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Semantics for Sequents

Semantics for Sequents

Definition 1.1 (Valid sequent).

A sequent Γ =⇒ ∆ is valid if all interpretations that satisfy all formulas
in Γ satisfy at least one formula in ∆.

Example.

The following sequents are valid:

I p =⇒ p

I p → q, r =⇒ p → q, s

I p, p → q =⇒ q

I p → q =⇒ ¬q → ¬p
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Semantics for Sequents

Definition 1.2 (Countermodel/falsifiable sequent).

I An interpretation I is a countermodel for the sequent Γ =⇒ ∆ if
vI(A) = T for all formulae A ∈ Γ and vI(B) = F for all formulae
B ∈ ∆

I We say that a countermodel for a sequent falsifies the sequent.

I A sequent is falsifiable if it has a countermodel.

Example.

The following sequents are falsifiable:

I p =⇒ q Countermodel: I(p) = T , I(q) = F

I p ∨ q =⇒ p ∧ q Countermodel: same, or I(p) = F , I(q) = T

I =⇒ p Countermodel: I(p) = F

I p =⇒ Countermodel: I(p) = T

I =⇒ Countermodel: all interpretations!
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Semantics for Sequents

Summary

Valid

I p, p → q =⇒ q

I If I |= p and I |= p → q,
then I |= q.

I Validity is a semantic notion

Provable

p =⇒ p, q q, q =⇒ q
p, p → q =⇒ q

I Provability is a syntactic
notion

Falsifiability

I ¬p, p → q =⇒ ¬q
I An interpretation I s.t.
I 6|= p and I |= q.

Not provable

q =⇒ p, p
¬p =⇒ p,¬q

q, q =⇒ p
q,¬p =⇒ ¬q

¬p, p → q =⇒ ¬q
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Soundness

Soundness of LK

I We want all LK-provable sequents to be valid!

I If they are not, then LK would be incorrect or unsound . . .

Definition 2.1 (Soundness).

The sequent calculus LK is sound if every LK-provable sequent is valid.

Theorem 2.1.

The sequent calculus LK is sound.
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Soundness

How to show the Soundness Theorem?

We show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.
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Soundness

Preservation of Falsifiability

Definition 2.2.

An LK-rule θ preserves falsifiability (upwards) if all interpretations that
falsify the conclusion w of an instance

w1 · · ·wn
w of θ also falsify at least

one of the premises wi .

Lemma 2.1.

All LK-rules preserve falsifiability.
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Soundness

Proving Preservation of Falsifiability

I The proof has a separate case for each LK-rule.

I Consider for instance the →-left-rule:

Γ =⇒ A,∆ Γ,B =⇒ ∆
→-left

Γ,A→ B =⇒ ∆

I We have to show that all instances of →-left preserve falsifiability
upwards.

I We let Γ, ∆, A and B in the rule stand for arbitrary (sets of)
propositional formulae
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Soundness

Proof for ¬-right

Proof for ¬-right.

Γ,A =⇒ ∆ ¬-right
Γ =⇒ ¬A,∆

I Assume that I falsifies the conclusion.

I Then I |= Γ, I 6|= ¬A and I falsifies all formulae in ∆.

I Per model semantics, we have I |= A.

I Therefore, I |= Γ ∪ {A} and I falsifies all formlae in ∆.

I Thus, I falsifies the premisse.
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Soundness

Proof for →-left

Proof for →-left.

Γ =⇒ A,∆ Γ,B =⇒ ∆
→-left

Γ,A→ B =⇒ ∆

I Assume that I falsifies the conclusion.

I Then I satisfies Γ ∪ {A→ B} and falsifies all formlae in ∆.

I Since I satisfies A→ B, by definition of model semantics,

(1) I 6|= A, or
(2) I |= B.

I In case (1), I falsifies the left premisse.

I In case (2), I falsifies the right premisse.
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Soundness

Proving “for all”-statements

I Consider the statement “for all x ∈ S : P(x)”.

I We can show this by showing P(a) for each element a ∈ S .

I What if S is very large, or infinite?

I We can generalise from an arbitrary element:

I Choose an arbitrary element a ∈ S .
I Show that P(a) holds.
I Since a was arbitrarily chosen, the original statement must hold.
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Soundness

How to show the Soundness Theorem?

We show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.
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Soundness

Reminder: LK derivation

Definition 2.3 (LK Derivation).

1. Let Γ =⇒ ∆ be a sequent. Then

Γ =⇒ ∆

is an LK-derivation of Γ =⇒ ∆.

2. Let
w1 · · · wn

Γ =⇒ ∆
be an instance of an LK rule, and D1, ...,Dn

derivations of w1, ...,wn. Then

D1 · · · Dn

Γ =⇒ ∆

is an LK-derivation of Γ =⇒ ∆.
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Soundness

Existence of a falsifiable leaf sequent

Lemma 2.2.

If an interpretation I falsifies the root sequent of an LK-derivation δ, then
I falsifies at least one of the leaf sequents of δ.

Proof.

By structural induction on the LK-derivation δ.
Induction base: δ is a sequent Γ =⇒ ∆:

Γ =⇒ ∆

I Here, Γ =⇒ ∆ is both root sequent and (only) leaf sequent.

I Assume I falsifies Γ =⇒ ∆.

I Then I falsifies a leaf sequent in δ, namely Γ =⇒ ∆.
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Soundness

Continued.

Induction step: δ is a derivation of the form

Γ1

D1
...

=⇒ ∆1 · · · Γn

Dn
...

=⇒ ∆n r
Γ =⇒ ∆

for some smaller derivations Di with roots Γi =⇒ ∆i .

I Assume I falsifies Γ =⇒ ∆.

I Rule r preserves falsifiability upwards.

I Therefore I falsifies Γi =⇒ ∆i for some i ∈ {1, . . . , n}.
I By induction, I falsifies one of the leaf sequents of Di .

I This is also a leaf sequent of δ
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Soundness

How to show the Soundness Theorem?

We show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.
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Soundness

All axioms are valid

Lemma 2.3.

All axioms are valid.

Proof.

Γ,A =⇒ A,∆

I We will show that all interpretations that satisfy the antecedent also
satisfy at least one formula of the succedent.

I Let I be an arbitrarily chosen interpretation that satisfies the
antecedent.

I Then I satisfies the formula A in the succedent.
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Soundness

Proof of the Soundness Theorem for LK

Proof of soundness.

I Assume that P is an LK-proof for the sequent Γ =⇒ ∆.

I P is an LK-derivation where every leaf is an axiom.

I For the sake of contradiction, assume that Γ =⇒ ∆ is not valid.

I Then there is a countermodel I that falsifies Γ =⇒ ∆.

I We know from the previous Lemma that I falsifies at least one leaf
sequent of P.

I Then P has a leaf sequent that is not an axiom, since axioms are not
falsifiable.

I So P cannot be an LK-proof.
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Soundness

Analysis

I An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

I An axiom is never falsifiable

I Roots of LK-proofs are valid

I Most of this is independent of the actual rules.

I Central part is proving that every rule preserves falsifiability

I Shown individually for each rule

I Can add new rules, and just show “soundness” for those
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Completeness

Completeness — Introduction

Definition 3.1 (Soundness).

The calculus LK is sound if any
LK-provable sequent is valid.

Definition 3.2 (Completeness).

The calculus LK is complete if
every valid sequent is
LK-provable.

Validity
(semantic)

Universal statement:
“for all interpretations. . . ”

Provability
(syntactic)

Existential statement:
“there exists a proof. . . ”

sunnhet

kompletthet

Validity
(semantic)

Universal statement:
“for all interpretations. . . ”

Provability
(syntactic)

Existential statement:
“there exists a proof. . . ”

soundness

completeness
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Completeness

Completeness — Introduction

Soundnes: Γ =⇒ ∆ provable ⇒ Γ =⇒ ∆ valid
Completeness: Γ =⇒ ∆ valid ⇒ Γ =⇒ ∆ provable

I Soundness and Completeness are dual notions

I Soundness says that we cannot prove more than the valid sequents

I Completeness says that we can prove all valid sequents

I A sequent is valid if and only if it is not falsifiable

I We can therefore also express soundness and completeness as:

Soundness: Γ =⇒ ∆ falsifiable ⇒ Γ =⇒ ∆ not provable
Completeness: Γ =⇒ ∆ not provable ⇒ Γ =⇒ ∆ falsifiable
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Completeness

An LK-machine?

Soundness

All that is printed is valid.

Completeness

All that is valid will get printed.

I Something can be sound
without being complete.

I Then too little is shown.
I Example with prime numbers:

2, 5, 7, 11, 17, 19, . . .

I Something can be complete
without being sound.

I Then too much is shown
I Example with prime numbers:

2, 3, 5, 7, 9, 11, 13, 15 . . .

I We want both:

I Not too much, not too little.
I Example with prime numbers:

2, 3, 5, 7, 11, 13, 17, 19 . . .
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Completeness

The Completeness Theorem

Theorem 3.1 (Completeness).

If Γ =⇒ ∆ is valid, then it is provable in LK.

To show completeness of our calculus, we show the equivalent statement:

Lemma 3.1 (Model existence).

If Γ =⇒ ∆ is not provable in LK, then it is falsifiable.

This means that there is an interpretation that makes all formulae in Γ
true and all formulae in ∆ false.
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Completeness

Proof of Completeness

Assume Γ =⇒ ∆ is not provable.

I Construct a derivation D from Γ =⇒ ∆ such that no further rule
applications are possible. “A maximal derivation.”

I Then there is (at least) one branch B that does not end in an axiom.
We then have:

I The leaf sequent of B contains only atomic formulae, and
I the leaf sequent of B is not an axiom.

I We construct an interpretation that falsifies Γ =⇒ ∆. Let

B> be the set of formulae that occur in an antecedent on B, and

B⊥ be the set of formulae that occur in an succedent on B, and

IB be the interpretation that makes all atomic formulae in B>
true and all other atomic formulae (in particular those in
B⊥) false.
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Completeness

Example

p =⇒ q, p q, p =⇒ q
p → q, p =⇒ q

r =⇒ q, p q, r =⇒ q
p → q, r =⇒ q

p → q, p ∨ r =⇒ q

p → q =⇒ (p ∨ r)→ q

We see that the branch B with leaf sequent r =⇒ q, p is not closed.

B> = {r , p → q, p ∨ r}
B⊥ = {q, p, (p ∨ r)→ q}
IB = interpretation with IB(r) = T og IB(q) = IB(p) = F

To show: this interpretation falsifies the root sequent.
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Completeness

Proof of Completeness, cont.

I We show by structural induction on propositional formulae that the
interpretation IB makes all formulae in B> true, and all formulae in
B⊥ false.

I We show for all propositional formulae A that

If A ∈ B>, then IB |= A.
If A ∈ B⊥, then IB 6|= A.

Induction base: A is an atomic formula in B>/B⊥.

I Our statment holds for A ∈ B> because that is how we defined IB.

I For A ∈ B⊥, A 6∈ B> because atoms do not disappear from a branch
and B contains no axiom. Therefore IB 6|= A.

Induction step: From the assumption (IH) that the statement holds for A
and B, we must show that it holds for ¬A, (A ∧ B), (A ∨ B) og (A→ B).
These are four cases, of which we show three here.
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Completeness

Case: Negation in antecedent/succedent

Assume that ¬A ∈ B>.

I ¬A appears in an antecedent, it can’t ‘go away’ unless ¬-left is applied

I Since the derivation is maximal, ¬-left is eventually applied

I A appears in a succedent, so we have A ∈ B⊥.

I By the IH, we have IB 6|= A.

I By definition of model semantics, IB |= ¬A.

Assume that ¬A ∈ B⊥.

I ¬A appears in a succedent, it can’t ‘go away’ unless ¬-right is applied

I Since the derivation is maximal, ¬-right is eventually applied

I A appears in an antecedent, so we have A ∈ B>.

I By the IH, we have IB |= A.

I By definition of model semantics, IB 6|= ¬A.
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Completeness

Case: Conjunction in antecedent/succedent

Assume that (A ∧ B) ∈ B>.

I Since the derivation is maximal, we have A ∈ B> and B ∈ B>.

I By the IH, we have IB |= A and IB |= B.

I By definition of model semantics, IB |= (A ∧ B).

Assume that (A ∧ B) ∈ B⊥.

I Since the derivation is maximal, ∧-right is eventually applied. . .

I . . . introducing A in the succedent of one branch and B on the other.

I One of them is our branch B, and therefore A ∈ B⊥ or B ∈ B⊥.

I By the IH, we have IB 6|= A or IB 6|= B

I By definition of model semantics, IB 6|= (A ∧ B)
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Completeness

Case: Implication in antecedent/succedent

Assume that (A→ B) ∈ B>.

I Since the derivation is maximal, →-left is eventually applied. . .

I . . . introducing A in the succedent of one branch and B in the
antecedent of the other.

I One of them is our branch B, and therefore A ∈ B⊥ or B ∈ B>.

I By the IH, we have IB 6|= A or IB |= B

I By definition of model semantics, IB |= (A→ B)

Assume that (A→ B) ∈ B⊥.

I Since the derivation is maximal, we have A ∈ B> and B ∈ B⊥.

I By the IH, we have IB |= A and IB 6|= B

I By definition of model semantics, IB 6|= (A→ B)
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Completeness

Analysis

I If there is no proof for a sequent, there is a derivation. . .

I Where all possible rules have been applied
I At least one branch B has not been closed with an axiom

I We can use the atoms on B to construct an interpretation IB
I IB makes atoms left true, and atoms right false

I IB also makes all other formulae left true and right false, because. . .

I for every non-atomic formula, there is a rule that decomposes it
I which must have been applied
I and that guarantees that IB falsifies sequents, based on structural

induction

I Structural induction on formulae, while soundness was by induction
on derivations

I Not possible to prove completeness ‘one rule at a time’
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Completeness

One-sided Sequent Calculus

I Only sequents with empty succedent: Γ =⇒
I To prove A, start with ¬A =⇒
I “Proof by contradiction” or “refutation”

I Negation rules combined with others:

Γ,¬A,¬B =⇒ ¬∨
Γ,¬(A ∨ B) =⇒

Γ,¬A =⇒ Γ,¬B =⇒ ¬∧
Γ,¬(A ∧ B) =⇒

I Double negation:

Γ,A =⇒ ¬¬
Γ,¬¬A =⇒

I Axiom:

Γ,A,¬A =⇒

I Can do the same with empty antecedents =⇒ ∆
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Completeness

Example with One-sided Sequents

I Instead of p → q =⇒ (p ∨ r)→ q

I Start with p → q,¬((p ∨ r)→ q) =⇒

¬p, p,¬q =⇒ q, p,¬q =⇒
p → q, p,¬q =⇒

¬p, r ,¬q =⇒ q, r ,¬q =⇒
p → q, r ,¬q =⇒

p → q, p ∨ r ,¬q =⇒
p → q,¬((p ∨ r)→ q) =⇒

I Soundness and completeness very similar to two-sided LK.
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Completeness

Semantic Tableaux (Ben-Ari 2.6)

I Others call these ‘block tableaux’

I Sequent arrow =⇒ not needed for one-sided calculus

I More handy to write top-down, like everybody else

I Mark ‘closed’ branches (with axioms) with ×

p → q,¬((p ∨ r)→ q)

p → q, p ∨ r ,¬q

p → q, p,¬q

¬p, p,¬q
×

q, p,¬q
×

p → q, r ,¬q

¬p, r ,¬q q, r ,¬q
×
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Completeness

Short Hand Notation for Tableaux

I Only write the new formula in every node.

I Even more handy to write

I Close branch using literals A and ¬A anywhere on a branch.

I Have to make sure that all rules were used on every branch!

p → q,¬((p ∨ r)→ q)

p ∨ r

¬q

p

¬p
×

q

×

r

¬p q

×
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Completeness

Summary and Outlook

Until now:

I Propositional logic and model semantics

I LK Calculus

I Soundness

I Completeness

Next three weeks:

I First-order logic and model semantics

I LK Calculus for first-order logic

I Soundness

I Completeness

After that: resolution, DPLL, Prolog,. . .
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