

Today's Plan	
 Semantics for Sequents 	
Soundness	
► Completeness	
IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 2	2 / 39

emantics	for	Sequents	

Semantics for Sequents

Definition 1.1 (Valid sequent).

A sequent $\Gamma \implies \Delta$ is valid if all interpretations that satisfy all formulas in Γ satisfy at least one formula in Δ .

Example.

The following sequents are valid:

- $\triangleright p \implies p$
- $\blacktriangleright p \rightarrow q, r \implies p \rightarrow q, s$
- $\blacktriangleright p, p \to q \implies q$
- $\blacktriangleright \ p \to q \implies \neg q \to \neg p$

Semantics for Sequents

Definition 1.2 (Countermodel/falsifiable sequent).

- An interpretation I is a countermodel for the sequent Γ ⇒ Δ if
 v_I(A) = T for all formulae A ∈ Γ and v_I(B) = F for all formulae
 B ∈ Δ
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- ► A sequent is falsifiable if it has a countermodel.

Example.

The following sequents are falsifiable:

 $p \implies q$ Countermodel: $\mathcal{I}(p) = T, \mathcal{I}(q) = F$ $p \lor q \implies p \land q$ Countermodel: same, or $\mathcal{I}(p) = F, \mathcal{I}(q) = T$ $\implies p$ Countermodel: $\mathcal{I}(p) = F$ $p \implies$ Countermodel: $\mathcal{I}(p) = T$ $\implies \Rightarrow$ Countermodel: all interpretations!N3070/4070 :: Autum 2020Lecture 3 :: 3rd September

	Soundness
Outline	
Semantics for Sequents	
Soundness	
 Completeness 	

Soundness
Soundness of LK
We want all LK-provable sequents to be valid!
► If they are not, then LK would be incorrect or unsound
Definition 2.1 (Soundness).
The sequent calculus LK is sound if every LK-provable sequent is valid.
Theorem 2.1.
The sequent calculus LK is sound.

Lecture 3 :: 3rd September

Soundness

How to show the Soundness Theorem?

We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

N3070/4070 :: Autumn 2020

Lecture 3 :: 3rd Septem

Soundness

Proving Preservation of Falsifiability

- ▶ The proof has a separate case for each LK-rule.
- \blacktriangleright Consider for instance the \rightarrow -left-rule:

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{lef}$$

- We have to show that all instances of →-left preserve falsifiability upwards.
- We let Γ, Δ, A and B in the rule stand for arbitrary (sets of) propositional formulae

Soundness

Preservation of Falsifiability

Definition 2.2.

An LK-rule θ preserves falsifiability (upwards) if all interpretations that falsify the conclusion w of an instance $\frac{w_1 \cdots w_n}{w}$ of θ also falsify at least one of the premises w_i .

Lemma 2.1.

All LK-rules preserve falsifiability.

Lecture 3 :: 3rd Septem

Soundness

10 / 39

Proof for \neg -right Proof for \neg -right. $\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg$ -right • Assume that \mathcal{I} falsifies the conclusion. • Then $\mathcal{I} \models \Gamma, \mathcal{I} \not\models \neg A$ and \mathcal{I} falsifies all formulae in Δ . • Per model semantics, we have $\mathcal{I} \models A$. • Therefore, $\mathcal{I} \models \Gamma \cup \{A\}$ and \mathcal{I} falsifies all formulae in Δ . • Thus, \mathcal{I} falsifies the premisse.

IN3070/4070 :: Autumn 2020

Soundness

 $\mathsf{Proof} \text{ for } \to \mathsf{-left}$

Proof for \rightarrow -left.

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$

- \blacktriangleright Assume that ${\cal I}$ falsifies the conclusion.
- ▶ Then \mathcal{I} satisfies $\Gamma \cup \{A \to B\}$ and falsifies all formlae in Δ .
- Since I satisfies A → B, by definition of model semantics,
 (1) I ⊭ A, or
 - (2) $\mathcal{I} \models B$.
- ▶ In case (1), \mathcal{I} falsifies the left premisse.
- ▶ In case (2), \mathcal{I} falsifies the right premisse.

IN3070/4070 :: Autumn 2020

Ecclure 5 .. ord ocp

Lecture 3

Soundness

How to show the Soundness Theorem?

We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

Soundness
Proving "for all"-statements
 Consider the statement "for all x ∈ S: P(x)". We can show this by showing P(a) for each element a ∈ S. What if S is very large, or infinite? We can generalise from an arbitrary element: Choose an arbitrary element a ∈ S. Show that P(a) holds. Since a was arbitrarily chosen, the original statement must hold.
IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 14 / 39
IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 14 / 39
IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 14 / 39 Soundness
IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 14 / 39 Soundness Reminder: LK derivation
IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 14 / 39 Soundness Reminder: LK derivation
IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 14 / 39 Soundness Reminder: LK derivation Definition 2.3 (LK Derivation).
IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 14 / 39 Soundness Reminder: LK derivation Definition 2.3 (LK Derivation). 1. Let $\Gamma \implies \Delta$ be a sequent. Then
IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 14 / 39 Soundness Reminder: LK derivation Definition 2.3 (LK Derivation). 1. Let $\Gamma \implies \Delta$ be a sequent. Then $\Gamma \implies \Delta$
IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 14 / 39 Soundness Reminder: LK derivation Definition 2.3 (LK Derivation). 1. Let $\Gamma \implies \Delta$ be a sequent. Then $\Gamma \implies \Delta$ is an LK-derivation of $\Gamma \implies \Delta$.
1/202 Lecture 3 :: 3rd September 14 / 39 Soundness Reminder: LK derivation Definition 2.3 (LK Derivation). 1. Let $\Gamma \implies \Delta$ be a sequent. Then $\Gamma \implies \Delta$ is an LK-derivation of $\Gamma \implies \Delta$. 2. Let $\frac{w_1 \cdots w_n}{\Gamma \implies \Delta}$ be an instance of an LK rule, and $\mathcal{D}_1,, \mathcal{D}_n$ derivations of $w_1,, w_n$. Then

is an LK-derivation of $\Gamma \implies \Delta$.

13 / 39

Lecture 3 :: 3rd Septembe

Soundness

Existence of a falsifiable leaf sequent

Lemma 2.2.

If an interpretation \mathcal{I} falsifies the root sequent of an LK-derivation δ , then \mathcal{I} falsifies at least one of the leaf sequents of δ .

Proof.

By structural induction on the LK-derivation δ . Induction base: δ is a sequent $\Gamma \implies \Delta$:

 $\Gamma \implies \Delta$

- Here, $\Gamma \implies \Delta$ is both root sequent and (only) leaf sequent.
- Assume \mathcal{I} falsifies $\Gamma \implies \Delta$.
- ▶ Then \mathcal{I} falsifies a leaf sequent in δ , namely $\Gamma \implies \Delta$.

N3070/4070 :: Autumn 2020

Lecture 3 :: 3rd Septem

Soundnes

How to show the Soundness Theorem?

We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

Continued.

Induction step: δ is a derivation of the form

for some smaller derivations \mathcal{D}_i with roots $\Gamma_i \implies \Delta_i$.

- $\blacktriangleright \text{ Assume } \mathcal{I} \text{ falsifies } \Gamma \implies \Delta.$
- ▶ Rule *r* preserves falsifiability upwards.
- Therefore \mathcal{I} falsifies $\Gamma_i \implies \Delta_i$ for some $i \in \{1, \ldots, n\}$.
- ▶ By induction, \mathcal{I} falsifies one of the leaf sequents of \mathcal{D}_i .
- \blacktriangleright This is also a leaf sequent of δ

Soundness

Lecture 3

All axioms are valid

Lemma 2.3.

All axioms are valid.

Proof.

$\Gamma, A \implies A, \Delta$

- We will show that all interpretations that satisfy the antecedent also satisfy at least one formula of the succedent.
- ► Let *I* be an arbitrarily chosen interpretation that satisfies the antecedent.
- ▶ Then \mathcal{I} satisfies the formula A in the succedent.

 \square

Joundness

Proof of the Soundness Theorem for LK

Proof of soundness.

- Assume that \mathcal{P} is an LK-proof for the sequent $\Gamma \implies \Delta$.
 - $\blacktriangleright \ \mathcal{P}$ is an LK-derivation where every leaf is an axiom.
- **>** For the sake of contradiction, assume that $\Gamma \implies \Delta$ is not valid.
- ▶ Then there is a countermodel \mathcal{I} that falsifies $\Gamma \implies \Delta$.
- ► We know from the previous Lemma that *I* falsifies at least one leaf sequent of *P*.
- ► Then *P* has a leaf sequent that is not an axiom, since axioms are not falsifiable.
- \blacktriangleright So \mathcal{P} cannot be an LK-proof.

N3070/4070 :: Autumn 2020

ecture 3 :: 3rd September

Completeness	
Outline	
 Semantics for Sequents 	
Second second	
► Soundness	
► Completeness	
IN 2070 / 4070 A structure 2020	02 / 2

Soundness

Analysis

- An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- ► An axiom is never falsifiable
- Roots of LK-proofs are valid
- Most of this is independent of the actual rules.
- Central part is proving that every rule preserves falsifiability
- ► Shown individually for each rule
- ► Can add new rules, and just show "soundness" for those

N3070/4070 :: Autumn 2020

Lecture 3 :: 3rd September

22 / 39

Completeness

Completeness — Introduction

Definition 3.1 (Soundness).

The calculus LK is sound if any LK-provable sequent is valid.

Definition 3.2 (Completeness).

The calculus LK is complete if every valid sequent is LK-provable.

soundness

Validity (semantic) Universal statement: "for all interpretations..." completeness **Provability** (syntactic) Existential statement:

"there exists a proof. . . "

21/39

Completeness — Introduction

IN3070/4070 :: Autumn 2020

Completeness	Completeness	
$Completeness \longrightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	 An LK-machine? Something can be sort without being completions of the sort without being s	und ete. shown. ne numbers: 17, 19, mplete shown ne numbers: 3, 15 t too little. ne numbers: 17, 19
070/4070 :: Autumn 2020 Lecture 3 :: 3rd September 25 / 39	IN3070/4070 :: Autumn 2020 Lecture 3 :: 3rd September	26 /
Completeness	Completeness	
he Completeness Theorem	Proof of Completeness	

Theorem 3.1 (Completeness).

The Completeness Theorem

If $\Gamma \implies \Delta$ is valid, then it is provable in LK.

To show completeness of our calculus, we show the equivalent statement:

Lemma 3.1 (Model existence).

If $\Gamma \implies \Delta$ is not provable in LK, then it is falsifiable.

This means that there is an interpretation that makes all formulae in Γ true and all formulae in Δ false.

• Construct a derivation \mathcal{D} from $\Gamma \implies \Delta$ such that no further rule

- applications are possible. "A maximal derivation."
- \blacktriangleright Then there is (at least) one branch \mathcal{B} that does not end in an axiom. We then have:
 - \blacktriangleright The leaf sequent of \mathcal{B} contains only atomic formulae, and
 - \blacktriangleright the leaf sequent of \mathcal{B} is not an axiom.

Assume $\Gamma \implies \Delta$ is not provable.

- \blacktriangleright We construct an interpretation that falsifies $\Gamma \implies \Delta$. Let
 - \mathcal{B}^{\top} be the set of formulae that occur in an antecedent on \mathcal{B} , and
 - \mathcal{B}^{\perp} be the set of formulae that occur in an succedent on \mathcal{B} , and
 - $\mathcal{I}_{\mathcal{B}}$ be the interpretation that makes all atomic formulae in \mathcal{B}^{\top} true and all other atomic formulae (in particular those in \mathcal{B}^{\perp}) false.

26 / 3

Completeness

Case: Negation in antecedent/succedent

Assume that $\neg A \in \mathcal{B}^{\top}$.

- \blacktriangleright ¬A appears in an antecedent, it can't 'go away' unless ¬-left is applied
- ▶ Since the derivation is maximal, ¬-left is eventually applied
- A appears in a succedent, so we have $A \in \mathcal{B}^{\perp}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \not\models A$.
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \models \neg A$.

Assume that $\neg A \in \mathcal{B}^{\perp}$.

- ▶ $\neg A$ appears in a succedent, it can't 'go away' unless \neg -right is applied
- ▶ Since the derivation is maximal, ¬-right *is* eventually applied
- A appears in an antecedent, so we have $A \in \mathcal{B}^{\top}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \models A$.
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \not\models \neg A$.

31 / 39

Proof of Completeness, cont.

- We show by structural induction on propositional formulae that the interpretation I_B makes all formulae in B^T true, and all formulae in B[⊥] false.
- ▶ We show for all propositional formulae *A* that If $A \in B^{\top}$, then $\mathcal{I}_{\mathcal{B}} \models A$. If $A \in B^{\perp}$, then $\mathcal{I}_{\mathcal{B}} \not\models A$.

Induction base: A is an atomic formula in $\mathcal{B}^{\top}/\mathcal{B}^{\perp}$.

- ▶ Our statment holds for $A \in B^{\top}$ because that is how we defined \mathcal{I}_{B} .
- ▶ For $A \in B^{\perp}$, $A \notin B^{\top}$ because atoms do not disappear from a branch and \mathcal{B} contains no axiom. Therefore $\mathcal{I}_{\mathcal{B}} \not\models A$.

Induction step: From the assumption (IH) that the statement holds for A and B, we must show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$ og $(A \to B)$. These are four cases, of which we show three here.

070/4070 :: Autumn 202

September

0 / 39

ompleteness

Case: Conjunction in antecedent/succedent

Assume that $(A \land B) \in \mathcal{B}^{\top}$.

- ▶ Since the derivation is maximal, we have $A \in B^{\top}$ and $B \in B^{\top}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \models A$ and $\mathcal{I}_{\mathcal{B}} \models B$.
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \models (A \land B)$.

Assume that $(A \wedge B) \in \mathcal{B}^{\perp}$.

- ▶ Since the derivation is maximal, ∧-right is eventually applied...
- ▶ ... introducing A in the succedent of one branch and B on the other.
- ▶ One of them is our branch \mathcal{B} , and therefore $A \in \mathcal{B}^{\perp}$ or $B \in \mathcal{B}^{\perp}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \not\models A$ or $\mathcal{I}_{\mathcal{B}} \not\models B$
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \not\models (A \land B)$

Completeness

Case: Implication in antecedent/succedent

Assume that $(A \rightarrow B) \in \mathcal{B}^{\top}$.

- \blacktriangleright Since the derivation is maximal, \rightarrow -left is eventually applied...
- ... introducing A in the succedent of one branch and B in the antecedent of the other.
- ▶ One of them is our branch \mathcal{B} , and therefore $A \in \mathcal{B}^{\perp}$ or $B \in \mathcal{B}^{\top}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \not\models A$ or $\mathcal{I}_{\mathcal{B}} \models B$
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \models (A \rightarrow B)$

Assume that $(A \rightarrow B) \in \mathcal{B}^{\perp}$.

- ▶ Since the derivation is maximal, we have $A \in B^{\top}$ and $B \in B^{\perp}$.
- ▶ By the IH, we have $\mathcal{I}_{\mathcal{B}} \models A$ and $\mathcal{I}_{\mathcal{B}} \not\models B$
- ▶ By definition of model semantics, $\mathcal{I}_{\mathcal{B}} \not\models (A \rightarrow B)$

N3070/4070 :: Autumn 2020

Lecture 3 :: 3rd Septembe

Completeness

One-sided Sequent Calculus

- ▶ Only sequents with empty succedent: $\Gamma \implies$
- ▶ To prove A, start with $\neg A \implies$
- "Proof by contradiction" or "refutation"
- ▶ Negation rules combined with others:

$$\frac{\Gamma, \neg A, \neg B \Longrightarrow}{\Gamma, \neg (A \lor B) \Longrightarrow} \neg \lor \qquad \frac{\Gamma, \neg A \Longrightarrow}{\Gamma, \neg (A \land B) \Longrightarrow} \neg \land$$

► Double negation:

$$\frac{\Gamma, A \implies}{\Gamma, \neg \neg A \implies} \neg \neg$$

► Axiom:

$$\Gamma, A, \neg A \implies$$

 \blacktriangleright Can do the same with empty antecedents $\implies \Delta$

Completenes

Analysis

- ▶ If there is no proof for a sequent, there is a derivation...
 - ▶ Where all possible rules have been applied
 - \blacktriangleright At least one branch ${\cal B}$ has not been closed with an axiom
- \blacktriangleright We can use the atoms on $\mathcal B$ to construct an interpretation $\mathcal I_{\mathcal B}$
- $\blacktriangleright \ \mathcal{I}_{\mathcal{B}}$ makes atoms left true, and atoms right false
- \blacktriangleright $\mathcal{I}_{\mathcal{B}}$ also makes all other formulae left true and right false, because...
 - ▶ for every non-atomic formula, there is a rule that decomposes it
 - which must have been applied
 - \blacktriangleright and that guarantees that $\mathcal{I}_{\mathcal{B}}$ falsifies sequents, based on structural induction
- Structural induction on formulae, while soundness was by induction on derivations
- Not possible to prove completeness 'one rule at a time'

34 / 39

070/4070 :: Autumn 20

Completeness

Semantic Tableaux (Ben-Ari 2.6)

- ► Others call these 'block tableaux'
- \blacktriangleright Sequent arrow \implies not needed for one-sided calculus
- ▶ More handy to write top-down, like everybody else
- \blacktriangleright Mark 'closed' branches (with axioms) with \times

ompleteness

Short Hand Notation for Tableaux

- ▶ Only write the new formula in every node.
- Even more handy to write
- ▶ Close branch using literals A and $\neg A$ anywhere on a branch.
- ▶ Have to make sure that all rules were used on every branch!

