qquad \frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

▶ the axiom

$$\Gamma, A \implies A, \Delta$$
 axiom

Example: $(p \land q) \rightarrow p$

Example:
$$(p \land q) \rightarrow p$$

Example:
$$(p \land q) \rightarrow p$$

Example:
$$p \land (p \rightarrow q) \rightarrow q$$

Example:
$$(p \land q) \rightarrow p$$

$$\frac{ \begin{array}{c} \overline{p,q} \Longrightarrow \overline{p} \text{ axiom} \\ \overline{p \wedge q} \Longrightarrow \overline{p} \end{array} \wedge \text{-left}}{ \Longrightarrow (p \wedge q) \rightarrow \overline{p}} \rightarrow \text{-right}$$

Example:
$$p \land (p \rightarrow q) \rightarrow q$$

$$\begin{array}{c|c} \hline p, \implies p, q & \text{axiom} & \hline p, q \implies q & \text{axiom} \\ \hline \hline p, p \rightarrow q & \implies q & \land \text{-left} \\ \hline \hline p \land (p \rightarrow q) & \implies q & \land \text{-right} \\ \hline \implies p \land (p \rightarrow q) \rightarrow q & \rightarrow \text{-right} \\ \hline \end{array}$$

Example:
$$(p \land q) \rightarrow p$$

$$\frac{ \begin{array}{c} \overline{p,q} \Longrightarrow \overline{p} \text{ axiom} \\ \overline{p \wedge q} \Longrightarrow \overline{p} \end{array} \wedge \text{-left}}{ \Longrightarrow (p \wedge q) \rightarrow p} \xrightarrow{\text{-right}}$$

Example:
$$p \land (p \rightarrow q) \rightarrow q$$

Example:
$$(\neg p \lor q) \to (p \to q)$$

Example:
$$(p \land q) \rightarrow p$$

Example:
$$p \land (p \rightarrow q) \rightarrow q$$

$$\begin{array}{c|c} \hline p, \Longrightarrow p, q \text{ axiom} & \hline p, q \Longrightarrow q & \text{axiom} \\ \hline \hline \hline p, p \to q \Longrightarrow q & \land \text{-left} \\ \hline \hline \hline p \land (p \to q) \Longrightarrow q & \land \text{-right} \\ \hline \Longrightarrow p \land (p \to q) \to q & \rightarrow \end{array}$$

Example:
$$(\neg p \lor q) \to (p \to q)$$

Calculus and Proof — General Definitions

Definition 8.2 (Calculus/Deductive System).

A calculus consists of axioms and inference rules.

Axioms have the form $\frac{w_1 \cdots w_n}{w}$; rules have the form $\frac{w_1 \cdots w_n}{w}$ $(w_1, \dots, w_n \text{ are the premises, } w \text{ is the conclusion}).$

Calculus and Proof — General Definitions

Definition 8.2 (Calculus/Deductive System).

A calculus consists of axioms and inference rules.

Axioms have the form $\frac{w_1 \cdots w_n}{w}$; rules have the form $\frac{w_1 \cdots w_n}{w}$ $(w_1, \dots, w_n \text{ are the premises, } w \text{ is the conclusion}).$

An "instance" of a rule is the result of replacing all formula variables A, B, and set variables Γ , Δ by concrete formulae and sets of formulae

Calculus and Proof — General Definitions

Definition 8.2 (Calculus/Deductive System).

A calculus consists of axioms and inference rules.

Axioms have the form \overline{w} ; rules have the form $\frac{w_1 \cdots w_n}{w}$ $(w_1, \dots, w_n \text{ are the premises, } w \text{ is the conclusion}).$

An "instance" of a rule is the result of replacing all formula variables A, B, and set variables Γ , Δ by concrete formulae and sets of formulae

Definition 8.3 (Proof, Derivation).

Let $A=\{A_1,\ldots\}$ be axioms and $R=\{R_1,\ldots\}$ be rules of a calculus.

- 1. Let \overline{w} be an instance of an axiom $A_i \in \mathcal{A}$. Then \overline{w} is a proof of w.
- 2. Let $\frac{w_1 \cdots w_n}{w}$ be an instance of a rule $R_i \in \mathcal{R}$ and $\mathcal{D}_1, ..., \mathcal{D}_n$ proofs of $w_1, ..., w_n$. Then $\frac{\mathcal{D}_1 \cdots \mathcal{D}_n}{w}$ is a proof of w.

A derivation is defined similarly, but leaves do not need to be axioms.

Definition 8.4 (Proofs in LK).

A proof of a formula A in the LK calculus is a proof of the sequent $\implies A$ using the rules and axiom of LK. A formula A is provable, written $\vdash A$, iff there is a proof for A.

Definition 8.4 (Proofs in LK).

A proof of a formula A in the LK calculus is a proof of the sequent \implies A using the rules and axiom of LK. A formula A is provable, written \vdash A, iff there is a proof for A.

Theorem 8.1 (Soundness and Completeness of LK).

The calculus of natural deduction LK is sound and complete, i.e.

- ▶ if A is provable in LK, then A is valid (if \vdash A then \models A)
- ▶ if A is valid, then A is provable in LK (if \models A then \vdash A)

Definition 8.4 (Proofs in LK).

A proof of a formula A in the LK calculus is a proof of the sequent \implies A using the rules and axiom of LK. A formula A is provable, written \vdash A, iff there is a proof for A.

Theorem 8.1 (Soundness and Completeness of LK).

The calculus of natural deduction LK is sound and complete, i.e.

- ▶ if A is provable in LK, then A is valid (if \vdash A then \models A)
- ▶ if A is valid, then A is provable in LK (if \models A then \vdash A)

Proof.

Next week!

Outline

- ▶ Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- ► Sequent Calculus
- ▶ Decision Procedure
- Summary

The sequent calculus can be used as a decision procedure.

▶ Starting from the root \implies A, apply the rules of the sequent calculus LK to every sequent until no more rules can be applied

- ightharpoonup Starting from the root \implies A, apply the rules of the sequent calculus LK to every sequent until no more rules can be applied
 - ▶ induction: this will stop

- ightharpoonup Starting from the root \implies A, apply the rules of the sequent calculus LK to every sequent until no more rules can be applied
 - ▶ induction: this will stop
 - magic: order does not matter.

- ightharpoonup Starting from the root \implies A, apply the rules of the sequent calculus LK to every sequent until no more rules can be applied
 - ▶ induction: this will stop
 - magic: order does not matter. I.e. won't show this now

- Starting from the root \implies A, apply the rules of the sequent calculus LK to every sequent until no more rules can be applied
 - ▶ induction: this will stop
 - ▶ magic: order does not matter. I.e. won't show this now
- now, the sequents in all leaves of the derivation contain only atomic formulae

- ightharpoonup Starting from the root \implies A, apply the rules of the sequent calculus LK to every sequent until no more rules can be applied
 - ▶ induction: this will stop
 - magic: order does not matter. I.e. won't show this now
- now, the sequents in all leaves of the derivation contain only atomic formulae
- ▶ if all leaf sequents are axioms, then the formula is valid; otherwise, it is invalid (A is satisfiable iff $\neg A$ is invalid)

- ightharpoonup Starting from the root \implies A, apply the rules of the sequent calculus LK to every sequent until no more rules can be applied
 - ▶ induction: this will stop
 - magic: order does not matter. I.e. won't show this now
- now, the sequents in all leaves of the derivation contain only atomic formulae
- ▶ if all leaf sequents are axioms, then the formula is valid; otherwise, it is invalid (A is satisfiable iff $\neg A$ is invalid)

Example:
$$p \land (p \rightarrow q) \rightarrow r$$

- Starting from the root \implies A, apply the rules of the sequent calculus LK to every sequent until no more rules can be applied
 - ▶ induction: this will stop
 - magic: order does not matter. I.e. won't show this now
- now, the sequents in all leaves of the derivation contain only atomic formulae
- ▶ if all leaf sequents are axioms, then the formula is valid; otherwise, it is invalid (A is satisfiable iff $\neg A$ is invalid)

Example:
$$p \land (p \rightarrow q) \rightarrow r$$

Outline

- ▶ Motivation
- ► Syntax
- Semantics
- ► Logical Equivalence
- ► Satisfiability & Validity
- Summary
- Motivation
- Sequent Calculus
- Decision Procedure
- Summary

Summary

- ▶ Gentzen's sequent calculus uses sequents $\Gamma \Longrightarrow \Delta$ to formalize logical reasoning; Γ are the assumptions in order to prove Δ
- ▶ it was originally invented as a tool to study natural deduction

Summary

- ▶ Gentzen's sequent calculus uses sequents $\Gamma \Longrightarrow \Delta$ to formalize logical reasoning; Γ are the assumptions in order to prove Δ
- ▶ it was originally invented as a tool to study natural deduction
- the sequent calculus consists of one axiom and two inference rules for each logical connective; it is sound and complete
- ▶ it can be used as a decision procedure for validity of propositional formulae in a straightforward way.

Summary

- ▶ Gentzen's sequent calculus uses sequents $\Gamma \Longrightarrow \Delta$ to formalize logical reasoning; Γ are the assumptions in order to prove Δ
- ▶ it was originally invented as a tool to study natural deduction
- ▶ the sequent calculus consists of one axiom and two inference rules for each logical connective; it is sound and complete
- ▶ it can be used as a decision procedure for validity of propositional formulae in a straightforward way.
- ▶ Next week: Soundness and Completeness proofs