IN3070/4070 - Logic - Autumn 2020
Lecture 4: First-order Logic

Martin Giese

10th September 2020

Today's Plan

- Motivation
- Syntax
- Variables
- Semantics
- The Substitution Lemma
- Satisfiability \& Validity
- LK for First-order Logic
- Summary

Outline

- Motivation
- Syntax
- Variables

Semantics

- The Substitution Lemma
- Satisfiability \& Validity
- LK for First-order Logic

Summary

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula $(p, q, r), \wedge, \vee, \neg, \rightarrow,($,
Problem: How do we represent the following statements?

- "all men are mortal"
- "there exist prime numbers that are even"
- "1 is smaller than 3 "
$\forall x(\operatorname{man}(x) \rightarrow \operatorname{mortal}(x))$
$1<3$ or $<(1,3)$
- "transitivity of smaller"
- $2 * 8=16$
- "if x is even than $x+2$ is even"
- "if x is prime than $x+2$ is prime"

First-order logic: extension of propositional logic

First-Order Logic - Overview

Extending propositional logic by...
Syntax:
constants (a, b, c), functions (f, g, h), variables (x, y, z)

- predicates (p, q, r)
- terms (t, u, v)
- quantifiers (\forall, \exists)
- scope of variables, free variables, variable assignment/substitution

Semantics:

- interpretation of constants, functions, variables
- interpretation of predicates
- value of terms
- truth value of (quantified) formulae
- satisfiability, validity, logical equivalence,...

N3070/4070 :: Autumn 2020

Syntax - Terms

Terms are built up of constant (symbols), variable (symbols), and function (symbols).

Definition 2.1 (Terms).

Let $\mathcal{A}=\{a, b, \ldots\}$ be a countable set of constant symbols, $\mathcal{V}=\{x, y, z, \ldots\}$ be a countable set of variable symbols, and $\mathcal{F}=\{f, g, h, \ldots\}$ be a countable set of function symbols.
Terms, denoted t, u, v, are inductively defined as follows:

1. Every variable $x \in \mathcal{V}$ is a term.
2. Every constant $a \in \mathcal{A}$ is a term.
3. If $f \in \mathcal{F}$ is an n-ary function (symbol) $n>0$ and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.

Example: $a, x, f(a, x), f(g(x), b)$, and $g(f(a, g(y)))$ are terms.

Definition 2.4 (Subformula, Main Operator).

Formula A is a (proper) subformula of formula B iff A is a (proper) subtree of B. If the root of a formula tree of A is a logical connective/quantifier, then it is called the main operator of A.

Free Variables

A free variable is a variable that is not in the scope of a quantifier.

Definition 3.1 (Free/Bound Variables, Closed Formula/Term).

Free variables in a formula A are inductively defined:

1. If A is an atomic formula, then all variables in A are free.
2. If $A=\neg B$, then the free variables of A are exactly those of B.
3. If $A=B \wedge C, A=B \vee C$, or $A=B \rightarrow C$, then the free variables of A are those of B together with those of C.
4. If $A=\forall x B$ or $A=\exists x B$, then the free variables of A are those of B without the variable x.
A bound variable in a formula C is a variable that appears in $\forall x$ or $\exists x$ in some subformula of C. A formula/term is closed iff it has no free variables.

Outline

- Motivation
- Syntax
- Variables
- Semantics
- The Substitution Lemma
- Satisfiability \& Validity
- LK for First-order Logic
- Summary

Scope, Universal and Existential Closure

Definition 3.2 (Scope of Variables).

Let $\forall x A$ or $\exists x A$ be a universally or existentially quantified formula. Then x is the quantified variable and its scope is the formula A.

Remark: It is not required that x actually appears in the scope of its quantification, e.g. $\forall x \exists y p(y, y)$.

Definition 3.3 (Universal and Existential Closure).

If $\left\{x_{1}, \ldots, x_{n}\right\}$ are all the free variables of A, the universal closure of A is $\forall x_{1} \ldots \forall x_{n} A$ and the existential closure of A is $\exists x_{1} \ldots \exists x_{n} A$.

- $p(x, y)$ has the two free variables x and y. Its universal closure is $\forall x \forall y p(x, y)$ and its existential closure is $\exists x \exists y p(x, y) ; \exists y p(x, y)$ has the only free variable $x ; \forall x \exists y p(x, y)$ is closed
- In $\forall x p(x) \wedge q(x)$, the x occurs bound and free. The existential closure is $\exists x(\forall x p(x) \wedge q(x))$; renaming: $\exists y(\forall x p(x) \wedge q(y))$

Substitutions

Free variables in a first-order formula can be substituted by terms.

Definition 3.4 (Substitution).

Let \mathcal{V} be a set of variables, \mathcal{T} be the set of terms. A substitution $\sigma: \mathcal{V} \rightarrow \mathcal{T}$
assigns each variable a term.
Remark: The substitution σ is often represented as set $\{x \backslash t \mid \sigma(x)=t\}$.
Example: For the variable set $\{x, y\}, \sigma(x)=a, \sigma(y)=f(z, b)$ is a substitution and can also be represented as $\{x \backslash a, y \backslash f(z, b)\}$.
Ben-Ari: $\{x \leftarrow a, y \leftarrow f(z, b)\}$.
Others: $[a / x, f(z, b) / y]$

Application of Substitutions

Definition 3.7 (Application of Substitutions, formally).

The application of a subtitution σ to a term or formula is defined by structural induction:

- $\sigma(x)=\sigma(x)$ for variables x in the range of σ
- $\sigma(y)=y$ for variables y not in the range of σ
- $\sigma(a)=a$ for constants $a \in \mathcal{A}$
- $\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)$ for a function symbol $f \in \mathcal{F}$
- $\sigma\left(p\left(t_{1}, \ldots, t_{n}\right)\right)=p\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)$ for a predicate symbol $p \in \mathcal{P}$
- $\sigma(A \wedge B)=\sigma(A) \wedge \sigma(B)$ for formulae A, B
- ... similarly for $\neg A, A \vee B, A \rightarrow B \ldots$
- $\sigma(\exists x A)=\exists x \sigma_{x}(A), \quad \sigma(\forall x A)=\forall x \sigma_{x}(A)$
where we define σ_{x} by: $\sigma_{x}(x)=x$, and $\sigma_{x}(y)=\sigma(y)$ for all $y \neq x$

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A, written $\sigma(t)$ or $\sigma(A)$, replaces every free variable in t or A according to its image under σ. Short hand: $A[x \backslash t]=\sigma(A)$ with $\sigma=\{x \backslash t\}$.

Example: Let $\sigma=\{x \backslash a, y \backslash f(z, b)\}$ be a substitution.
Then $\sigma(g(y))=g(f(z, b))$
and $\sigma(p(x) \wedge \forall x q(x, g(y)))=p(a) \wedge \forall x q(x, g(f(z, b)))$
Problem: $\sigma(\forall z p(z, y))=\forall z p(z, f(z, b))$
The free variable z in σ is captured by the quantifier.
This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x in A, none of the variables in $\sigma(x)$ is bound in A.

Outline

- Motivation
- Syntax
- Variables
- Semantics
- The Substitution Lemma
- Satisfiability \& Validity
- LK for First-order Logic
\rightarrow Summary

Semantics - Interpretation

An interpretation assigns concrete objects, functions and relations to constant symbols, function symbols, and predicate symbols.

Definition 4.1 (Interpretation/Structure).

An interpretation (or structure) $\mathcal{I}=(D, \iota)$ consists of the following elements:

1. Domain D is a non-empty set
2. Interpretation of constant symbols assigns each constant $a \in \mathcal{A}$ an element $a^{i} \in D$
3. Interpretation of function symbols assigns each n-ary function symbol $f \in \mathcal{F}$ with $n>0$ a function $f^{\iota}: D^{n} \rightarrow D$
4. Interpretation of propositional variables assigns each 0 -ary predicate symbol $p \in \mathcal{P}$ a truth value $p^{\iota} \in\{T, F\}$
5. Interpretation of predicate symbols assigns each n-ary predicate symbol $p \in \mathcal{P}$ with $n>0$ a relation $p^{\iota} \subseteq D^{n}$

Semantics - Value of Closed Terms

Terms are evaluated according to the interpretation of their constant and function symbols.

Definition 4.2 (Term Value for Closed Terms).

Let $\mathcal{I}=(D, \iota)$ be an interpretation. The term value $v_{\mathcal{I}}(t)$ of a closed term $t \in \mathcal{T}$ under the interpretation \mathcal{I} is inductively defined:

1. For a constant symbol $a \in \mathcal{A}$ the term value is $v_{\mathcal{I}}(a)=a^{l}$;
2. Let $f \in \mathcal{F}$ be an n-ary function, $n>0$, and t_{1}, \ldots, t_{n} be terms; the term value of $f\left(t_{1}, \ldots, t_{n}\right)$ is $v_{\mathcal{I}}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f^{\prime}\left(v_{\mathcal{I}}\left(t_{1}\right), \ldots, v_{\mathcal{I}}\left(t_{n}\right)\right)$
Examples:

- $f(a, f(a, b))$ with $\mathcal{I}=(\mathbb{N}, \iota)$ with $f^{\iota}=+, a^{\iota}=20, b^{\iota}=2$; then $v_{\mathcal{I}}(f(a, f(a, b)))=42$
- $+(1, *(4,2))$ with $\mathcal{I}=(\mathbb{Z}, \iota)$ with $+^{\iota}=*$ (multiplication), $*^{\iota}=-$ (subtraction), $1^{\iota}=-20,2^{\iota}=0,4^{\iota}=10$; then $v_{\mathcal{I}}(+(1, *(4,2)))=-200$

Semantics - Examples

Example: $\forall x p(a, x)$ with the interpretations

1. $\mathcal{I}=(\mathbb{N}, \iota)$ with $p^{\iota}=\leq$ and $a^{\iota}=0$
2. $\mathcal{I}=(\mathbb{N}, \iota)$ with $p^{\iota}=\leq$ and $a^{\iota}=3$
3. $\mathcal{I}=(\mathbb{Z}, \iota)$ with $p^{\iota}=\leq$ and $a^{\iota}=0$
4. $\mathcal{I}=(\{c, d, e, f\}, \iota)$ with $p^{\iota}=\leq_{\text {lexi }}$ and $a^{\iota}=c$

Remark: In Ben-Ari: $(\mathbb{N},\{\leq\},\{0\}),(\mathbb{N},\{\leq\},\{3\}),(\mathbb{Z},\{\leq\},\{0\})$
Example: $\forall x \forall y(p(x, y) \rightarrow p(f(x, a), f(y, a)))$ with interpretations

1. $\mathcal{I}=(\mathbb{Z}, \iota)$ with $p^{\iota}=\leq, f^{\iota}=+$, and $a^{\iota}=1$
2. $\mathcal{I}=(\mathbb{Z}, \iota)$ with $p^{\iota}=>, f^{\iota}=*$, and $a^{\iota}=-1$

Remark: In Ben-Ari: $(\mathbb{Z},\{\leq\},\{+\},\{1\}),(\mathbb{Z},\{>\},\{*\},\{-1\})$.

Semantics - Variable Assignments, Value of Terms

The interpretation doesn't tell what to do about variables. We need something additional.

Definition 4.3 (Variable Assignment).

Given the set of variables \mathcal{V}, and an interpretation $\mathcal{I}=(D, \iota)$, a variable assignment α for \mathcal{I} is a function $\alpha: \mathcal{V} \rightarrow D$.

Ben-Ari (7.18) writes this $\sigma_{\mathcal{I}_{A}}$

Definition 4.4 (Term Value).

Let $\mathcal{I}=(D, \iota)$ be an interpretation, and α an variable assignment for \mathcal{I}. The term value $v_{\mathcal{I}}(\alpha, t)$ of a term $t \in \mathcal{T}$ under \mathcal{I} and α is inductively defined:

1. $v_{\mathcal{I}}(\alpha, x)=\alpha(x)$ for a variable $\boldsymbol{v} \in \mathcal{V}$
2. $v_{\mathcal{I}}(\alpha, a)=a^{\iota}$ for a constant symbol $a \in \mathcal{A}$
3. $v_{\mathcal{I}}\left(\alpha, f\left(t_{1}, \ldots, t_{n}\right)\right)=f^{\iota}\left(v_{\mathcal{I}}\left(\alpha, t_{1}\right), \ldots, v_{\mathcal{I}}\left(\alpha, t_{n}\right)\right)$ for an n-ary $f \in \mathcal{F}$

Semantics - Term value Examples

- $\mathcal{I}=(\mathbb{N}, \iota)$ with $f^{\iota}=+, a^{l}=10$
- $\mathcal{V}=\{x, y\}$
- $\alpha(x)=3 \in \mathbb{N}$ and $\alpha(y)=5 \in \mathbb{N}$ is an assignment for \mathcal{I}
- $v_{\mathcal{I}}(\alpha, f(a, f(a, x)))=23$
- $\mathcal{I}=($ Strings,$\iota)$ with $g^{\iota}=$ concatenation, $a^{\iota}={ }^{\prime}$ Hello"
- $\mathcal{V}=\{y\}$
- $\alpha(y)=$ "students"
- $v_{\mathcal{I}}(\alpha, f(a, f(y, a)))=$ "HellostudentsHello"

Semantics - Truth Value

Definition 4.6 (Truth Value).

Let $\mathcal{I}=(D, \iota)$ be an interpretation and α an assignment for \mathcal{I}. The truth value $v_{\mathcal{I}}(\alpha, A) \in\{T, F\}$ of a formula A under \mathcal{I} and α is defined inductively as follows:

1. $v_{\mathcal{I}}(\alpha, p)=T$ for 0 -ary $p \in \mathcal{P}$ iff $p^{t}=T$, otherwise $v_{\mathcal{I}}(\alpha, p)=F$
2. $v_{\mathcal{I}}\left(\alpha, p\left(t_{1}, \ldots, t_{n}\right)\right)=T$ for $p \in \mathcal{P}, n>0$, iff $\left(v_{\mathcal{I}}\left(\alpha, t_{1}\right), \ldots, v_{\mathcal{I}}\left(\alpha, t_{n}\right)\right) \in p^{l}$, otherwise $v_{\mathcal{I}}\left(\alpha, p\left(t_{1}, \ldots, t_{n}\right)\right)=F$
3. $v_{\mathcal{I}}(\alpha, \neg A)=T$ iff $v_{\mathcal{I}}(\alpha, A)=F$, otherwise $v_{\mathcal{I}}(\alpha, \neg A)=F$
4. $v_{\mathcal{I}}(\alpha, A \wedge B)=T$ iff $v_{\mathcal{I}}(\alpha, A)=T$ and $v_{\mathcal{I}}(\alpha, B)=T$, otherwise $v_{\mathcal{I}}(\alpha, A \wedge B)=F$
5. $v_{\mathcal{I}}(\alpha, A \vee B)=T$ iff $v_{\mathcal{I}}(\alpha, A)=T$ or $v_{\mathcal{I}}(\alpha, B)=T$, otherwise $v_{\mathcal{I}}(\alpha, A \vee B)=F$
6. $v_{\mathcal{I}}(\alpha, A \rightarrow B)=T$ iff $v_{\mathcal{I}}(\alpha, A)=F$ or $v_{\mathcal{I}}(\alpha, B)=T$, otherwise $v_{\mathcal{I}}(\alpha, A \rightarrow B)=F$
7. $v_{\mathcal{I}}(\alpha, \forall x A)=T$ iff $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A)=T$ for all $d \in D$, otherwise $v_{\mathcal{I}}(\alpha, \forall x A)=F$
8. $v_{\mathcal{I}}(\alpha, \exists x A)=T$ iff $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A)=T$ for some $d \in D$, otherwise $v_{\mathcal{I}}(\alpha, \exists x A)=F$
9. $v_{\mathcal{I}}(\alpha, \top)=T$ and $v_{\mathcal{I}}(\alpha, \perp)=F$

Semantics - Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation $\mathcal{I}=(D, \iota)$ and a variable assignment α for \mathcal{I}.
Given also a variable $y \in \mathcal{V}$ and a domain element $d \in D$.
The modified variable assignment $\alpha\{y \leftarrow d\}$ is defined as

$$
\alpha\{y \leftarrow d\}(x)= \begin{cases}d & \text { if } x=y \\ \alpha(x) & \text { otherwise }\end{cases}
$$

- $\mathcal{I}=(\mathbb{N}, \iota)$
- $\mathcal{V}=\{x, y\}$
- $\alpha(x)=3 \in \mathbb{N}$ and $\alpha(y)=5 \in \mathbb{N}$ is an assignment for \mathcal{I}
- $\alpha\{y \leftarrow 7\}(x)=3$ and $\alpha\{y \leftarrow 7\}(y)=7$

Semantics - Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term value or truth value. We can write $v_{\mathcal{I}}(A)$ instead of $v_{\mathcal{I}}(\alpha, A)$.

Example: $A=\forall x p(a, x)$ with the interpretations

1. $\mathcal{I}=(\mathbb{N}, \iota)$ with $p^{\iota}=\leq$ and $a^{\iota}=0 \leadsto v_{\mathcal{I}}(A)=T$
2. $\mathcal{I}=(\mathbb{N}, \iota)$ with $p^{\iota}=\leq$ and $a^{\iota}=3 \leadsto v_{\mathcal{I}}(A)=F$
3. $\mathcal{I}=(\mathbb{Z}, \iota)$ with $p^{\iota}=\leq$ and $a^{\iota}=0 \leadsto v_{\mathcal{I}}(A)=F$
4. $\mathcal{I}=(\{c, d, e, f\}, \iota)$ with $p^{\iota}=\leq_{\text {lexi }}$ and $a^{\iota}=c \leadsto v_{\mathcal{I}}(A)=T$

Example: $B=\forall x \forall y(p(x, y) \rightarrow p(f(x, a), f(y, a)))$ with interpretations

1. $\mathcal{I}=(\mathbb{Z}, \iota)$ with $p^{\iota}=\leq, f^{\iota}=+$, and $a^{\iota}=1$
$\leadsto v_{\mathcal{I}}(B)=T$
2. $\mathcal{I}=(\mathbb{Z}, \iota)$ with $p^{\iota}=>, f^{\iota}=*$, and $a^{\iota}=-1$
$\leadsto v_{\mathcal{I}}(B)=F$
N3070/4070:: Autumn 2020

Outline

- Motivation
- Syntax
- Variables
- Semantics
- The Substitution Lemma
- Satisfiability \& Validity
- LK for First-order Logic
- Summary

Proof of substitution lemma, continued

Proof.

For the variable $y, y[y \backslash s]=s$, so
$v_{\mathcal{I}}(\alpha, y[y \backslash s])=v_{\mathcal{I}}(\alpha, s)=v_{\mathcal{I}}\left(\alpha\left\{y \leftarrow v_{\mathcal{I}}(\alpha, s)\right\}, y\right)$
For a complex term, $f\left(\ldots t_{i} \ldots\right)[y \backslash s]=f\left(\ldots t_{i}[y \backslash s] \ldots\right)$, so $v_{\mathcal{I}}\left(\alpha, f\left(\ldots t_{i} \ldots\right)[y \backslash s]\right)$
$=v_{\mathcal{I}}\left(\alpha, f\left(\ldots t_{i}[y \backslash s] \ldots\right)\right)$ by def. of substitution
$=f^{\iota}\left(\ldots v_{\mathcal{I}}\left(\alpha, t_{i}[y \backslash s]\right) \ldots\right)$ by model semantics
$=f^{\iota}\left(\ldots v_{\mathcal{I}}\left(\alpha^{\prime}, t_{i}\right) \ldots\right)$ by the induction hypothesis
$=v_{\mathcal{I}}\left(\alpha^{\prime}, f\left(\ldots t_{i} \ldots\right)\right)$ by model semantics

The Substitution Lemma for Terms

Theorem 5.1 (Substitution Lemma for Terms).

Given an interpretation $\mathcal{I}=(D, \iota)$ and a variable assignment α for \mathcal{I}.
Given also a variable $y \in \mathcal{V}$, and terms $t, s \in \mathcal{T}$

$$
v_{\mathcal{I}}(\alpha, t[y \backslash s])=v_{\mathcal{I}}\left(\alpha\left\{y \leftarrow v_{\mathcal{I}}(\alpha, s)\right\}, t\right)
$$

Proof

By structural induction on t. We abbreviate: $\alpha^{\prime}:=\alpha\left\{y \leftarrow v_{\mathcal{I}}(\alpha, s)\right\}$
For a constant $a, a[y \backslash s]=a$, so $v_{\mathcal{I}}(\alpha, a[y \backslash s])=v_{\mathcal{I}}(\alpha, a)=a^{t}=v_{\mathcal{I}}\left(\alpha^{\prime}, a\right)$
For a variable $x \neq y, x[y \backslash s]=x$, so
$v_{\mathcal{I}}(\alpha, x[y \backslash s])=v_{\mathcal{I}}(\alpha, x)=\alpha(x)=\alpha^{\prime}(x)=v_{\mathcal{I}}\left(\alpha^{\prime}, x\right)$

IN3070/4070 :: Autumn 2020

The Substitution Lemma for Formulae

Theorem 5.2 (Substitution Lemma for Formulae).

Given an interpretation $\mathcal{I}=(D, \iota)$ and a variable assignment α for \mathcal{I}. Given also a variable $y \in \mathcal{V}$, a formula A and a term $s \in \mathcal{T}$, such that $\{y \backslash s\}$ is capture-free for A.

$$
v_{\mathcal{I}}(\alpha, A[y \backslash s])=v_{\mathcal{I}}\left(\alpha\left\{y \leftarrow v_{\mathcal{I}}(\alpha, s)\right\}, A\right)
$$

Outline

- Motivation
- Syntax
- Variables
- Semantics
- The Substitution Lemma
- Satisfiability \& Validity
- LK for First-order Logic
- Summary

Satisfiability and Validity

Definition 6.1 (Satisfiable,Model,Unsatisfiable, Valid, Invalid).

Let A be a closed (first-order) formula and $U=\left\{A_{1}, \ldots\right\}$ be a set of closed (first-order) formulae A_{i}.

- A is satisfiable iff $v_{\mathcal{I}}(A)=T$ for some interpretation \mathcal{I}.
- A satisfying interpretation \mathcal{I} for A is called a model for A.
- $U=\left\{A_{1}, \ldots\right\}$ is satisfiable iff there is (common) model for all A_{i}.
- $A($ resp. $U)$ is unsatisfiable iff $A(r e s p . U)$ is not satisfiable.
- A is valid, denoted $\vDash A$, iff $v_{\mathcal{I}}(A)=T$ for all interpretations \mathcal{I}.
- A is invalid/falsifiable iff A is not valid.

Theorem 6.1 (Satisfiable, Valid, Unsatisfiable, Invalid).
A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is invalid.

Examples for Satisfiable and Invalid Formulae

Example: $A=\forall x p(a, x)$

1. $\mathcal{I}=(\mathbb{N}, \iota)$ with $p^{\iota}=\leq$ and $a^{\iota}=3 \leadsto v_{\mathcal{I}}(A)=F$
$\leadsto A$ is invalid
2. $\mathcal{I}=(\{c, d, e, f\}, \iota)$ with $p^{\iota}=\leq$ lexi and $a^{\iota}=c \leadsto v_{\mathcal{I}}(A)=T$
$\leadsto A$ is satisfiable (\mathcal{I} is a model)
Example: $B=\forall x \forall y(p(x, y) \rightarrow p(f(x, a), f(y, a)))$
3. $\mathcal{I}=(\mathbb{Z}, \iota)$ with $p^{\iota}=\leq, f^{\iota}=+$, and $a^{\iota}=1 \leadsto v_{\mathcal{I}}(B)=T$
\leadsto satisfiable (\mathcal{I} is a model)
4. $\mathcal{I}=(\mathbb{Z}, \iota)$ with $p^{\iota}=>, f^{\iota}=*$, and $a^{\iota}=-1 \leadsto v_{\mathcal{I}}(B)=F$
\sim invalid (\mathcal{I} is a "counter-model")
Example: $\forall x \forall y(p(x, y) \rightarrow p(y, x))$
\leadsto satisfiable (e.g. $p^{\iota}="="$), but invalid (e.g. $p^{\iota}="<"$)
Example: $\exists x \exists y(p(x) \wedge \neg p(y))$
\leadsto only satisfiable for $|D| \geq 2$, invalid (e.g. $D=\mathbb{N}, p^{\iota}=$ even)
IN3070/4070 :: Autumn 2020

Logical Equivalence

The concept of logical equivalence can be adapted to first-order logic, i.e. to closed first-order formulae.

Definition 6.2 (Logical Equivalence).

Let A_{1}, A_{2} be two closed formulae. A_{1} is logically equivalent to A_{2}, denoted $A_{1} \equiv A_{2}$ iff $v_{\mathcal{I}}\left(A_{1}\right)=v_{\mathcal{I}}\left(A_{2}\right)$ for all interpretations \mathcal{I}.

Theorem 6.2 (Relation \equiv and \leftrightarrow).

Let A, B be two closed formulae. Then $A \equiv B$ iff $\models A \leftrightarrow B$.
Remark: $A \leftrightarrow B:=(A \rightarrow B) \wedge(B \rightarrow A)$
Important: even though \equiv and \leftrightarrow are closely related, they are different relations. Whereas \leftrightarrow is part of the object language (i.e. the definition of formulae), \equiv is used in the meta-language to talk about or relate formulae.

Logically Equivalent Formulae

Duality: \forall can be expressed with \exists, and vice versa

- $\models \forall x A(x) \leftrightarrow \neg \exists x \neg A(x)$
- $\vDash \exists x A(x) \leftrightarrow \neg \forall x \neg A(x)$

Commutativity:

- $\models \forall x \forall y A(x, y) \leftrightarrow \forall y \forall x A(x, y)$
- $\models \exists x \exists y A(x, y) \leftrightarrow \exists y \exists x A(x, y)$
- $\vDash \exists x \forall y A(x, y) \rightarrow \forall y \exists x A(x, y) \quad$ (other direction is not valid!)

Distributivity:

- $\models \exists x(A(x) \vee B(x)) \leftrightarrow \exists x A(x) \vee \exists x B(x)$
- $\models \forall x(A(x) \wedge B(x)) \leftrightarrow \forall x A(x) \wedge \forall x B(x)$
- $\models \forall x A(x) \vee \forall x B(x) \rightarrow \forall x(A(x) \vee B(x))$ (other direction not valid!)
- $\models \exists x(A(x) \wedge B(x)) \rightarrow \exists x A(x) \wedge \exists x B(x)$ (other direction not valid!)

See [Ben-Ari 2012] for more equivalences involving quantifiers.

Outline

- Motivation
- Syntax
- Variables
- Semantics
- The Substitution Lemma
- Satisfiability \& Validity
- LK for First-order Logic
\rightarrow Summary

Logical Consequence

Definition 6.3 (Logical Consequence).

Let A be a closed formula and U be a set of closed formulae. A is a logical consequence of U, denoted $U \models A$, iff every model of U is a model of A, i.e. $v_{\mathcal{I}}\left(A_{i}\right)=T$ for all $A_{i} \in U$ implies $v_{\mathcal{I}}(A)=T$.

Theorem 6.3 (Logical Consequence and Validity).

Let A be a closed formula and $U=\left\{A_{1}, \ldots, A_{n}\right\}$ be a set of closed formulae. Then $U \models A$ iff $\models\left(A_{1} \wedge \cdots \wedge A_{n}\right) \rightarrow A$.

- again, we can reduce the problem of "logical consequence" to the problem of determining if a formula is valid
- hence, we need methods or proof search calculi that can deal with first-order formulae
|N3070/4070 :: Autumn 2020
Lecture 4 :: 10th September

LK for First-order Logic

LK - Axiom and Propositional Rules

- axiom

$$
\overline{\Gamma, A \Longrightarrow A, \Delta} \text { axiom }
$$

- rules for \wedge (conjunction)
$\frac{\Gamma, A, B \Longrightarrow \Delta}{\Gamma, A \wedge B \Longrightarrow \Delta}{ }^{\prime}$-left $\frac{\Gamma \Longrightarrow A, \Delta \quad \Gamma \Longrightarrow B, \Delta}{\Gamma \Longrightarrow A \wedge B, \Delta} \wedge$-right
- rules for \vee (disjunction)

$$
\frac{\Gamma, A \Longrightarrow \Delta \quad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \vee B \Longrightarrow \Delta} \vee \text {-left } \quad \frac{\Gamma \Longrightarrow A, B, \Delta}{\Gamma \Longrightarrow A \vee B, \Delta} \vee \text {-right }
$$

- rules for \rightarrow (implication)
$\frac{\Gamma \Longrightarrow A, \Delta \quad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \rightarrow B \Longrightarrow \Delta} \rightarrow$-left $\quad \frac{\Gamma, A \Longrightarrow B, \Delta}{\Gamma \Longrightarrow A \rightarrow B, \Delta} \rightarrow$-right
- rules for \neg (negation)
$\frac{\Gamma \Longrightarrow A, \Delta}{\Gamma, \neg A \Longrightarrow \Delta}$-left

$$
\frac{\Gamma, A \Longrightarrow \Delta}{\Gamma \Longrightarrow \neg A, \Delta} \neg \neg \text {-right }
$$

LK — Rules for Universal and Existential Quantifier

- rules for \forall (universal quantifier)
$\frac{\Gamma, A[x \backslash t], \forall x A \Longrightarrow \Delta}{\Gamma, \forall x A \Longrightarrow \Delta} \forall$-left $\quad \frac{\Gamma \Longrightarrow A[x \backslash a], \Delta}{\Gamma \Longrightarrow \forall x A, \Delta} \forall$-right ${ }^{*}$
- t is an arbitrary closed term
- Eigenvariable condition for the rule \forall-right*: a must not occur in the conclusion, i.e. in Г, Δ, or A
- the formula $\forall x A$ is preserved in the premise of the rule \forall-left
- rules for \exists (existential quantifier)
$\frac{\Gamma, A[x \backslash a] \Longrightarrow \Delta}{\Gamma, \exists x A \Longrightarrow \Delta} \exists$-left $^{*} \quad \frac{\Gamma \Longrightarrow \exists x A, A[x \backslash t], \Delta}{\Gamma \Longrightarrow \exists x A, \Delta} \exists$-right
- t is an arbitrary closed term
- Eigenvariable condition for the rule \exists-left*: a must not occur in the conclusion, i.e. in Г, Δ, or A
- the formula $\exists x A$ is preserved in the premise of the rule \exists-right

070/4070 :: Autumn 2020
Lecture 4 :: 10th September

LK for First-order Logic

Examples of LK Proofs

$$
\begin{aligned}
& \text { Example: } p(a) \rightarrow \exists x p(x) \\
& \begin{array}{c}
\text { p(a) } \Longrightarrow p(a), \exists \times p(x) \\
\hline p(a) \Longrightarrow \exists \times p(x) \\
\exists \text { axiom } \\
\Longrightarrow p(a) \rightarrow \exists \times p(x)
\end{array} \text {-right }
\end{aligned}
$$

Example: $\forall x p(x) \rightarrow \exists x p(x)$

Example: $p(a) \rightarrow p(b)$

$$
\frac{p(a)}{\Longrightarrow \quad p(a) \rightarrow p(b)}^{(?)} \rightarrow \text {-right }
$$

Example: $\exists x p(x) \rightarrow p(a)$

$$
{\frac{\overline{\exists x p(x)}_{\Longrightarrow \quad \exists(a)}}{}{ }^{\exists-\text { left }^{*}} \rightarrow \text {-right }}_{\Longrightarrow \quad \operatorname{prp(x)\rightarrow p(a)}}
$$

rule \exists-left ${ }^{*}$ with $p(x)[x \backslash$ a] cannot be applied as a occurs in the premise (Eigenvariable condition!)

Soundness and Completeness

Theorem 7.1 (Soundness and Completeness of LK).

The calculus of natural deduction $L K$ is sound and complete, i.e.

- if A is provable in $L K$, then A is valid (if $\vdash A$ then $\models A$)
- if A is valid, then A is provable in $L K$ (if $\models A$ then $\vdash A$)

Proof

Next week.

Summary

- first-order logic extends the syntax of propositional logic by: constants, functions, variables, predicates, and the quantifiers \forall / \exists
- the semantics consists of a domain D and an interpretation ι
- the interpretation ι relates constants to elements of the domain, function symbols to actual functions, and predicates to relations
- variables are interpreted by a variable assignment α
- the formula $\forall x p(x) / \exists x p(x)$ evaluates to T iff $p(x)$ evaluates to T for all/some element(s) in D
- the truth value of formulae is inductively evaluated, and takes the value of terms into account
- most concepts from propositional logic can be adapted
- four semantical concepts: satisfiable, valid, unsatisfiable, invalid
- logical consequence in first-order logic can be reduced to validity
- Next week: Soundness and completeness

IN3070/4070 :: Autumn 2020
Lecture 4:: 10th September
\square

