IN3070/4070 - Logic - Autumn 2020

Lecture 3: LK: Soundness & Completeness

Martin Giese

3rd September 2020

Today's Plan

► Semantics for Sequents

Soundness

▶ Completeness

Outline

► Semantics for Sequents

Soundness

Completeness

Semantics for Sequents

Definition 1.1 (Valid sequent).

A sequent $\Gamma \implies \Delta$ is valid if all interpretations that satisfy all formulas in Γ satisfy at least one formula in Δ .

Example.

The following sequents are valid:

- $\triangleright p \implies p$
- $ightharpoonup p
 ightarrow q, r \implies p
 ightarrow q, s$
- $ightharpoonup p, p o q \implies q$

Definition 1.2 (Countermodel/falsifiable sequent).

- ▶ An interpretation $\mathcal I$ is a countermodel for the sequent $\Gamma \Longrightarrow \Delta$ if $v_{\mathcal I}(A) = T$ for all formulae $A \in \Gamma$ and $v_{\mathcal I}(B) = F$ for all formulae $B \in \Delta$
- We say that a countermodel for a sequent falsifies the sequent.
- ► A sequent is falsifiable if it has a countermodel.

Example.

The following sequents are falsifiable:

- $ightharpoonup p \implies q$ Countermodel: $\mathcal{I}(p) = T$, $\mathcal{I}(q) = F$
- ▶ $p \lor q \implies p \land q$ Countermodel: same, or $\mathcal{I}(p) = F$, $\mathcal{I}(q) = T$
- ightharpoonup Countermodel: $\mathcal{I}(p) = F$
- $ightharpoonup p \implies Countermodel: \mathcal{I}(p) = T$
- ➤ ⇒ Countermodel: all interpretations!

Summary

Valid

- $ightharpoonup p, p o q \implies q$
- ▶ If $\mathcal{I} \models p$ and $\mathcal{I} \models p \rightarrow q$, then $\mathcal{I} \models q$.
- ► Validity is a semantic notion

Falsifiability

- $ightharpoonup \neg p, p
 ightharpoonup q \implies \neg q$
- ▶ An interpretation \mathcal{I} s.t. $\mathcal{I} \not\models p$ and $\mathcal{I} \models q$.

Provable

$$\frac{p \implies p, q \qquad q, q \implies q}{p, p \to q \implies q}$$

Provability is a syntactic notion

Not provable

$$\frac{q \Longrightarrow p, p}{\neg p \Longrightarrow p, \neg q} \quad \frac{q, q \Longrightarrow p}{q, \neg p \Longrightarrow \neg q}$$
$$\frac{\neg p, p \to q \Longrightarrow \neg q}{}$$

Outline

► Semantics for Sequents

Soundness

Completeness

Soundness of LK

- ▶ We want all LK-provable sequents to be valid!
- ▶ If they are not, then LK would be incorrect or unsound . . .

Definition 2.1 (Soundness).

The sequent calculus LK is sound if every LK-provable sequent is valid.

Theorem 2.1.

The sequent calculus LK is sound.

How to show the Soundness Theorem?

We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

Preservation of Falsifiability

Definition 2.2.

An LK-rule θ preserves falsifiability (upwards) if all interpretations that falsify the conclusion w of an instance $\frac{w_1 \cdots w_n}{w}$ of θ also falsify at least one of the premises w_i .

Lemma 2.1.

All LK-rules preserve falsifiability.

Proving Preservation of Falsifiability

- ▶ The proof has a separate case for each LK-rule.
- Consider for instance the →-left-rule:

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow \text{-left}$$

- We have to show that all instances of →-left preserve falsifiability upwards.
- ▶ We let Γ , Δ , A and B in the rule stand for arbitrary (sets of) propositional formulae

Proof for ¬-right

Proof for ¬-right.

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

- Assume that I falsifies the conclusion.
- ▶ Then $\mathcal{I} \models \Gamma$, $\mathcal{I} \not\models \neg A$ and \mathcal{I} falsifies all formulae in Δ .
- ▶ Per model semantics, we have $\mathcal{I} \models A$.
- ▶ Therefore, $\mathcal{I} \models \Gamma \cup \{A\}$ and \mathcal{I} falsifies all formlae in Δ .
- ▶ Thus, I falsifies the premisse.

Proof for →-left

Proof for \rightarrow -left.

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$

- Assume that I falsifies the conclusion.
- ▶ Then \mathcal{I} satisfies $\Gamma \cup \{A \to B\}$ and falsifies all formlae in Δ .
- ▶ Since \mathcal{I} satisfies $A \to B$, by definition of model semantics,
 - (1) $\mathcal{I} \not\models A$, or
 - (2) $\mathcal{I} \models B$.
- ▶ In case (1), \mathcal{I} falsifies the left premisse.
- ▶ In case (2), \mathcal{I} falsifies the right premisse.

Proving "for all"-statements

- ▶ Consider the statement "for all $x \in S$: P(x)".
- ▶ We can show this by showing P(a) for each element $a \in S$.
- ▶ What if S is very large, or infinite?
- We can generalise from an arbitrary element:
 - ▶ Choose an arbitrary element $a \in S$.
 - ▶ Show that P(a) holds.
 - ▶ Since *a* was arbitrarily chosen, the original statement must hold.

How to show the Soundness Theorem?

We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

Reminder: LK derivation

Definition 2.3 (LK Derivation).

1. Let $\Gamma \implies \Delta$ be a sequent. Then

$$\Gamma \implies \Delta$$

is an LK-derivation of $\Gamma \implies \Delta$.

2. Let $\frac{w_1 \cdots w_n}{\Gamma \Longrightarrow \Delta}$ be an instance of an LK rule, and $\mathcal{D}_1, ..., \mathcal{D}_n$ derivations of $w_1, ..., w_n$. Then

$$\frac{\mathcal{D}_1 \quad \cdots \quad \mathcal{D}_n}{\Gamma \implies \Delta}$$

is an LK-derivation of $\Gamma \implies \Delta$.

Existence of a falsifiable leaf sequent

Lemma 2.2.

If an interpretation $\mathcal I$ falsifies the root sequent of an LK-derivation δ , then $\mathcal I$ falsifies at least one of the leaf sequents of δ .

Proof.

By structural induction on the LK-derivation δ .

Induction base: δ is a sequent $\Gamma \implies \Delta$:

$$\Gamma \implies \Delta$$

- ▶ Here, $\Gamma \implies \Delta$ is both root sequent and (only) leaf sequent.
- ightharpoonup Assume \mathcal{I} falsifies $\Gamma \implies \Delta$.
- ▶ Then \mathcal{I} falsifies a leaf sequent in δ , namely $\Gamma \implies \Delta$.

Continued.

Induction step: δ is a derivation of the form

$$\begin{array}{cccc}
\mathcal{D}_{1} & \mathcal{D}_{n} \\
\vdots & \vdots & \vdots \\
\Gamma_{1} & \xrightarrow{\longrightarrow} & \Delta_{1} & \cdots & \Gamma_{n} & \xrightarrow{\longrightarrow} & \Delta_{n} \\
\hline
\Gamma & \Longrightarrow & \Delta
\end{array} r$$

for some smaller derivations \mathcal{D}_i with roots $\Gamma_i \implies \Delta_i$.

- ightharpoonup Assume \mathcal{I} falsifies $\Gamma \implies \Delta$.
- ▶ Rule *r* preserves falsifiability upwards.
- ▶ Therefore \mathcal{I} falsifies $\Gamma_i \implies \Delta_i$ for some $i \in \{1, ..., n\}$.
- ▶ By induction, \mathcal{I} falsifies one of the leaf sequents of \mathcal{D}_i .
- ightharpoonup This is also a leaf sequent of δ

How to show the Soundness Theorem?

We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

All axioms are valid

Lemma 2.3.

All axioms are valid.

Proof.

$$\Gamma, A \implies A, \Delta$$

- ▶ We will show that all interpretations that satisfy the antecedent also satisfy at least one formula of the succedent.
- ▶ Let *I* be an arbitrarily chosen interpretation that satisfies the antecedent.
- ▶ Then I satisfies the formula A in the succedent.

Proof of the Soundness Theorem for LK

Proof of soundness.

- lacktriangle Assume that $\mathcal P$ is an LK-proof for the sequent $\Gamma \implies \Delta$.
 - $\triangleright \mathcal{P}$ is an LK-derivation where every leaf is an axiom.
- ▶ For the sake of contradiction, assume that $\Gamma \implies \Delta$ is not valid.
- ightharpoonup Then there is a countermodel \mathcal{I} that falsifies $\Gamma \implies \Delta$.
- ▶ We know from the previous Lemma that \mathcal{I} falsifies at least one leaf sequent of \mathcal{P} .
- ▶ Then \mathcal{P} has a leaf sequent that is not an axiom, since axioms are not falsifiable.
- ightharpoonup So $\mathcal P$ cannot be an LK-proof.

Analysis

- ► An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- An axiom is never falsifiable
- Roots of LK-proofs are valid
- Most of this is independent of the actual rules.
- Central part is proving that every rule preserves falsifiability
- Shown individually for each rule
- ► Can add new rules, and just show "soundness" for those

Outline

► Semantics for Sequents

Soundness

▶ Completeness

Completeness — Introduction

Definition 3.1 (Soundness).

The calculus LK is sound if any LK-provable sequent is valid.

Definition 3.2 (Completeness).

The calculus LK is complete if every valid sequent is LK-provable.

Validity (semantic) Universal statement: "for all interpretations..." voundness Provability (syntactic) Existential statement: "there exists a proof..."

Completeness — Introduction

```
\begin{array}{llll} \textbf{Soundnes} \colon & \Gamma \implies \Delta \text{ provable} & \Rightarrow & \Gamma \implies \Delta \text{ valid} \\ \textbf{Completeness} \colon & \Gamma \implies \Delta \text{ valid} & \Rightarrow & \Gamma \implies \Delta \text{ provable} \end{array}
```

- Soundness and Completeness are dual notions
- ▶ Soundness says that we cannot prove *more* than the valid sequents
- ▶ Completeness says that we can prove all valid sequents
- A sequent is valid if and only if it is not falsifiable
- ▶ We can therefore also express soundness and completeness as:

An LK-machine?

Soundness

All that is printed is valid.

Completeness

All that is valid will get printed.

- ► Something can be sound without being complete.
 - Then too little is shown.
 - Example with prime numbers: 2, 5, 7, 11, 17, 19, . . .
- Something can be complete without being sound.
 - ► Then too much is shown
 - Example with prime numbers: 2, 3, 5, 7, 9, 11, 13, 15 ...
- ▶ We want both:
 - Not too much, not too little.
 - Example with prime numbers: 2, 3, 5, 7, 11, 13, 17, 19 . . .

The Completeness Theorem

Theorem 3.1 (Completeness).

If $\Gamma \implies \Delta$ is valid, then it is provable in LK.

To show completeness of our calculus, we show the equivalent statement:

Lemma 3.1 (Model existence).

If $\Gamma \implies \Delta$ is not provable in LK, then it is falsifiable.

This means that there is an interpretation that makes all formulae in Γ true and all formulae in Δ false.

Proof of Completeness

Assume $\Gamma \implies \Delta$ is not provable.

- ▶ Construct a derivation $\mathcal D$ from $\Gamma \Longrightarrow \Delta$ such that no further rule applications are possible. "A maximal derivation."
- ► Then there is (at least) one branch B that does not end in an axiom. We then have:
 - lacktriangle The leaf sequent of ${\cal B}$ contains only atomic formulae, and
 - \blacktriangleright the leaf sequent of \mathcal{B} is not an axiom.
- lacktriangle We construct an interpretation that falsifies $\Gamma \implies \Delta$. Let
 - \mathcal{B}^{\top} be the set of formulae that occur in an antecedent on \mathcal{B} , and
 - \mathcal{B}^{\perp} be the set of formulae that occur in an succedent on \mathcal{B} , and
 - $\mathcal{I}_{\mathcal{B}}$ be the interpretation that makes all atomic formulae in \mathcal{B}^{\top} true and all other atomic formulae (in particular those in \mathcal{B}^{\perp}) false.

Example

We see that the branch \mathcal{B} with leaf sequent $r \implies q, p$ is not closed.

$$\mathcal{B}^{\top} = \{r, p \to q, p \lor r\}$$
 $\mathcal{B}^{\perp} = \{q, p, (p \lor r) \to q\}$
 $\mathcal{I}_{\mathcal{B}} = \text{ interpretation with } \mathcal{I}_{\mathcal{B}}(r) = T \text{ og } \mathcal{I}_{\mathcal{B}}(q) = \mathcal{I}_{\mathcal{B}}(p) = F$
To show: this interpretation falsifies the root sequent.

Proof of Completeness, cont.

- ▶ We show by structural induction on propositional formulae that the interpretation $\mathcal{I}_{\mathcal{B}}$ makes all formulae in \mathcal{B}^{\top} true, and all formulae in \mathcal{B}^{\perp} false.
- ▶ We show for all propositional formulae A that

If
$$A \in \mathcal{B}^{\top}$$
, then $\mathcal{I}_{\mathcal{B}} \models A$.
If $A \in \mathcal{B}^{\perp}$, then $\mathcal{I}_{\mathcal{B}} \not\models A$.

Induction base: A is an atomic formula in $\mathcal{B}^{\top}/\mathcal{B}^{\perp}$.

- ▶ Our statment holds for $A \in \mathcal{B}^{\top}$ because that is how we defined $\mathcal{I}_{\mathcal{B}}$.
- ▶ For $A \in \mathcal{B}^{\perp}$, $A \notin \mathcal{B}^{\top}$ because atoms do not disappear from a branch and \mathcal{B} contains no axiom. Therefore $\mathcal{I}_{\mathcal{B}} \not\models A$.

Induction step: From the assumption (IH) that the statement holds for A and B, we must show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$ og $(A \to B)$. These are four cases, of which we show three here.

Case: Negation in antecedent/succedent

Assume that $\neg A \in \mathcal{B}^{\top}$.

- $ightharpoonup \neg A$ appears in an antecedent, it can't 'go away' unless \neg -left is applied
- ▶ Since the derivation is maximal, ¬-left is eventually applied
- ightharpoonup A appears in a succedent, so we have $A \in \mathcal{B}^{\perp}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \not\models A$.
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \models \neg A$.

Assume that $\neg A \in \mathcal{B}^{\perp}$.

- $ightharpoonup \neg A$ appears in a succedent, it can't 'go away' unless \neg -right is applied
- ▶ Since the derivation is maximal, ¬-right is eventually applied
- ▶ A appears in an antecedent, so we have $A \in \mathcal{B}^{\top}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \models A$.
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \not\models \neg A$.

Case: Conjunction in antecedent/succedent

Assume that $(A \wedge B) \in \mathcal{B}^{\top}$.

- ▶ Since the derivation is maximal, we have $A \in \mathcal{B}^{\top}$ and $B \in \mathcal{B}^{\top}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \models A$ and $\mathcal{I}_{\mathcal{B}} \models B$.
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \models (A \land B)$.

Assume that $(A \wedge B) \in \mathcal{B}^{\perp}$.

- ▶ Since the derivation is maximal, ∧-right is eventually applied...
- ... introducing A in the succedent of one branch and B on the other.
- ▶ One of them is our branch \mathcal{B} , and therefore $A \in \mathcal{B}^{\perp}$ or $B \in \mathcal{B}^{\perp}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \not\models A$ or $\mathcal{I}_{\mathcal{B}} \not\models B$
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \not\models (A \land B)$

Case: Implication in antecedent/succedent

Assume that $(A \rightarrow B) \in \mathcal{B}^{\top}$.

- ightharpoonup Since the derivation is maximal, ightarrow-left is eventually applied...
- ▶ ...introducing *A* in the succedent of one branch and *B* in the antecedent of the other.
- ▶ One of them is our branch \mathcal{B} , and therefore $A \in \mathcal{B}^{\perp}$ or $B \in \mathcal{B}^{\top}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \not\models A$ or $\mathcal{I}_{\mathcal{B}} \models B$
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \models (A \rightarrow B)$

Assume that $(A \rightarrow B) \in \mathcal{B}^{\perp}$.

- ▶ Since the derivation is maximal, we have $A \in \mathcal{B}^{\top}$ and $B \in \mathcal{B}^{\perp}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \models A$ and $\mathcal{I}_{\mathcal{B}} \not\models B$
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \not\models (A \rightarrow B)$

Analysis

- ▶ If there is no proof for a sequent, there is a derivation...
 - ▶ Where all possible rules have been applied
 - \blacktriangleright At least one branch $\mathcal B$ has not been closed with an axiom
- lacktriangle We can use the atoms on ${\mathcal B}$ to construct an interpretation ${\mathcal I}_{\mathcal B}$
- $ightharpoonup \mathcal{I}_{\mathcal{B}}$ makes atoms left true, and atoms right false
- $ightharpoonup \mathcal{I}_{\mathcal{B}}$ also makes *all other* formulae left true and right false, because...
 - ▶ for every non-atomic formula, there is a rule that decomposes it
 - which must have been applied
 - \blacktriangleright and that guarantees that $\mathcal{I}_{\mathcal{B}}$ falsifies sequents, based on structural induction
- Structural induction on formulae, while soundness was by induction on derivations
- Not possible to prove completeness 'one rule at a time'

One-sided Sequent Calculus

- ightharpoonup Only sequents with empty succedent: $\Gamma \implies$
- ▶ To prove A, start with $\neg A \implies$
- "Proof by contradiction" or "refutation"
- ▶ Negation rules combined with others:

$$\frac{\Gamma, \neg A, \neg B \implies}{\Gamma, \neg (A \lor B) \implies} \neg \lor \qquad \frac{\Gamma, \neg A \implies}{\Gamma, \neg (A \land B) \implies} \neg \land$$

Double negation:

$$\frac{\Gamma, A \Longrightarrow}{\Gamma, \neg \neg A \Longrightarrow} \neg \neg$$

Axiom:

$$\Gamma, A, \neg A \implies$$

ightharpoonup Can do the same with empty antecedents $\implies \Delta$

Example with One-sided Sequents

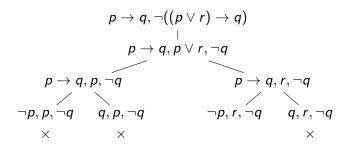
- ▶ Instead of $p \rightarrow q \implies (p \lor r) \rightarrow q$
- ▶ Start with $p \to q, \neg((p \lor r) \to q) \implies$

$$\begin{array}{c|c}
\hline \neg p, p, \neg q \Longrightarrow & \overline{q, p, \neg q} \Longrightarrow & \overline{q, r, \neg q} \Longrightarrow \\
\hline p \to q, p, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, p \lor r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, \neg ((p \lor r) \to q) \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, \neg ((p \lor r) \to q) \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, \neg ((p \lor r) \to q) \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, \neg ((p \lor r) \to q) \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, \neg ((p \lor r) \to q) \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \Longrightarrow & p \to q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \mapsto q, r, \neg q \Longrightarrow \\
\hline p \to q, r, \neg q \mapsto q, r, \neg q \mapsto q, r, r, r, r \mapsto q, r, r \mapsto q, r, r \mapsto q, r \mapsto$$

Soundness and completeness very similar to two-sided LK.

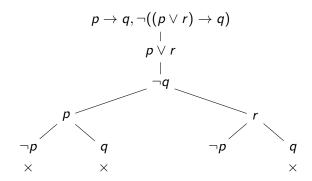
Semantic Tableaux (Ben-Ari 2.6)

- Others call these 'block tableaux'
- ► Sequent arrow ⇒ not needed for one-sided calculus
- More handy to write top-down, like everybody else
- ▶ Mark 'closed' branches (with axioms) with ×



Short Hand Notation for Tableaux

- Only write the new formula in every node.
- Even more handy to write
- ▶ Close branch using literals A and $\neg A$ anywhere on a branch.
- Have to make sure that all rules were used on every branch!



Summary and Outlook

Until now:

- ▶ Propositional logic and model semantics
- LK Calculus
- Soundness
- Completeness

Next three weeks:

- ► First-order logic and model semantics
- LK Calculus for first-order logic
- Soundness
- Completeness

After that: resolution, DPLL, Prolog,...