# IN3070/4070 – Logic – Autumn 2020 Lecture 3: LK: Soundness & Completeness

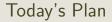
Martin Giese

3rd September 2020





UNIVERSITY OF OSLO



### Soundness



## Outline



## ► Soundness



#### Definition 1.1 (Valid sequent).

A sequent  $\Gamma \implies \Delta$  is valid if all interpretations that satisfy all formulas in  $\Gamma$  satisfy at least one formula in  $\Delta$ .

### Definition 1.1 (Valid sequent).

A sequent  $\Gamma \implies \Delta$  is valid if all interpretations that satisfy all formulas in  $\Gamma$  satisfy at least one formula in  $\Delta$ .

#### Example.

$$\triangleright p \implies p$$

### Definition 1.1 (Valid sequent).

A sequent  $\Gamma \implies \Delta$  is valid if all interpretations that satisfy all formulas in  $\Gamma$  satisfy at least one formula in  $\Delta$ .

#### Example.

$$\triangleright p \implies p$$

$$\blacktriangleright p \rightarrow q, r \implies p \rightarrow q, s$$

### Definition 1.1 (Valid sequent).

A sequent  $\Gamma \implies \Delta$  is valid if all interpretations that satisfy all formulas in  $\Gamma$  satisfy at least one formula in  $\Delta$ .

### Example.

$$\triangleright p \implies p$$

$$\blacktriangleright \ p \to q, r \implies p \to q, s$$

$$\blacktriangleright p, p \to q \implies q$$

### Definition 1.1 (Valid sequent).

A sequent  $\Gamma \implies \Delta$  is valid if all interpretations that satisfy all formulas in  $\Gamma$  satisfy at least one formula in  $\Delta$ .

### Example.

$$\triangleright p \implies p$$

$$\blacktriangleright \ p \to q, r \implies p \to q, s$$

$$\blacktriangleright p, p \to q \implies q$$

$$\blacktriangleright \ p \to q \implies \neg q \to \neg p$$

 An interpretation I is a countermodel for the sequent Γ ⇒ Δ if v<sub>I</sub>(A) = T for all formulae A ∈ Γ and v<sub>I</sub>(B) = F for all formulae B ∈ Δ

- An interpretation I is a countermodel for the sequent Γ ⇒ Δ if v<sub>I</sub>(A) = T for all formulae A ∈ Γ and v<sub>I</sub>(B) = F for all formulae B ∈ Δ
- ▶ We say that a countermodel for a sequent falsifies the sequent.

- An interpretation I is a countermodel for the sequent Γ ⇒ Δ if v<sub>I</sub>(A) = T for all formulae A ∈ Γ and v<sub>I</sub>(B) = F for all formulae B ∈ Δ
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- ► A sequent is falsifiable if it has a countermodel.

- An interpretation  $\mathcal{I}$  is a countermodel for the sequent  $\Gamma \implies \Delta$  if  $v_{\mathcal{I}}(A) = T$  for all formulae  $A \in \Gamma$  and  $v_{\mathcal{I}}(B) = F$  for all formulae  $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- A sequent is falsifiable if it has a countermodel.

#### Example.

The following sequents are falsifiable:

 $\triangleright$   $p \implies q$ 

- An interpretation  $\mathcal{I}$  is a countermodel for the sequent  $\Gamma \implies \Delta$  if  $v_{\mathcal{I}}(A) = T$  for all formulae  $A \in \Gamma$  and  $v_{\mathcal{I}}(B) = F$  for all formulae  $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- A sequent is falsifiable if it has a countermodel.

#### Example.

The following sequents are falsifiable:

 $\blacktriangleright p \implies q \qquad \qquad Countermodel: \mathcal{I}(p) = T, \mathcal{I}(q) = F$ 

- An interpretation  $\mathcal{I}$  is a countermodel for the sequent  $\Gamma \implies \Delta$  if  $v_{\mathcal{I}}(A) = T$  for all formulae  $A \in \Gamma$  and  $v_{\mathcal{I}}(B) = F$  for all formulae  $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- A sequent is falsifiable if it has a countermodel.

#### Example.

The following sequents are falsifiable:

▶  $p \implies q$  Countermodel:  $\mathcal{I}(p) = T$ ,  $\mathcal{I}(q) = F$ ▶  $p \lor q \implies p \land q$ 

- An interpretation  $\mathcal{I}$  is a countermodel for the sequent  $\Gamma \implies \Delta$  if  $v_{\mathcal{I}}(A) = T$  for all formulae  $A \in \Gamma$  and  $v_{\mathcal{I}}(B) = F$  for all formulae  $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- A sequent is falsifiable if it has a countermodel.

#### Example.

The following sequents are falsifiable:

- ▶  $p \lor q \implies p \land q$  Countermodel: same, or  $\mathcal{I}(p) = F$ ,  $\mathcal{I}(q) = T$

- An interpretation  $\mathcal{I}$  is a countermodel for the sequent  $\Gamma \implies \Delta$  if  $v_{\mathcal{I}}(A) = T$  for all formulae  $A \in \Gamma$  and  $v_{\mathcal{I}}(B) = F$  for all formulae  $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- A sequent is falsifiable if it has a countermodel.

#### Example.

The following sequents are falsifiable:

*p* ⇒ *q* Countermodel:  $\mathcal{I}(p) = T$ ,  $\mathcal{I}(q) = F$  *p* ∨ *q* ⇒ *p* ∧ *q* Countermodel: same, or  $\mathcal{I}(p) = F$ ,  $\mathcal{I}(q) = T$ ⇒ *p*

- An interpretation  $\mathcal{I}$  is a countermodel for the sequent  $\Gamma \implies \Delta$  if  $v_{\mathcal{I}}(A) = T$  for all formulae  $A \in \Gamma$  and  $v_{\mathcal{I}}(B) = F$  for all formulae  $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- A sequent is falsifiable if it has a countermodel.

#### Example.

The following sequents are falsifiable:

*p* ⇒ *q* Countermodel:  $\mathcal{I}(p) = T$ ,  $\mathcal{I}(q) = F$  *p* ∨ *q* ⇒ *p* ∧ *q* Countermodel: same, or  $\mathcal{I}(p) = F$ ,  $\mathcal{I}(q) = T$ ⇒ *p* Countermodel:  $\mathcal{I}(p) = F$ 

- An interpretation  $\mathcal{I}$  is a countermodel for the sequent  $\Gamma \implies \Delta$  if  $v_{\mathcal{I}}(A) = T$  for all formulae  $A \in \Gamma$  and  $v_{\mathcal{I}}(B) = F$  for all formulae  $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- ► A sequent is falsifiable if it has a countermodel.

#### Example.

The following sequents are falsifiable:

*p* ⇒ *q* Countermodel:  $\mathcal{I}(p) = T, \mathcal{I}(q) = F$  *p* ∨ *q* ⇒ *p* ∧ *q* Countermodel: same, or  $\mathcal{I}(p) = F, \mathcal{I}(q) = T$ ⇒ *p* Countermodel:  $\mathcal{I}(p) = F$  *p* ⇒

- An interpretation  $\mathcal{I}$  is a countermodel for the sequent  $\Gamma \implies \Delta$  if  $v_{\mathcal{I}}(A) = T$  for all formulae  $A \in \Gamma$  and  $v_{\mathcal{I}}(B) = F$  for all formulae  $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- A sequent is falsifiable if it has a countermodel.

#### Example.

The following sequents are falsifiable:

*p* ⇒ *q* Countermodel:  $\mathcal{I}(p) = T$ ,  $\mathcal{I}(q) = F$  *p* ∨ *q* ⇒ *p* ∧ *q* Countermodel: same, or  $\mathcal{I}(p) = F$ ,  $\mathcal{I}(q) = T$ ⇒ *p* Countermodel:  $\mathcal{I}(p) = F$  *p* ⇒ Countermodel:  $\mathcal{I}(p) = T$ 

- An interpretation  $\mathcal{I}$  is a countermodel for the sequent  $\Gamma \implies \Delta$  if  $v_{\mathcal{I}}(A) = T$  for all formulae  $A \in \Gamma$  and  $v_{\mathcal{I}}(B) = F$  for all formulae  $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- A sequent is falsifiable if it has a countermodel.

#### Example.

The following sequents are falsifiable:

 $\begin{array}{ll} p \implies q & Countermodel: \mathcal{I}(p) = T, \mathcal{I}(q) = F \\ \begin{array}{l} p \lor q \implies p \land q & Countermodel: same, or \mathcal{I}(p) = F, \mathcal{I}(q) = T \\ \begin{array}{l} \implies p & Countermodel: \mathcal{I}(p) = F \\ \begin{array}{l} p \implies & Countermodel: \mathcal{I}(p) = T \\ \end{array} \end{array}$ 

- An interpretation  $\mathcal{I}$  is a countermodel for the sequent  $\Gamma \implies \Delta$  if  $v_{\mathcal{I}}(A) = T$  for all formulae  $A \in \Gamma$  and  $v_{\mathcal{I}}(B) = F$  for all formulae  $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- A sequent is falsifiable if it has a countermodel.

#### Example.

The following sequents are falsifiable:

 $\begin{array}{ll} p \implies q & Countermodel: \mathcal{I}(p) = T, \mathcal{I}(q) = F \\ \begin{array}{l} p \lor q \implies p \land q & Countermodel: same, or \mathcal{I}(p) = F, \mathcal{I}(q) = T \\ \begin{array}{l} \implies p & Countermodel: \mathcal{I}(p) = F \\ \begin{array}{l} p \implies & Countermodel: \mathcal{I}(p) = T \\ \end{array} \end{array}$ 

#### Valid

- $\blacktriangleright \ p, p \to q \implies q$
- If  $\mathcal{I} \models p$  and  $\mathcal{I} \models p \rightarrow q$ , then  $\mathcal{I} \models q$ .
- ▶ Validity is a semantic notion

#### Valid

$$\blacktriangleright p, p \to q \implies q$$

- If  $\mathcal{I} \models p$  and  $\mathcal{I} \models p \rightarrow q$ , then  $\mathcal{I} \models q$ .
- ▶ Validity is a semantic notion

#### Provable

$$p \implies p, q \quad q, q \implies q$$
  
 $p, p \rightarrow q \implies q$ 

 Provability is a syntactic notion

#### Valid

$$\blacktriangleright p, p \to q \implies q$$

- If  $\mathcal{I} \models p$  and  $\mathcal{I} \models p \rightarrow q$ , then  $\mathcal{I} \models q$ .
- Validity is a semantic notion

#### Provable

$$p \implies p, q \quad q, q \implies q$$
  
 $p, p \rightarrow q \implies q$ 

 Provability is a syntactic notion

### Falsifiability

- $\blacktriangleright \neg p, p \rightarrow q \implies \neg q$
- An interpretation  $\mathcal{I}$  s.t.  $\mathcal{I} \not\models p$  and  $\mathcal{I} \models q$ .

#### Valid

$$\blacktriangleright p, p \to q \implies q$$

- If  $\mathcal{I} \models p$  and  $\mathcal{I} \models p \rightarrow q$ , then  $\mathcal{I} \models q$ .
- Validity is a semantic notion

### Provable

$$p \implies p, q \quad q, q \implies q$$
  
 $p, p \rightarrow q \implies q$ 

 Provability is a syntactic notion

### Falsifiability

- $\blacktriangleright \neg p, p \rightarrow q \implies \neg q$
- An interpretation  $\mathcal{I}$  s.t.  $\mathcal{I} \not\models p$  and  $\mathcal{I} \models q$ .

$$\frac{q \Longrightarrow p, p}{\neg p \Longrightarrow p, \neg q} \quad \frac{q, q \Longrightarrow p}{q, \neg p \Longrightarrow \neg q}$$
$$\frac{q, q \Longrightarrow p}{\neg p, p \to q} \xrightarrow{q, q \Longrightarrow \neg q}$$

## Outline

### Semantics for Sequents



### Completeness

▶ We want all LK-provable sequents to be valid!

- We want all LK-provable sequents to be valid!
- If they are not, then LK would be incorrect or unsound ...

- We want all LK-provable sequents to be valid!
- If they are not, then LK would be incorrect or unsound ...

Definition 2.1 (Soundness).

The sequent calculus LK is sound if every LK-provable sequent is valid.

- We want all LK-provable sequents to be valid!
- If they are not, then LK would be incorrect or unsound ...

#### Definition 2.1 (Soundness).

The sequent calculus LK is sound if every LK-provable sequent is valid.

#### Theorem 2.1.

The sequent calculus LK is sound.

Soundness

## How to show the Soundness Theorem?

We show the following lemmas:

We show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

#### We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent

#### We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

#### We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

## How to show the Soundness Theorem?

We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

## Preservation of Falsifiability

#### **Definition 2.2.**

An LK-rule  $\theta$  preserves falsifiability (upwards) if all interpretations that falsify the conclusion w of an instance  $\frac{w_1 \cdots w_n}{w}$  of  $\theta$  also falsify at least one of the premises  $w_i$ .

## Preservation of Falsifiability

#### **Definition 2.2.**

An LK-rule  $\theta$  preserves falsifiability (upwards) if all interpretations that falsify the conclusion w of an instance  $\frac{w_1 \cdots w_n}{w}$  of  $\theta$  also falsify at least one of the premises  $w_i$ .

#### Lemma 2.1.

All LK-rules preserve falsifiability.

▶ The proof has a separate case for each LK-rule.

- ▶ The proof has a separate case for each LK-rule.
- Consider for instance the  $\rightarrow$ -left-rule:

$$\frac{\Gamma \implies A, \Delta \quad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\mathsf{left}$$

- ► The proof has a separate case for each LK-rule.
- Consider for instance the  $\rightarrow$ -left-rule:

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$

We have to show that all instances of →-left preserve falsifiability upwards.

- The proof has a separate case for each LK-rule.
- Consider for instance the  $\rightarrow$ -left-rule:

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$

- ► We have to show that all instances of →-left preserve falsifiability upwards.
- We let Γ, Δ, A and B in the rule stand for arbitrary (sets of) propositional formulae

#### Soundness

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg -right$$

Proof for  $\neg$ -right.

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

 $\blacktriangleright$  Assume that  ${\cal I}$  falsifies the conclusion.

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

- ► Assume that *I* falsifies the conclusion.
- ► Then  $\mathcal{I} \models \Gamma$

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

- Assume that  $\mathcal{I}$  falsifies the conclusion.
- ► Then  $\mathcal{I} \models \Gamma$ ,  $\mathcal{I} \not\models \neg A$

Proof for  $\neg$ -right.

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

 $\blacktriangleright$  Assume that  ${\cal I}$  falsifies the conclusion.

► Then  $\mathcal{I} \models \Gamma$ ,  $\mathcal{I} \not\models \neg A$  and  $\mathcal{I}$  falsifies all formulae in  $\Delta$ .

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

- ► Assume that *I* falsifies the conclusion.
- ► Then  $\mathcal{I} \models \Gamma$ ,  $\mathcal{I} \not\models \neg A$  and  $\mathcal{I}$  falsifies all formulae in  $\Delta$ .
- ▶ Per model semantics, we have  $\mathcal{I} \models A$ .

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

- ► Assume that *I* falsifies the conclusion.
- ▶ Then  $\mathcal{I} \models \Gamma$ ,  $\mathcal{I} \not\models \neg A$  and  $\mathcal{I}$  falsifies all formulae in  $\Delta$ .
- ▶ Per model semantics, we have  $\mathcal{I} \models A$ .
- ► Therefore,  $\mathcal{I} \models \Gamma \cup \{A\}$

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

- Assume that  $\mathcal{I}$  falsifies the conclusion.
- ► Then  $\mathcal{I} \models \Gamma$ ,  $\mathcal{I} \not\models \neg A$  and  $\mathcal{I}$  falsifies all formulae in  $\Delta$ .
- ▶ Per model semantics, we have  $\mathcal{I} \models A$ .
- ► Therefore,  $\mathcal{I} \models \Gamma \cup \{A\}$  and  $\mathcal{I}$  falsifies all formlae in  $\Delta$ .

$$\frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

- Assume that  $\mathcal{I}$  falsifies the conclusion.
- ► Then  $\mathcal{I} \models \Gamma$ ,  $\mathcal{I} \not\models \neg A$  and  $\mathcal{I}$  falsifies all formulae in  $\Delta$ .
- ▶ Per model semantics, we have  $\mathcal{I} \models A$ .
- ► Therefore,  $\mathcal{I} \models \Gamma \cup \{A\}$  and  $\mathcal{I}$  falsifies all formlae in  $\Delta$ .
- $\blacktriangleright$  Thus,  $\mathcal{I}$  falsifies the premisse.

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$

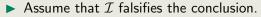
Proof for  $\rightarrow$ -left.

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$

• Assume that  $\mathcal{I}$  falsifies the conclusion.

 $\mathsf{Proof \ for } \to \mathsf{-left}.$ 

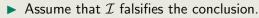
$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$



▶ Then  $\mathcal{I}$  satisfies  $\Gamma \cup \{A \rightarrow B\}$ 

 $\mathsf{Proof \ for } \to \mathsf{-left}.$ 

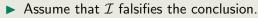
$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$



▶ Then  $\mathcal{I}$  satisfies  $\Gamma \cup \{A \rightarrow B\}$  and falsifies all formlae in  $\Delta$ .

 $\mathsf{Proof \ for } \to \mathsf{-left}.$ 

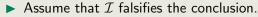
$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$



- ▶ Then  $\mathcal{I}$  satisfies  $\Gamma \cup \{A \to B\}$  and falsifies all formlae in  $\Delta$ .
- $\blacktriangleright \text{ Since } \mathcal{I} \text{ satisfies } A \to B$

 $\mathsf{Proof \ for } \to \mathsf{-left}.$ 

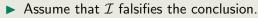
$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\mathsf{left}$$



- ▶ Then  $\mathcal{I}$  satisfies  $\Gamma \cup \{A \rightarrow B\}$  and falsifies all formlae in  $\Delta$ .
- ▶ Since  $\mathcal{I}$  satisfies  $A \rightarrow B$ , by definition of model semantics,

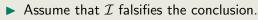
 $\mathsf{Proof \ for } \to \mathsf{-left}.$ 

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\mathsf{left}$$



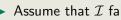
- ▶ Then  $\mathcal{I}$  satisfies  $\Gamma \cup \{A \rightarrow B\}$  and falsifies all formlae in  $\Delta$ .
- Since I satisfies A → B, by definition of model semantics,
   (1) I ⊭ A, or

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\mathsf{left}$$



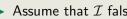
- ▶ Then  $\mathcal{I}$  satisfies  $\Gamma \cup \{A \rightarrow B\}$  and falsifies all formlae in  $\Delta$ .
- Since I satisfies A → B, by definition of model semantics,
   (1) I ⊭ A, or
   (2) I ⊨ B.

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$



- Assume that I falsifies the conclusion.
- ▶ Then  $\mathcal{I}$  satisfies  $\Gamma \cup \{A \rightarrow B\}$  and falsifies all formlae in  $\Delta$ .
- Since  $\mathcal{I}$  satisfies  $A \rightarrow B$ , by definition of model semantics, (1)  $\mathcal{I} \not\models A$ , or (2)  $\mathcal{I} \models B$ .
- ▶ In case (1),  $\mathcal{I}$  falsifies the left premisse.

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -\text{left}$$



- Assume that I falsifies the conclusion.
- ▶ Then  $\mathcal{I}$  satisfies  $\Gamma \cup \{A \rightarrow B\}$  and falsifies all formlae in  $\Delta$ .
- Since  $\mathcal{I}$  satisfies  $A \rightarrow B$ , by definition of model semantics, (1)  $\mathcal{I} \not\models A$ , or (2)  $\mathcal{I} \models B$ .
- ► In case (1), I falsifies the left premisse.
- $\blacktriangleright$  In case (2),  $\mathcal{I}$  falsifies the right premisse.

• Consider the statement "for all  $x \in S$ : P(x)".

- Consider the statement "for all  $x \in S$ : P(x)".
- We can show this by showing P(a) for each element  $a \in S$ .

- Consider the statement "for all  $x \in S$ : P(x)".
- We can show this by showing P(a) for each element  $a \in S$ .
- ▶ What if *S* is very large, or infinite?

- Consider the statement "for all  $x \in S$ : P(x)".
- We can show this by showing P(a) for each element  $a \in S$ .
- What if S is very large, or infinite?
- We can generalise from an arbitrary element:

- Consider the statement "for all  $x \in S$ : P(x)".
- We can show this by showing P(a) for each element  $a \in S$ .
- What if S is very large, or infinite?
- ▶ We can generalise from an arbitrary element:
  - Choose an arbitrary element  $a \in S$ .

- Consider the statement "for all  $x \in S$ : P(x)".
- We can show this by showing P(a) for each element  $a \in S$ .
- What if S is very large, or infinite?
- ▶ We can generalise from an arbitrary element:
  - Choose an arbitrary element  $a \in S$ .
  - Show that P(a) holds.

- Consider the statement "for all  $x \in S$ : P(x)".
- We can show this by showing P(a) for each element  $a \in S$ .
- What if S is very large, or infinite?
- ▶ We can generalise from an arbitrary element:
  - Choose an arbitrary element  $a \in S$ .
  - ▶ Show that *P*(*a*) holds.
  - Since *a* was arbitrarily chosen, the original statement must hold.

## How to show the Soundness Theorem?

#### We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

## Reminder: LK derivation

#### Definition 2.3 (LK Derivation).

1. Let  $\Gamma \implies \Delta$  be a sequent. Then

 $\Gamma \implies \Delta$ 

- is an LK-derivation of  $\Gamma \implies \Delta$ .
- 2. Let  $\frac{w_1 \cdots w_n}{\Gamma \Longrightarrow \Delta}$  be an instance of an LK rule, and  $\mathcal{D}_1, ..., \mathcal{D}_n$  derivations of  $w_1, ..., w_n$ . Then

$$\frac{\mathcal{D}_1 \quad \cdots \quad \mathcal{D}_n}{\Gamma \implies \Delta}$$

is an LK-derivation of  $\Gamma \implies \Delta$ .

#### Lemma 2.2.

If an interpretation  $\mathcal{I}$  falsifies the root sequent of an LK-derivation  $\delta$ , then  $\mathcal{I}$  falsifies at least one of the leaf sequents of  $\delta$ .

### Lemma 2.2.

If an interpretation  $\mathcal{I}$  falsifies the root sequent of an LK-derivation  $\delta$ , then  $\mathcal{I}$  falsifies at least one of the leaf sequents of  $\delta$ .

#### Proof.

By structural induction on the LK-derivation  $\delta$ .

### Lemma 2.2.

If an interpretation  $\mathcal{I}$  falsifies the root sequent of an LK-derivation  $\delta$ , then  $\mathcal{I}$  falsifies at least one of the leaf sequents of  $\delta$ .

#### Proof.

By structural induction on the LK-derivation  $\delta$ . Induction base:  $\delta$  is a sequent  $\Gamma \implies \Delta$ :

$$\Gamma \implies \Delta$$

### Lemma 2.2.

If an interpretation  $\mathcal{I}$  falsifies the root sequent of an LK-derivation  $\delta$ , then  $\mathcal{I}$  falsifies at least one of the leaf sequents of  $\delta$ .

#### Proof.

By structural induction on the LK-derivation  $\delta$ . Induction base:  $\delta$  is a sequent  $\Gamma \implies \Delta$ :

$$\Gamma \implies \Delta$$

• Here,  $\Gamma \implies \Delta$  is both root sequent and (only) leaf sequent.

### Lemma 2.2.

If an interpretation  $\mathcal{I}$  falsifies the root sequent of an LK-derivation  $\delta$ , then  $\mathcal{I}$  falsifies at least one of the leaf sequents of  $\delta$ .

#### Proof.

By structural induction on the LK-derivation  $\delta$ . Induction base:  $\delta$  is a sequent  $\Gamma \implies \Delta$ :

$$\Gamma \implies \Delta$$

For Here,  $\Gamma \implies \Delta$  is both root sequent and (only) leaf sequent.

• Assume  $\mathcal{I}$  falsifies  $\Gamma \implies \Delta$ .

### Lemma 2.2.

If an interpretation  $\mathcal{I}$  falsifies the root sequent of an LK-derivation  $\delta$ , then  $\mathcal{I}$  falsifies at least one of the leaf sequents of  $\delta$ .

#### Proof.

By structural induction on the LK-derivation  $\delta$ . Induction base:  $\delta$  is a sequent  $\Gamma \implies \Delta$ :

$$\Gamma \implies \Delta$$

• Here,  $\Gamma \implies \Delta$  is both root sequent and (only) leaf sequent.

- Assume  $\mathcal{I}$  falsifies  $\Gamma \implies \Delta$ .
- Then  $\mathcal{I}$  falsifies a leaf sequent in  $\delta$ , namely  $\Gamma \implies \Delta$ .

Induction step:  $\delta$  is a derivation of the form

$$\frac{\begin{array}{cccc} \mathcal{D}_1 & \mathcal{D}_n \\ \vdots & \vdots & \vdots \\ \hline \Gamma_1 \Longrightarrow \Delta_1 & \cdots & \Gamma_n \Longrightarrow \Delta_n \\ \hline \Gamma \implies \Delta & r \end{array}$$

Induction step:  $\delta$  is a derivation of the form

$$\frac{\begin{array}{cccc} \mathcal{D}_1 & \mathcal{D}_n \\ \vdots & \vdots \\ \hline \Gamma_1 \stackrel{\vdots}{\Longrightarrow} \Delta_1 & \cdots & \Gamma_n \stackrel{\vdots}{\Longrightarrow} \Delta_n \\ \hline \hline \Gamma \implies \Delta \end{array} r$$

for some smaller derivations  $\mathcal{D}_i$  with roots  $\Gamma_i \implies \Delta_i$ .

• Assume  $\mathcal{I}$  falsifies  $\Gamma \implies \Delta$ .

Induction step:  $\delta$  is a derivation of the form

- Assume  $\mathcal{I}$  falsifies  $\Gamma \implies \Delta$ .
- ▶ Rule *r* preserves falsifiability upwards.

Induction step:  $\delta$  is a derivation of the form

- Assume  $\mathcal{I}$  falsifies  $\Gamma \implies \Delta$ .
- ▶ Rule *r* preserves falsifiability upwards.
- ► Therefore  $\mathcal{I}$  falsifies  $\Gamma_i \implies \Delta_i$  for some  $i \in \{1, \ldots, n\}$ .

Induction step:  $\delta$  is a derivation of the form

$$\begin{array}{cccccccccc}
\mathcal{D}_1 & \mathcal{D}_n \\
\vdots & & \vdots \\
\hline
\Gamma_1 \stackrel{\vdots}{\Longrightarrow} \Delta_1 & \cdots & \Gamma_n \stackrel{\vdots}{\Longrightarrow} \Delta_n \\
\hline
\Gamma \implies \Delta & r
\end{array}$$

- Assume  $\mathcal{I}$  falsifies  $\Gamma \implies \Delta$ .
- Rule r preserves falsifiability upwards.
- ► Therefore  $\mathcal{I}$  falsifies  $\Gamma_i \implies \Delta_i$  for some  $i \in \{1, ..., n\}$ .
- ▶ By induction,  $\mathcal{I}$  falsifies one of the leaf sequents of  $\mathcal{D}_i$ .

Induction step:  $\delta$  is a derivation of the form

$$\begin{array}{cccccccccc}
\mathcal{D}_1 & \mathcal{D}_n \\
\vdots & & \vdots \\
\hline
\Gamma_1 \implies \Delta_1 & \cdots & \Gamma_n \implies \Delta_n \\
\hline
\Gamma \implies \Delta & r
\end{array}$$

- Assume  $\mathcal{I}$  falsifies  $\Gamma \implies \Delta$ .
- Rule r preserves falsifiability upwards.
- ► Therefore  $\mathcal{I}$  falsifies  $\Gamma_i \implies \Delta_i$  for some  $i \in \{1, ..., n\}$ .
- ▶ By induction,  $\mathcal{I}$  falsifies one of the leaf sequents of  $\mathcal{D}_i$ .
- This is also a leaf sequent of  $\delta$

# How to show the Soundness Theorem?

#### We show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

### Lemma 2.3.

All axioms are valid.

Soundness

## All axioms are valid

Lemma 2.3.

All axioms are valid.

Proof.

 $\Gamma, A \implies A, \Delta$ 

IN3070/4070 :: Autumn 2020

Soundness

## All axioms are valid

Lemma 2.3.

All axioms are valid.

Proof.

 $\Gamma, A \implies A, \Delta$ 

We will show that all interpretations that satisfy the antecedent

Lemma 2.3.

All axioms are valid.

Proof.

 $\Gamma, A \implies A, \Delta$ 

We will show that all interpretations that satisfy the antecedent also satisfy at least one formula of the succedent.

Lemma 2.3.

All axioms are valid.

#### Proof.

 $\Gamma, A \implies A, \Delta$ 

- We will show that all interpretations that satisfy the antecedent also satisfy at least one formula of the succedent.
- ► Let *I* be an arbitrarily chosen interpretation that satisfies the antecedent.

#### Lemma 2.3.

All axioms are valid.

#### Proof.

 $\Gamma, A \implies A, \Delta$ 

- We will show that all interpretations that satisfy the antecedent also satisfy at least one formula of the succedent.
- Let I be an arbitrarily chosen interpretation that satisfies the antecedent.
- Then  $\mathcal{I}$  satisfies the formula A in the succedent.

Soundness

## Proof of the Soundness Theorem for LK

Proof of soundness.

• Assume that  $\mathcal{P}$  is an LK-proof for the sequent  $\Gamma \implies \Delta$ .

- ▶ Assume that  $\mathcal{P}$  is an LK-proof for the sequent  $\Gamma \implies \Delta$ .
  - $\blacktriangleright \ \mathcal{P}$  is an LK-derivation where every leaf is an axiom.

- Assume that  $\mathcal{P}$  is an LK-proof for the sequent  $\Gamma \implies \Delta$ .
  - $\blacktriangleright \ \mathcal{P}$  is an LK-derivation where every leaf is an axiom.
- For the sake of contradiction, assume that  $\Gamma \implies \Delta$  is not valid.

- Assume that  $\mathcal{P}$  is an LK-proof for the sequent  $\Gamma \implies \Delta$ .
  - $\blacktriangleright \ \mathcal{P}$  is an LK-derivation where every leaf is an axiom.
- For the sake of contradiction, assume that  $\Gamma \implies \Delta$  is not valid.
- Then there is a countermodel  $\mathcal{I}$  that falsifies  $\Gamma \implies \Delta$ .

- Assume that  $\mathcal{P}$  is an LK-proof for the sequent  $\Gamma \implies \Delta$ .
  - $\blacktriangleright \ \mathcal{P}$  is an LK-derivation where every leaf is an axiom.
- For the sake of contradiction, assume that  $\Gamma \implies \Delta$  is not valid.
- Then there is a countermodel  $\mathcal{I}$  that falsifies  $\Gamma \implies \Delta$ .
- ► We know from the previous Lemma that I falsifies at least one leaf sequent of P.

- Assume that  $\mathcal{P}$  is an LK-proof for the sequent  $\Gamma \implies \Delta$ .
  - $\blacktriangleright \ \mathcal{P}$  is an LK-derivation where every leaf is an axiom.
- For the sake of contradiction, assume that  $\Gamma \implies \Delta$  is not valid.
- Then there is a countermodel  $\mathcal{I}$  that falsifies  $\Gamma \implies \Delta$ .
- ► We know from the previous Lemma that I falsifies at least one leaf sequent of P.
- ► Then P has a leaf sequent that is not an axiom, since axioms are not falsifiable.

- Assume that  $\mathcal{P}$  is an LK-proof for the sequent  $\Gamma \implies \Delta$ .
  - $\blacktriangleright \ \mathcal{P}$  is an LK-derivation where every leaf is an axiom.
- ▶ For the sake of contradiction, assume that  $\Gamma \implies \Delta$  is not valid.
- Then there is a countermodel  $\mathcal{I}$  that falsifies  $\Gamma \implies \Delta$ .
- ► We know from the previous Lemma that I falsifies at least one leaf sequent of P.
- ► Then P has a leaf sequent that is not an axiom, since axioms are not falsifiable.
- ▶ So *P* cannot be an LK-proof.

 An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent

- An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- An axiom is never falsifiable

- An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- An axiom is never falsifiable
- Roots of LK-proofs are valid

- An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- An axiom is never falsifiable
- Roots of LK-proofs are valid
- Most of this is independent of the actual rules.

- An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- An axiom is never falsifiable
- Roots of LK-proofs are valid
- Most of this is independent of the actual rules.
- Central part is proving that every rule preserves falsifiability

- An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- An axiom is never falsifiable
- Roots of LK-proofs are valid
- Most of this is independent of the actual rules.
- Central part is proving that every rule preserves falsifiability
- Shown individually for each rule

- An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- An axiom is never falsifiable
- Roots of LK-proofs are valid
- Most of this is independent of the actual rules.
- Central part is proving that every rule preserves falsifiability
- Shown individually for each rule
- ▶ Can add new rules, and just show "soundness" for those

## Outline



### Soundness



### Completeness — Introduction

### Definition 3.1 (Soundness).

The calculus LK is sound if any LK-provable sequent is valid.

## Completeness — Introduction

### Definition 3.1 (Soundness).

The calculus LK is sound if any LK-provable sequent is valid.

### Definition 3.2 (Completeness).

The calculus LK is complete if every valid sequent is LK-provable.

### Definition 3.1 (Soundness).

The calculus LK is sound if any LK-provable sequent is valid.

### Definition 3.2 (Completeness).

The calculus LK is complete if every valid sequent is LK-provable.

Validity (semantic) Universal statement: "for all interpretations..."

#### Definition 3.1 (Soundness).

The calculus LK is sound if any LK-provable sequent is valid.

### Definition 3.2 (Completeness).

The calculus LK is complete if every valid sequent is LK-provable.

Validity (semantic) Universal statement: "for all interpretations..."

### Provability

(syntactic) Existential statement: "there exists a proof..."

#### Definition 3.1 (Soundness).

The calculus LK is sound if any LK-provable sequent is valid.

### Definition 3.2 (Completeness).

The calculus LK is complete if every valid sequent is LK-provable.

Validity (semantic) Universal statement: "for all interpretations..."

### Provability

(syntactic) Existential statement:

"there exists a proof..."

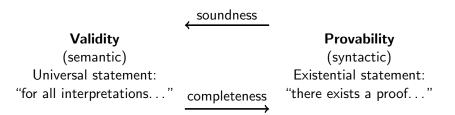
soundness

### Definition 3.1 (Soundness).

The calculus LK is sound if any LK-provable sequent is valid.

### Definition 3.2 (Completeness).

The calculus LK is complete if every valid sequent is LK-provable.



Soundness and Completeness are dual notions

Soundness and Completeness are dual notions

Soundness says that we cannot prove *more* than the valid sequents

- Soundness and Completeness are dual notions
- Soundness says that we cannot prove *more* than the valid sequents
- Completeness says that we can prove all valid sequents

- Soundness and Completeness are dual notions
- Soundness says that we cannot prove *more* than the valid sequents
- Completeness says that we can prove all valid sequents
- A sequent is valid if and only if it is not falsifiable

- Soundness and Completeness are dual notions
- Soundness says that we cannot prove *more* than the valid sequents
- Completeness says that we can prove all valid sequents
- A sequent is valid if and only if it is not falsifiable
- ▶ We can therefore also express soundness and completeness as:

#### **Soundnes**: $\Gamma \implies \Delta$ provable $\Rightarrow \Gamma \implies \Delta$ valid **Completeness**: $\Gamma \implies \Delta$ valid $\Rightarrow \Gamma \implies \Delta$ provable

- Soundness and Completeness are dual notions
- Soundness says that we cannot prove *more* than the valid sequents
- Completeness says that we can prove all valid sequents
- ► A sequent is valid if and only if it is not falsifiable
- ▶ We can therefore also express soundness and completeness as:





### Soundness

All that is printed is valid.



### Soundness

All that is printed is valid.

### Completeness



 Something can be sound without being complete.

#### Soundness

All that is printed is valid.

### Completeness

#### Completeness

### An LK-machine?



### Something can be sound without being complete.

Then too little is shown.

#### Soundness

All that is printed is valid.

#### Completeness



### Something can be sound without being complete.

- ▶ Then too little is shown.
- Example with prime numbers:
  - 2, 5, 7, 11, 17, 19, ...

#### Soundness

All that is printed is valid.

#### Completeness



#### Soundness

All that is printed is valid.

#### Completeness

- Something can be sound without being complete.
  - ▶ Then too little is shown.
  - Example with prime numbers:
    - 2, 5, 7, 11, 17, 19, ...
- Something can be complete without being sound.



#### Soundness

All that is printed is valid.

#### Completeness

All that is valid will get printed.

- Something can be sound without being complete.
  - ▶ Then too little is shown.
  - **Example with prime numbers:** 
    - 2, 5, 7, 11, 17, 19, ...
- Something can be complete without being sound.

Then too much is shown



#### Soundness

All that is printed is valid.

#### Completeness

- Something can be sound without being complete.
  - ▶ Then too little is shown.
  - **Example with prime numbers:** 
    - 2, 5, 7, 11, 17, 19, ...
- Something can be complete without being sound.
  - Then too much is shown
  - Example with prime numbers: 2, 3, 5, 7, 9, 11, 13, 15...



#### Soundness

All that is printed is valid.

#### Completeness

- Something can be sound without being complete.
  - ▶ Then too little is shown.
  - Example with prime numbers:
    - 2, 5, 7, 11, 17, 19, ...
- Something can be complete without being sound.
  - Then too much is shown
  - Example with prime numbers: 2, 3, 5, 7, 9, 11, 13, 15 ...
- We want both:



#### Soundness

All that is printed is valid.

#### Completeness

- Something can be sound without being complete.
  - ▶ Then too little is shown.
  - Example with prime numbers:
    - 2, 5, 7, 11, 17, 19, ...
- Something can be complete without being sound.
  - Then too much is shown
  - Example with prime numbers: 2, 3, 5, 7, 9, 11, 13, 15 ...
- We want both:
  - Not too much, not too little.



#### Soundness

All that is printed is valid.

#### Completeness

- Something can be sound without being complete.
  - ▶ Then too little is shown.
  - Example with prime numbers:
    - 2, 5, 7, 11, 17, 19, ...
- Something can be complete without being sound.
  - Then too much is shown
  - Example with prime numbers: 2, 3, 5, 7, 9, 11, 13, 15 ...
- We want both:
  - Not too much, not too little.
  - Example with prime numbers: 2, 3, 5, 7, 11, 13, 17, 19...

### Theorem 3.1 (Completeness).

If  $\Gamma \implies \Delta$  is valid, then it is provable in LK.

### Theorem 3.1 (Completeness).

If  $\Gamma \implies \Delta$  is valid, then it is provable in LK.

To show completeness of our calculus, we show the equivalent statement:

### Theorem 3.1 (Completeness).

If  $\Gamma \implies \Delta$  is valid, then it is provable in LK.

To show completeness of our calculus, we show the equivalent statement:

Lemma 3.1 (Model existence).

If  $\Gamma \implies \Delta$  is not provable in LK, then it is falsifiable.

### Theorem 3.1 (Completeness).

If  $\Gamma \implies \Delta$  is valid, then it is provable in LK.

To show completeness of our calculus, we show the equivalent statement:

#### Lemma 3.1 (Model existence).

If  $\Gamma \implies \Delta$  is not provable in LK, then it is falsifiable.

This means that there is an interpretation that makes all formulae in  $\Gamma$  true and all formulae in  $\Delta$  false.

Assume  $\Gamma \implies \Delta$  is not provable.

• Construct a derivation  $\mathcal{D}$  from  $\Gamma \implies \Delta$  such that no further rule applications are possible. "A maximal derivation."

- ► Construct a derivation  $\mathcal{D}$  from  $\Gamma \implies \Delta$  such that no further rule applications are possible. "A maximal derivation."
- ► Then there is (at least) one branch B that does not end in an axiom. We then have:

- ► Construct a derivation  $\mathcal{D}$  from  $\Gamma \implies \Delta$  such that no further rule applications are possible. "A maximal derivation."
- ► Then there is (at least) one branch B that does not end in an axiom. We then have:
  - $\blacktriangleright$  The leaf sequent of  ${\cal B}$  contains only atomic formulae, and

- ► Construct a derivation  $\mathcal{D}$  from  $\Gamma \implies \Delta$  such that no further rule applications are possible. "A maximal derivation."
- ► Then there is (at least) one branch B that does not end in an axiom. We then have:
  - $\blacktriangleright$  The leaf sequent of  ${\cal B}$  contains only atomic formulae, and
  - the leaf sequent of  $\mathcal{B}$  is not an axiom.

- ► Construct a derivation  $\mathcal{D}$  from  $\Gamma \implies \Delta$  such that no further rule applications are possible. "A maximal derivation."
- ► Then there is (at least) one branch B that does not end in an axiom. We then have:
  - $\blacktriangleright$  The leaf sequent of  $\mathcal B$  contains only atomic formulae, and
  - the leaf sequent of  $\mathcal{B}$  is not an axiom.
- We construct an interpretation that falsifies  $\Gamma \implies \Delta$ . Let

Assume  $\Gamma \implies \Delta$  is not provable.

- ► Construct a derivation  $\mathcal{D}$  from  $\Gamma \implies \Delta$  such that no further rule applications are possible. "A maximal derivation."
- ► Then there is (at least) one branch B that does not end in an axiom. We then have:
  - $\blacktriangleright$  The leaf sequent of  $\mathcal{B}$  contains only atomic formulae, and
  - the leaf sequent of  $\mathcal{B}$  is not an axiom.
- We construct an interpretation that falsifies  $\Gamma \implies \Delta$ . Let

 $\mathcal{B}^{\top}$  be the set of formulae that occur in an antecedent on  $\mathcal{B},$  and

Assume  $\Gamma \implies \Delta$  is not provable.

- ► Construct a derivation  $\mathcal{D}$  from  $\Gamma \implies \Delta$  such that no further rule applications are possible. "A maximal derivation."
- ► Then there is (at least) one branch B that does not end in an axiom. We then have:
  - $\blacktriangleright$  The leaf sequent of  $\mathcal B$  contains only atomic formulae, and
  - the leaf sequent of  $\mathcal{B}$  is not an axiom.
- We construct an interpretation that falsifies  $\Gamma \implies \Delta$ . Let

 $\mathcal{B}^{\top}$  be the set of formulae that occur in an antecedent on  $\mathcal{B}$ , and

 $\mathcal{B}^{\perp}$  be the set of formulae that occur in an succedent on  $\mathcal{B}$ , and

Assume  $\Gamma \implies \Delta$  is not provable.

- ► Construct a derivation  $\mathcal{D}$  from  $\Gamma \implies \Delta$  such that no further rule applications are possible. "A maximal derivation."
- ► Then there is (at least) one branch B that does not end in an axiom. We then have:
  - $\blacktriangleright$  The leaf sequent of  ${\cal B}$  contains only atomic formulae, and
  - the leaf sequent of  $\mathcal{B}$  is not an axiom.

▶ We construct an interpretation that falsifies  $\Gamma \implies \Delta$ . Let

 $\mathcal{B}^{\top}$  be the set of formulae that occur in an antecedent on  $\mathcal{B},$  and

 $\mathcal{B}^{\perp}$  be the set of formulae that occur in an succedent on  $\mathcal{B}$ , and

 $\mathcal{I}_{\mathcal{B}}$  be the interpretation that makes all atomic formulae in  $\mathcal{B}^{\top}$  true and all other atomic formulae (in particular those in  $\mathcal{B}^{\perp}$ ) false.

$$\frac{\overline{p \implies q, p} \quad \overline{q, p \implies q}}{p \rightarrow q, p \implies q} \quad \frac{r \implies q, p \quad \overline{q, r \implies q}}{p \rightarrow q, r \implies q}}{p \rightarrow q, r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q \implies (p \lor r) \rightarrow q}$$

$$\frac{\overline{p \implies q, p} \quad \overline{q, p \implies q}}{p \rightarrow q, p \implies q} \quad \frac{r \implies q, p \quad \overline{q, r \implies q}}{p \rightarrow q, r \implies q}}{p \rightarrow q, r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q \implies (p \lor r) \rightarrow q}$$

$$\frac{\overline{p \implies q, p} \quad \overline{q, p \implies q}}{p \rightarrow q, p \implies q} \quad \frac{r \implies q, p \quad \overline{q, r \implies q}}{p \rightarrow q, r \implies q}}{p \rightarrow q, r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q \implies (p \lor r) \rightarrow q}$$

$$\frac{\overline{p \implies q, p} \quad \overline{q, p \implies q}}{p \rightarrow q, p \implies q} \quad \frac{r \implies q, p \quad \overline{q, r \implies q}}{p \rightarrow q, r \implies q}}{p \rightarrow q, r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q \implies (p \lor r) \rightarrow q}$$

$$\frac{\overline{p} \Longrightarrow q, p}{p \to q, p \Longrightarrow q} \quad \frac{\overline{q, p \Longrightarrow q}}{p \to q, r \Longrightarrow q} \quad \frac{r \Longrightarrow q, p}{p \to q, r \Longrightarrow q} \\
\frac{\overline{p \to q, p \lor r \Longrightarrow q}}{p \to q, p \lor r \Longrightarrow q} \\
\frac{p \to q, p \lor r \Longrightarrow q}{p \to q \Longrightarrow (p \lor r) \to q}$$

$$\frac{\overline{p \implies q, p}}{p \rightarrow q, p \implies q} \quad \frac{\overline{q, p \implies q}}{p \rightarrow q, r \implies q} \quad \frac{r \implies q, p \quad \overline{q, r \implies q}}{p \rightarrow q, r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q \implies (p \lor r) \rightarrow q}$$

$$\frac{\overline{p \implies q, p} \quad \overline{q, p \implies q}}{p \rightarrow q, p \implies q} \quad \frac{r \implies q, p \quad \overline{q, r \implies q}}{p \rightarrow q, r \implies q}}{p \rightarrow q, r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q \implies (p \lor r) \rightarrow q}$$

$$\frac{\overline{p \implies q, p} \quad \overline{q, p \implies q}}{p \rightarrow q, p \implies q} \quad \frac{r \implies q, p \quad \overline{q, r \implies q}}{p \rightarrow q, r \implies q}}{p \rightarrow q, r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q \implies (p \lor r) \rightarrow q}$$

### Example

$$\frac{\overline{p} \Longrightarrow q, p}{p \to q, p \Longrightarrow q} \quad \frac{\overline{q, p \Longrightarrow q}}{p \to q, r \Longrightarrow q} \quad \frac{r \Longrightarrow q, p}{p \to q, r \Longrightarrow q} \\
\frac{\overline{p \to q, p \lor r} \Longrightarrow q}{p \to q, p \lor r \Longrightarrow q} \\
\frac{p \to q, p \lor r \Longrightarrow q}{p \to q \Longrightarrow (p \lor r) \to q}$$

#### Example

$$\frac{\overline{p \implies q, p} \quad \overline{q, p \implies q}}{p \rightarrow q, p \implies q} \quad \frac{r \implies q, p \quad \overline{q, r \implies q}}{p \rightarrow q, r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q, p \lor r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q \implies (p \lor r) \rightarrow q}$$

We see that the branch  $\mathcal{B}$  with leaf sequent  $r \implies q, p$  is not closed.  $\mathcal{B}^{\top} = \{r, p \rightarrow q, p \lor r\}$ 

### Example

$$\frac{\overline{p} \Longrightarrow q, p}{p \to q, p \Longrightarrow q} \quad \frac{q, p \Longrightarrow q}{p \to q, r \Longrightarrow q} \quad \frac{r \Longrightarrow q, p}{p \to q, r \Longrightarrow q}$$

$$\frac{p \to q, p \lor r \Longrightarrow q}{p \to q, p \lor r \Longrightarrow q}$$

$$egin{aligned} \mathcal{B}^{ op} &= \{r, p o q, p ee r\} \ \mathcal{B}^{ot} &= \{q, p, (p ee r) o q\} \end{aligned}$$

### Example

$$\frac{\overline{p \implies q, p} \quad \overline{q, p \implies q}}{p \rightarrow q, p \implies q} \quad \frac{r \implies q, p \quad \overline{q, r \implies q}}{p \rightarrow q, r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q, p \lor r \implies q} \\
\frac{p \rightarrow q, p \lor r \implies q}{p \rightarrow q \implies (p \lor r) \rightarrow q}$$

$$\begin{split} \mathcal{B}^{\top} &= \{r, p \to q, p \lor r\} \\ \mathcal{B}^{\perp} &= \{q, p, (p \lor r) \to q\} \\ \mathcal{I}_{\mathcal{B}} &= \text{ interpretation with } \mathcal{I}_{\mathcal{B}}(r) = T \text{ og } \mathcal{I}_{\mathcal{B}}(q) = \mathcal{I}_{\mathcal{B}}(p) = F \end{split}$$

### Example

$$\frac{p \Longrightarrow q, p}{p \to q, p} \xrightarrow{q, p \Longrightarrow q} q, p \Longrightarrow q \xrightarrow{r \Longrightarrow q, p} q, r \Longrightarrow q \\
\frac{p \to q, p \lor q, p \lor r \Longrightarrow q}{p \to q, p \lor r \Longrightarrow q} \\
\frac{p \to q, p \lor r \Longrightarrow q}{p \to q \Longrightarrow (p \lor r) \to q}$$

$$\begin{split} \mathcal{B}^{\top} &= \{r, p \to q, p \lor r\} \\ \mathcal{B}^{\perp} &= \{q, p, (p \lor r) \to q\} \\ \mathcal{I}_{\mathcal{B}} &= \text{ interpretation with } \mathcal{I}_{\mathcal{B}}(r) = T \text{ og } \mathcal{I}_{\mathcal{B}}(q) = \mathcal{I}_{\mathcal{B}}(p) = F \\ &\text{ To show: this interpretation falsifies the root sequent.} \end{split}$$

We show by structural induction on propositional formulae that the interpretation I<sub>B</sub> makes all formulae in B<sup>T</sup> true, and all formulae in B<sup>⊥</sup> false.

- We show by structural induction on propositional formulae that the interpretation I<sub>B</sub> makes all formulae in B<sup>T</sup> true, and all formulae in B<sup>⊥</sup> false.
- We show for all propositional formulae A that

- We show by structural induction on propositional formulae that the interpretation I<sub>B</sub> makes all formulae in B<sup>T</sup> true, and all formulae in B<sup>⊥</sup> false.
- We show for all propositional formulae A that

If  $A \in \mathcal{B}^{\top}$ , then  $\mathcal{I}_{\mathcal{B}} \models A$ .

- We show by structural induction on propositional formulae that the interpretation I<sub>B</sub> makes all formulae in B<sup>T</sup> true, and all formulae in B<sup>⊥</sup> false.
- We show for all propositional formulae A that

If  $A \in \mathcal{B}^{\top}$ , then  $\mathcal{I}_{\mathcal{B}} \models A$ . If  $A \in \mathcal{B}^{\perp}$ , then  $\mathcal{I}_{\mathcal{B}} \not\models A$ .

- We show by structural induction on propositional formulae that the interpretation I<sub>B</sub> makes all formulae in B<sup>T</sup> true, and all formulae in B<sup>⊥</sup> false.
- ▶ We show for all propositional formulae A that

If  $A \in \mathcal{B}^{\top}$ , then  $\mathcal{I}_{\mathcal{B}} \models A$ . If  $A \in \mathcal{B}^{\perp}$ , then  $\mathcal{I}_{\mathcal{B}} \not\models A$ .

Induction base: A is an atomic formula in  $\mathcal{B}^{\top}/\mathcal{B}^{\perp}$ .

- We show by structural induction on propositional formulae that the interpretation I<sub>B</sub> makes all formulae in B<sup>T</sup> true, and all formulae in B<sup>⊥</sup> false.
- ▶ We show for all propositional formulae A that

If  $A \in \mathcal{B}^{\top}$ , then  $\mathcal{I}_{\mathcal{B}} \models A$ . If  $A \in \mathcal{B}^{\perp}$ , then  $\mathcal{I}_{\mathcal{B}} \not\models A$ .

Induction base: A is an atomic formula in  $\mathcal{B}^{\top}/\mathcal{B}^{\perp}$ .

• Our statment holds for  $A \in B^{\top}$  because that is how we defined  $\mathcal{I}_{\mathcal{B}}$ .

- We show by structural induction on propositional formulae that the interpretation I<sub>B</sub> makes all formulae in B<sup>T</sup> true, and all formulae in B<sup>⊥</sup> false.
- ▶ We show for all propositional formulae A that

If  $A \in \mathcal{B}^{\top}$ , then  $\mathcal{I}_{\mathcal{B}} \models A$ . If  $A \in \mathcal{B}^{\perp}$ , then  $\mathcal{I}_{\mathcal{B}} \not\models A$ .

<u>Induction base:</u> A is an atomic formula in  $\mathcal{B}^{\top}/\mathcal{B}^{\perp}$ .

- Our statment holds for  $A \in B^{\top}$  because that is how we defined  $\mathcal{I}_{\mathcal{B}}$ .
- For A ∈ B<sup>⊥</sup>, A ∉ B<sup>⊤</sup> because atoms do not disappear from a branch and B contains no axiom.

- We show by structural induction on propositional formulae that the interpretation I<sub>B</sub> makes all formulae in B<sup>T</sup> true, and all formulae in B<sup>⊥</sup> false.
- ▶ We show for all propositional formulae A that

If  $A \in \mathcal{B}^{\top}$ , then  $\mathcal{I}_{\mathcal{B}} \models A$ . If  $A \in \mathcal{B}^{\perp}$ , then  $\mathcal{I}_{\mathcal{B}} \not\models A$ .

<u>Induction base:</u> A is an atomic formula in  $\mathcal{B}^{\top}/\mathcal{B}^{\perp}$ .

- Our statment holds for  $A \in B^{\top}$  because that is how we defined  $\mathcal{I}_{\mathcal{B}}$ .
- For A ∈ B<sup>⊥</sup>, A ∉ B<sup>⊤</sup> because atoms do not disappear from a branch and B contains no axiom. Therefore I<sub>B</sub> ⊭ A.

- We show by structural induction on propositional formulae that the interpretation I<sub>B</sub> makes all formulae in B<sup>T</sup> true, and all formulae in B<sup>⊥</sup> false.
- ▶ We show for all propositional formulae A that

If  $A \in \mathcal{B}^{\top}$ , then  $\mathcal{I}_{\mathcal{B}} \models A$ . If  $A \in \mathcal{B}^{\perp}$ , then  $\mathcal{I}_{\mathcal{B}} \nvDash A$ .

Induction base: A is an atomic formula in  $\mathcal{B}^{\top}/\mathcal{B}^{\perp}$ .

- Our statment holds for  $A \in B^{\top}$  because that is how we defined  $\mathcal{I}_{\mathcal{B}}$ .
- For A ∈ B<sup>⊥</sup>, A ∉ B<sup>⊤</sup> because atoms do not disappear from a branch and B contains no axiom. Therefore I<sub>B</sub> ⊭ A.

Induction step: From the assumption (IH) that the statement holds for A and B, we must show that it holds for  $\neg A$ ,  $(A \land B)$ ,  $(A \lor B)$  og  $(A \to B)$ . These are four cases, of which we show three here.

Assume that  $\neg A \in \mathcal{B}^{\top}$ .

▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied

- ▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied
- ▶ Since the derivation is maximal, ¬-left is eventually applied

- ▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied
- Since the derivation is maximal, ¬-left is eventually applied
- A appears in a succedent, so we have  $A \in \mathcal{B}^{\perp}$ .

- ▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied
- Since the derivation is maximal, ¬-left is eventually applied
- A appears in a succedent, so we have  $A \in \mathcal{B}^{\perp}$ .
- ▶ By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$ .

- ▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied
- Since the derivation is maximal, ¬-left is eventually applied
- A appears in a succedent, so we have  $A \in \mathcal{B}^{\perp}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models \neg A$ .

Assume that  $\neg A \in \mathcal{B}^{\top}$ .

- ▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied
- Since the derivation is maximal, ¬-left is eventually applied
- A appears in a succedent, so we have  $A \in \mathcal{B}^{\perp}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$ .
- By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models \neg A$ .

Assume that  $\neg A \in \mathcal{B}^{\top}$ .

- ▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied
- Since the derivation is maximal, ¬-left is eventually applied
- A appears in a succedent, so we have  $A \in \mathcal{B}^{\perp}$ .
- ▶ By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models \neg A$ .

Assume that  $\neg A \in \mathcal{B}^{\perp}$ .

▶  $\neg A$  appears in a succedent, it can't 'go away' unless  $\neg$ -right is applied

Assume that  $\neg A \in \mathcal{B}^{\top}$ .

- ▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied
- Since the derivation is maximal, ¬-left is eventually applied
- A appears in a succedent, so we have  $A \in \mathcal{B}^{\perp}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models \neg A$ .

- ► ¬A appears in a succedent, it can't 'go away' unless ¬-right is applied
- ▶ Since the derivation is maximal, ¬-right *is* eventually applied

Assume that  $\neg A \in \mathcal{B}^{\top}$ .

- ▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied
- Since the derivation is maximal, ¬-left is eventually applied
- A appears in a succedent, so we have  $A \in \mathcal{B}^{\perp}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$ .
- By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models \neg A$ .

- ► ¬A appears in a succedent, it can't 'go away' unless ¬-right is applied
- ▶ Since the derivation is maximal, ¬-right *is* eventually applied
- A appears in an antecedent, so we have  $A \in \mathcal{B}^{\top}$ .

Assume that  $\neg A \in \mathcal{B}^{\top}$ .

- ▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied
- Since the derivation is maximal, ¬-left is eventually applied
- A appears in a succedent, so we have  $A \in \mathcal{B}^{\perp}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$ .
- By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models \neg A$ .

- ► ¬A appears in a succedent, it can't 'go away' unless ¬-right is applied
- ► Since the derivation is maximal, ¬-right is eventually applied
- A appears in an antecedent, so we have  $A \in \mathcal{B}^{\top}$ .
- ▶ By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$ .

Assume that  $\neg A \in \mathcal{B}^{\top}$ .

- ▶  $\neg A$  appears in an antecedent, it can't 'go away' unless  $\neg$ -left is applied
- Since the derivation is maximal, ¬-left is eventually applied
- A appears in a succedent, so we have  $A \in \mathcal{B}^{\perp}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$ .
- By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models \neg A$ .

- ▶  $\neg A$  appears in a succedent, it can't 'go away' unless  $\neg$ -right is applied
- ► Since the derivation is maximal, ¬-right *is* eventually applied
- A appears in an antecedent, so we have  $A \in \mathcal{B}^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \not\models \neg A$ .

Case: Conjunction in antecedent/succedent

Assume that  $(A \land B) \in \mathcal{B}^{\top}$ .

Case: Conjunction in antecedent/succedent

Assume that  $(A \wedge B) \in \mathcal{B}^{\top}$ .

▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\top}$ .

# Case: Conjunction in antecedent/succedent

Assume that  $(A \land B) \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\top}$ .
- ▶ By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$  and  $\mathcal{I}_{\mathcal{B}} \models B$ .

# Case: Conjunction in antecedent/succedent

Assume that  $(A \land B) \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$  and  $\mathcal{I}_{\mathcal{B}} \models B$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \land B)$ .

# Case: Conjunction in antecedent/succedent

Assume that  $(A \land B) \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\top}$ .
- ▶ By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$  and  $\mathcal{I}_{\mathcal{B}} \models B$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \land B)$ .

# Case: Conjunction in antecedent/succedent

Assume that  $(A \land B) \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$  and  $\mathcal{I}_{\mathcal{B}} \models B$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \land B)$ .

Assume that  $(A \wedge B) \in \mathcal{B}^{\perp}$ .

▶ Since the derivation is maximal, ∧-right is eventually applied...

# Case: Conjunction in antecedent/succedent

Assume that  $(A \land B) \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$  and  $\mathcal{I}_{\mathcal{B}} \models B$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \land B)$ .

- ▶ Since the derivation is maximal, ∧-right is eventually applied...
- ▶ ... introducing A in the succedent of one branch and B on the other.

# Case: Conjunction in antecedent/succedent

Assume that  $(A \land B) \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$  and  $\mathcal{I}_{\mathcal{B}} \models B$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \land B)$ .

- ► Since the derivation is maximal, ∧-right is eventually applied...
- ... introducing A in the succedent of one branch and B on the other.
- ▶ One of them is our branch  $\mathcal{B}$ , and therefore  $A \in \mathcal{B}^{\perp}$  or  $B \in \mathcal{B}^{\perp}$ .

# Case: Conjunction in antecedent/succedent

Assume that  $(A \land B) \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$  and  $\mathcal{I}_{\mathcal{B}} \models B$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \land B)$ .

- ► Since the derivation is maximal, ∧-right is eventually applied...
- ... introducing A in the succedent of one branch and B on the other.
- ▶ One of them is our branch  $\mathcal{B}$ , and therefore  $A \in \mathcal{B}^{\perp}$  or  $B \in \mathcal{B}^{\perp}$ .
- ▶ By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$  or  $\mathcal{I}_{\mathcal{B}} \not\models B$

# Case: Conjunction in antecedent/succedent

Assume that  $(A \land B) \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$  and  $\mathcal{I}_{\mathcal{B}} \models B$ .
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \land B)$ .

- ▶ Since the derivation is maximal, ∧-right is eventually applied...
- ▶ ... introducing A in the succedent of one branch and B on the other.
- ▶ One of them is our branch  $\mathcal{B}$ , and therefore  $A \in \mathcal{B}^{\perp}$  or  $B \in \mathcal{B}^{\perp}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$  or  $\mathcal{I}_{\mathcal{B}} \not\models B$
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \not\models (A \land B)$

Assume that  $(A \rightarrow B) \in \mathcal{B}^{\top}$ .

• Since the derivation is maximal,  $\rightarrow$ -left is eventually applied...

- $\blacktriangleright$  Since the derivation is maximal,  $\rightarrow$ -left is eventually applied...
- ... introducing A in the succedent of one branch and B in the antecedent of the other.

- ▶ Since the derivation is maximal, →-left is eventually applied...
- ... introducing A in the succedent of one branch and B in the antecedent of the other.
- ▶ One of them is our branch  $\mathcal{B}$ , and therefore  $A \in \mathcal{B}^{\perp}$  or  $B \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, →-left is eventually applied...
- ... introducing A in the succedent of one branch and B in the antecedent of the other.
- ▶ One of them is our branch  $\mathcal{B}$ , and therefore  $A \in \mathcal{B}^{\perp}$  or  $B \in \mathcal{B}^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$  or  $\mathcal{I}_{\mathcal{B}} \models B$

- ▶ Since the derivation is maximal, →-left is eventually applied...
- ... introducing A in the succedent of one branch and B in the antecedent of the other.
- ▶ One of them is our branch  $\mathcal{B}$ , and therefore  $A \in \mathcal{B}^{\perp}$  or  $B \in \mathcal{B}^{\top}$ .
- ▶ By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$  or  $\mathcal{I}_{\mathcal{B}} \models B$
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \rightarrow B)$

Assume that  $(A \rightarrow B) \in \mathcal{B}^{\top}$ .

- ► Since the derivation is maximal, →-left is eventually applied...
- ... introducing A in the succedent of one branch and B in the antecedent of the other.
- ▶ One of them is our branch  $\mathcal{B}$ , and therefore  $A \in \mathcal{B}^{\perp}$  or  $B \in \mathcal{B}^{\top}$ .
- ▶ By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$  or  $\mathcal{I}_{\mathcal{B}} \models B$
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \rightarrow B)$

Assume that  $(A \rightarrow B) \in \mathcal{B}^{\top}$ .

- ► Since the derivation is maximal, →-left is eventually applied...
- ... introducing A in the succedent of one branch and B in the antecedent of the other.
- ▶ One of them is our branch  $\mathcal{B}$ , and therefore  $A \in \mathcal{B}^{\perp}$  or  $B \in \mathcal{B}^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$  or  $\mathcal{I}_{\mathcal{B}} \models B$
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \rightarrow B)$

Assume that  $(A \rightarrow B) \in \mathcal{B}^{\perp}$ .

▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\perp}$ .

Assume that  $(A \rightarrow B) \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, →-left is eventually applied...
- ... introducing A in the succedent of one branch and B in the antecedent of the other.
- ▶ One of them is our branch  $\mathcal{B}$ , and therefore  $A \in \mathcal{B}^{\perp}$  or  $B \in \mathcal{B}^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$  or  $\mathcal{I}_{\mathcal{B}} \models B$
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \rightarrow B)$

- ▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\perp}$ .
- ▶ By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$  and  $\mathcal{I}_{\mathcal{B}} \nvDash B$

Assume that  $(A \rightarrow B) \in \mathcal{B}^{\top}$ .

- ▶ Since the derivation is maximal, →-left is eventually applied...
- ... introducing A in the succedent of one branch and B in the antecedent of the other.
- ▶ One of them is our branch  $\mathcal{B}$ , and therefore  $A \in \mathcal{B}^{\perp}$  or  $B \in \mathcal{B}^{\top}$ .
- By the IH, we have  $\mathcal{I}_{\mathcal{B}} \not\models A$  or  $\mathcal{I}_{\mathcal{B}} \models B$
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \models (A \rightarrow B)$

- ▶ Since the derivation is maximal, we have  $A \in B^{\top}$  and  $B \in B^{\perp}$ .
- ▶ By the IH, we have  $\mathcal{I}_{\mathcal{B}} \models A$  and  $\mathcal{I}_{\mathcal{B}} \not\models B$
- ▶ By definition of model semantics,  $\mathcal{I}_{\mathcal{B}} \not\models (A \rightarrow B)$

▶ If there is no proof for a sequent, there is a derivation...

- ▶ If there is no proof for a sequent, there is a derivation...
  - ▶ Where all possible rules have been applied

- ▶ If there is no proof for a sequent, there is a derivation...
  - ▶ Where all possible rules have been applied
  - $\blacktriangleright$  At least one branch  ${\cal B}$  has not been closed with an axiom

- ▶ If there is no proof for a sequent, there is a derivation...
  - ▶ Where all possible rules have been applied
  - $\blacktriangleright$  At least one branch  ${\cal B}$  has not been closed with an axiom
- $\blacktriangleright$  We can use the atoms on  ${\cal B}$  to construct an interpretation  ${\cal I}_{{\cal B}}$

- ▶ If there is no proof for a sequent, there is a derivation...
  - ▶ Where all possible rules have been applied
  - $\blacktriangleright$  At least one branch  ${\cal B}$  has not been closed with an axiom
- $\blacktriangleright$  We can use the atoms on  ${\mathcal B}$  to construct an interpretation  ${\mathcal I}_{{\mathcal B}}$
- $\mathcal{I}_{\mathcal{B}}$  makes atoms left true, and atoms right false

- ▶ If there is no proof for a sequent, there is a derivation...
  - ▶ Where all possible rules have been applied
  - $\blacktriangleright$  At least one branch  ${\cal B}$  has not been closed with an axiom
- $\blacktriangleright$  We can use the atoms on  ${\mathcal B}$  to construct an interpretation  ${\mathcal I}_{{\mathcal B}}$
- $\mathcal{I}_{\mathcal{B}}$  makes atoms left true, and atoms right false
- ► *I*<sup>B</sup> also makes *all other* formulae left true and right false, because...

- ▶ If there is no proof for a sequent, there is a derivation...
  - ▶ Where all possible rules have been applied
  - $\blacktriangleright$  At least one branch  ${\cal B}$  has not been closed with an axiom
- $\blacktriangleright$  We can use the atoms on  ${\mathcal B}$  to construct an interpretation  ${\mathcal I}_{{\mathcal B}}$
- $\mathcal{I}_{\mathcal{B}}$  makes atoms left true, and atoms right false
- ▶ *I*<sup>B</sup> also makes *all other* formulae left true and right false, because...
  - ▶ for every non-atomic formula, there is a rule that decomposes it

- ▶ If there is no proof for a sequent, there is a derivation...
  - ▶ Where all possible rules have been applied
  - $\blacktriangleright$  At least one branch  ${\cal B}$  has not been closed with an axiom
- $\blacktriangleright$  We can use the atoms on  ${\mathcal B}$  to construct an interpretation  ${\mathcal I}_{{\mathcal B}}$
- $\mathcal{I}_{\mathcal{B}}$  makes atoms left true, and atoms right false
- ▶ *I*<sup>B</sup> also makes *all other* formulae left true and right false, because...
  - ▶ for every non-atomic formula, there is a rule that decomposes it
  - which must have been applied

- ▶ If there is no proof for a sequent, there is a derivation...
  - ▶ Where all possible rules have been applied
  - $\blacktriangleright$  At least one branch  ${\cal B}$  has not been closed with an axiom
- $\blacktriangleright$  We can use the atoms on  ${\cal B}$  to construct an interpretation  ${\cal I}_{{\cal B}}$
- $\mathcal{I}_{\mathcal{B}}$  makes atoms left true, and atoms right false
- ▶ *I*<sup>B</sup> also makes *all other* formulae left true and right false, because...
  - ▶ for every non-atomic formula, there is a rule that decomposes it
  - which must have been applied
  - $\blacktriangleright$  and that guarantees that  $\mathcal{I}_{\mathcal{B}}$  falsifies sequents, based on structural induction

- ▶ If there is no proof for a sequent, there is a derivation...
  - ▶ Where all possible rules have been applied
  - $\blacktriangleright$  At least one branch  ${\cal B}$  has not been closed with an axiom
- $\blacktriangleright$  We can use the atoms on  ${\cal B}$  to construct an interpretation  ${\cal I}_{{\cal B}}$
- $\mathcal{I}_{\mathcal{B}}$  makes atoms left true, and atoms right false
- ▶ *I*<sup>B</sup> also makes *all other* formulae left true and right false, because...
  - ▶ for every non-atomic formula, there is a rule that decomposes it
  - which must have been applied
  - $\blacktriangleright$  and that guarantees that  $\mathcal{I}_{\mathcal{B}}$  falsifies sequents, based on structural induction
- Structural induction on formulae, while soundness was by induction on derivations

- ▶ If there is no proof for a sequent, there is a derivation...
  - ▶ Where all possible rules have been applied
  - $\blacktriangleright$  At least one branch  ${\cal B}$  has not been closed with an axiom
- $\blacktriangleright$  We can use the atoms on  ${\cal B}$  to construct an interpretation  ${\cal I}_{\cal B}$
- $\mathcal{I}_{\mathcal{B}}$  makes atoms left true, and atoms right false
- ► *I*<sup>B</sup> also makes *all other* formulae left true and right false, because...
  - ▶ for every non-atomic formula, there is a rule that decomposes it
  - which must have been applied
  - $\blacktriangleright$  and that guarantees that  $\mathcal{I}_{\mathcal{B}}$  falsifies sequents, based on structural induction
- Structural induction on formulae, while soundness was by induction on derivations
- Not possible to prove completeness 'one rule at a time'

## **One-sided Sequent Calculus**

 $\blacktriangleright$  Only sequents with empty succedent:  $\Gamma$   $\Longrightarrow$ 

# **One-sided Sequent Calculus**

- $\blacktriangleright$  Only sequents with empty succedent:  $\Gamma$   $\Longrightarrow$
- ▶ To prove *A*, start with  $\neg A \implies$

## **One-sided Sequent Calculus**

- ▶ Only sequents with empty succedent:  $\Gamma \implies$
- ▶ To prove *A*, start with  $\neg A \implies$
- "Proof by contradiction" or "refutation"

## **One-sided Sequent Calculus**

- ▶ Only sequents with empty succedent:  $\Gamma \implies$
- ▶ To prove A, start with  $\neg A \implies$
- "Proof by contradiction" or "refutation"
- ▶ Negation rules combined with others:

$$\frac{\Gamma, \neg A, \neg B \implies}{\Gamma, \neg (A \lor B) \implies} \neg \lor \qquad \frac{\Gamma, \neg A \implies}{\Gamma, \neg (A \land B) \implies} \neg \land$$

## **One-sided Sequent Calculus**

- ▶ Only sequents with empty succedent:  $\Gamma \implies$
- ▶ To prove A, start with  $\neg A \implies$
- "Proof by contradiction" or "refutation"
- Negation rules combined with others:

$$\frac{\Gamma, \neg A, \neg B \Longrightarrow}{\Gamma, \neg (A \lor B) \Longrightarrow} \neg \lor \qquad \frac{\Gamma, \neg A \Longrightarrow}{\Gamma, \neg (A \land B) \Longrightarrow} \neg \land$$

Double negation:

$$\frac{\Gamma, A \Longrightarrow}{\Gamma, \neg \neg A \Longrightarrow} \neg \neg$$

## **One-sided Sequent Calculus**

- ▶ Only sequents with empty succedent:  $\Gamma \implies$
- ▶ To prove A, start with  $\neg A \implies$
- "Proof by contradiction" or "refutation"
- Negation rules combined with others:

$$\frac{\Gamma, \neg A, \neg B \Longrightarrow}{\Gamma, \neg (A \lor B) \Longrightarrow} \neg \lor \qquad \frac{\Gamma, \neg A \Longrightarrow}{\Gamma, \neg (A \land B) \Longrightarrow} \neg \land$$

Double negation:

Axiom:

$$\Gamma, A, \neg A \implies$$

## **One-sided Sequent Calculus**

- ▶ Only sequents with empty succedent:  $\Gamma \implies$
- ▶ To prove *A*, start with  $\neg A \implies$
- "Proof by contradiction" or "refutation"
- ▶ Negation rules combined with others:

$$\frac{\Gamma, \neg A, \neg B \Longrightarrow}{\Gamma, \neg (A \lor B) \Longrightarrow} \neg \lor \qquad \frac{\Gamma, \neg A \Longrightarrow}{\Gamma, \neg (A \land B) \Longrightarrow} \neg \land$$

Double negation:

$$\frac{\Gamma, A \Longrightarrow}{\Gamma, \neg \neg A \Longrightarrow} \neg \neg$$

Axiom:

$$\Gamma, A, \neg A \implies$$

 $\blacktriangleright$  Can do the same with empty antecedents  $\implies \Delta$ 

▶ Instead of 
$$p \rightarrow q \implies (p \lor r) \rightarrow q$$

▶ Start with 
$$p \to q, \neg((p \lor r) \to q) \implies$$

$$\frac{\overline{\neg p, p, \neg q \Longrightarrow}}{p \to q, p, \neg q \Longrightarrow} \frac{\overline{q, p, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow} \frac{\neg p, r, \neg q \Longrightarrow}{p \to q, r, \neg q \Longrightarrow} \frac{\overline{q, r, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow}$$

▶ Instead of 
$$p \rightarrow q \implies (p \lor r) \rightarrow q$$

▶ Start with 
$$p o q, \neg((p \lor r) \to q) \implies$$

$$\frac{\overline{\neg p, p, \neg q \Longrightarrow}}{p \to q, p, \neg q \Longrightarrow} \frac{\overline{q, p, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow} \frac{\neg p, r, \neg q \Longrightarrow}{p \to q, r, \neg q \Longrightarrow} \frac{\overline{q, r, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow}$$

▶ Instead of 
$$p \rightarrow q \implies (p \lor r) \rightarrow q$$

▶ Start with 
$$p o q, \neg((p \lor r) \to q) \implies$$

$$\frac{\overline{\neg p, p, \neg q \Longrightarrow}}{p \to q, p, \neg q \Longrightarrow} \frac{\overline{q, p, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow} \frac{\neg p, r, \neg q \Longrightarrow}{p \to q, r, \neg q \Longrightarrow} \frac{\overline{q, r, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow}$$

▶ Instead of 
$$p \rightarrow q \implies (p \lor r) \rightarrow q$$

▶ Start with 
$$p o q, \neg((p \lor r) \to q) \implies$$

$$\frac{\overline{\neg p, p, \neg q \Longrightarrow}}{p \to q, p, \neg q \Longrightarrow} \frac{\overline{q, p, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow} \frac{\neg p, r, \neg q \Longrightarrow}{p \to q, r, \neg q \Longrightarrow} \frac{\overline{q, r, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow}$$

▶ Instead of 
$$p \rightarrow q \implies (p \lor r) \rightarrow q$$

▶ Start with 
$$p \to q, \neg((p \lor r) \to q) \implies$$

$$\frac{\overline{\neg p, p, \neg q \Longrightarrow} \quad \overline{q, p, \neg q \Longrightarrow}}{p \to q, p, \neg q \Longrightarrow} \quad \frac{\neg p, r, \neg q \Longrightarrow}{p \to q, r, \neg q \Longrightarrow} \\
\frac{p \to q, p \lor r, \neg q \Longrightarrow}{p \to q, q, p \lor r, \neg q \Longrightarrow} \\
\frac{p \to q, p \lor r, \neg q \Longrightarrow}{p \to q, \gamma((p \lor r) \to q) \Longrightarrow}$$

▶ Instead of 
$$p \rightarrow q \implies (p \lor r) \rightarrow q$$

▶ Start with 
$$p o q, \neg((p \lor r) \to q) \implies$$

$$\frac{\overline{\neg p, p, \neg q \Longrightarrow}}{p \to q, p, \neg q \Longrightarrow} \frac{\overline{q, p, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow} \frac{\neg p, r, \neg q \Longrightarrow}{p \to q, r, \neg q \Longrightarrow} \frac{\overline{q, r, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow}$$

▶ Instead of 
$$p \rightarrow q \implies (p \lor r) \rightarrow q$$

▶ Start with 
$$p o q, \neg((p \lor r) \to q) \implies$$

$$\frac{\overline{\neg p, p, \neg q \Longrightarrow}}{p \to q, p, \neg q \Longrightarrow} \frac{\overline{q, p, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow} \frac{\neg p, r, \neg q \Longrightarrow}{p \to q, r, \neg q \Longrightarrow} \frac{p \to q, r, \neg q \Longrightarrow}{p \to q, r, \neg q \Longrightarrow}$$

▶ Instead of 
$$p \rightarrow q \implies (p \lor r) \rightarrow q$$

▶ Start with 
$$p o q, \neg((p \lor r) \to q) \implies$$

$$\frac{\overline{\neg p, p, \neg q \Longrightarrow}}{p \to q, p, \neg q \Longrightarrow} \frac{\overline{q, p, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow} \frac{\neg p, r, \neg q \Longrightarrow}{p \to q, r, \neg q \Longrightarrow} \frac{\overline{q, r, \neg q \Longrightarrow}}{p \to q, r, \neg q \Longrightarrow}$$

▶ Instead of 
$$p \rightarrow q \implies (p \lor r) \rightarrow q$$

▶ Start with 
$$p o q, \neg((p \lor r) \to q) \implies$$

$$\frac{\overline{\neg p, p, \neg q \Longrightarrow}}{p \to q, p, \neg q \Longrightarrow} \xrightarrow{q, p, \neg q \Longrightarrow} \xrightarrow{\neg p, r, \neg q \Longrightarrow} \overline{q, r, \neg q \Longrightarrow} \\
\frac{p \to q, p, \neg q \Longrightarrow}{p \to q, p, \neg q \Longrightarrow} \xrightarrow{p \to q, r, \neg q \Longrightarrow} \overline{p \to q, r, \neg q \Longrightarrow}$$

▶ Instead of 
$$p \to q \implies (p \lor r) \to q$$

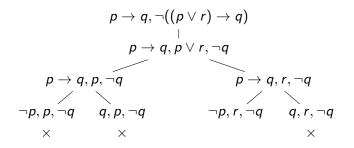
▶ Start with 
$$p \to q, \neg((p \lor r) \to q) \implies$$

$$\frac{\overline{\neg p, p, \neg q \implies} \overline{q, p, \neg q \implies}}{p \rightarrow q, p, \neg q \implies} \frac{\neg p, r, \neg q \implies}{p \rightarrow q, r, \neg q \implies} \frac{\neg p, r, \neg q \implies}{p \rightarrow q, r, \neg q \implies} \frac{p \rightarrow q, p \lor r, \neg q \implies}{p \rightarrow q, r, \neg q \implies}$$

Soundness and completeness very similar to two-sided LK.

#### Semantic Tableaux (Ben-Ari 2.6)

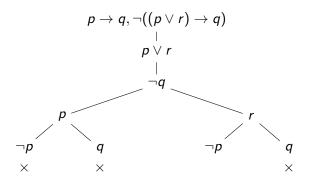
- Others call these 'block tableaux'
- Sequent arrow  $\implies$  not needed for one-sided calculus
- More handy to write top-down, like everybody else
- ▶ Mark 'closed' branches (with axioms) with ×



#### Completeness

### Short Hand Notation for Tableaux

- Only write the new formula in every node.
- Even more handy to write
- ▶ Close branch using literals A and ¬A anywhere on a branch.
- Have to make sure that all rules were used on every branch!



# Summary and Outlook

Until now:

- Propositional logic and model semantics
- LK Calculus
- Soundness
- Completeness

Next three weeks:

- First-order logic and model semantics
- LK Calculus for first-order logic
- Soundness
- Completeness

After that: resolution, DPLL, Prolog,...