IN3070/4070 – Logic – Autumn 2020 Lecture 4: First-order Logic

Martin Giese

10th September 2020

Motivation

Outline

- Motivation
- ► Syntax
- Variables
- Semantics
- ► The Substitution Lemma
- ► Satisfiability & Validity
- ► LK for First-order Logic
- Summary

Today's Plan

- Motivation
- Syntax
- Variables
- Semantics
- ► The Substitution Lemma
- ► Satisfiability & Validity
- ► LK for First-order Logic
- Summary

IN3070/4070 :: Autumn 2020

Lecture 4 :: 10th September

2 / 1

Motivat

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), \land , \lor , \neg , \rightarrow , (,)

Problem: How do we represent the following statements?

"all men are mortal"

- $\forall x (man(x) \rightarrow mortal(x))$
- "there exist prime numbers that are even"
- $\exists y (prime(y) \land even(y))$

▶ "1 is smaller than 3"

1 < 3 or < (1,3)

"transitivity of smaller"

 $\forall x \,\forall y \,\forall z \, \big(x < y \land y < z \rightarrow x < z\big)$

▶ 2 * 8 = 16

=(*(2,8),16)

- "if x is even than x + 2 is even"
- $\forall x (even(x) \rightarrow even(x+2))$
- "if x is prime than x + 2 is prime"
- $\forall x (prime(x) \rightarrow prime(x+2))$

First-order logic: extension of propositional logic

170/4070 ·· Autumn 2020 | Lecture 4 ·· 10th Sentember 3 / 41 | IN3070/4070 ·· Autumn 2020 | Lecture 4 ·· 10th Sentember 4 / 41

Motivation

First-Order Logic — Overview

Extending propositional logic by...

Syntax:

- \blacktriangleright constants (a, b, c), functions (f, g, h), variables (x, y, z)
- ightharpoonup predicates (p, q, r)
- \blacktriangleright terms (t, u, v)
- ightharpoonup quantifiers (\forall, \exists)
- ▶ scope of variables, free variables, variable assignment/substitution

Semantics:

- ▶ interpretation of constants, functions, variables
- **▶** interpretation of predicates
- value of terms
- ▶ truth value of (quantified) formulae
- ▶ satisfiability, validity, logical equivalence,...

N3070/4070 :: Autumn 2020

Lecture 4 :: 10th September

5 / 1

Syntax

Syntax — Terms

Terms are built up of constant (symbols), variable (symbols), and function (symbols).

Definition 2.1 (Terms).

Let $A = \{a, b, ...\}$ be a countable set of constant symbols, $V = \{x, y, z, ...\}$ be a countable set of variable symbols, and $F = \{f, g, h, ...\}$ be a countable set of function symbols.

Terms, denoted t, u, v, are inductively defined as follows:

- 1. Every variable $x \in V$ is a term.
- 2. Every constant $a \in A$ is a term.
- 3. If $f \in \mathcal{F}$ is an n-ary function (symbol) n>0 and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

Example: a, x, f(a, x), f(g(x), b), and g(f(a, g(y))) are terms.

Outline

- Motivation
- ► Syntax
- Variables
- Semantics
- ► The Substitution Lemma
- ► Satisfiability & Validity
- ► LK for First-order Logic
- Summary

IN3070/4070 :: Autumn 2020

Lecture 4 :: 10th Septembei

6 / 11

Syn

Syntax — First-Order Formulae

Formulae are built up of atomic formulae and the logical connectives, \land , \lor , \rightarrow , and \forall (universal quantifier), \exists (existential quantifier).

Definition 2.2 (Atomic Formulae).

Let $\mathcal{P} = \{p, q, r, \ldots\}$ be a countable set of predicate symbols. If $p \in \mathcal{P}$ is an n-ary predicate (symbol) $n \ge 0$ and t_1, \ldots, t_n are terms, then $p(t_1, \ldots, t_n)$, \top , and \bot are atomic formulae (or atoms).

Definition 2.3 ((First-Order) Formulae).

(First-order) formulae, denoted A, B, C, F, G, H, are inductively defined as follows:

- 1. Every atomic formula p is a formula.
- 2. If A and B are formulae and $x \in \mathcal{V}$, then $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$ are formulae.

170 ·· Autumn 2020 | Lecture 4 ·· 10th Sentember 7 / 41

Formula Trees

A formula can be presented as formula tree.

Example:

$$\forall x (\neg \exists y \, p(x,y) \vee \neg \exists y \, p(y,x))$$

Definition 2.4 (Subformula, Main Operator).

Formula A is a (proper) subformula of formula B iff A is a (proper) subtree of B. If the root of a formula tree of A is a logical connective/quantifier, then it is called the main operator of A.

N3070/4070 :: Autumn 2020

Lecture 4 :: 10th September

9 / 4

N3070/4070 :: Autumn 2020

Variables

Free Variables

A free variable is a variable that is not in the scope of a quantifier.

Definition 3.1 (Free/Bound Variables, Closed Formula/Term).

Free variables in a formula A are inductively defined:

- 1. If A is an atomic formula, then all variables in A are free.
- 2. If $A = \neg B$, then the free variables of A are exactly those of B.
- 3. If $A = B \land C$, $A = B \lor C$, or $A = B \to C$, then the free variables of A are those of B together with those of C.
- 4. If $A = \forall x B$ or $A = \exists x B$, then the free variables of A are those of B without the variable x.

A bound variable in a formula C is a variable that appears in $\forall x$ or $\exists x$ in some subformula of C. A formula/term is closed iff it has no free variables.

Outline

- Motivation
- Syntax
- Variables
- Semantics
- ► The Substitution Lemma
- ► Satisfiability & Validity
- ► LK for First-order Logic
- Summary

Lecture 4

V/ : 11

Scope, Universal and Existential Closure

Definition 3.2 (Scope of Variables).

Let $\forall x \ A$ or $\exists x \ A$ be a universally or existentially quantified formula. Then x is the quantified variable and its scope is the formula A.

Remark: It is not required that x actually appears in the scope of its quantification, e.g. $\forall x \exists y \ p(y, y)$.

Definition 3.3 (Universal and Existential Closure).

If $\{x_1, \ldots, x_n\}$ are all the free variables of A, the universal closure of A is $\forall x_1 \ldots \forall x_n A$ and the existential closure of A is $\exists x_1 \ldots \exists x_n A$.

- ▶ p(x,y) has the two free variables x and y. Its universal closure is $\forall x \forall y \ p(x,y)$ and its existential closure is $\exists x \exists y \ p(x,y)$; $\exists y \ p(x,y)$ has the only free variable x; $\forall x \exists y \ p(x,y)$ is closed
- ▶ In $\forall x \, p(x) \land q(x)$, the x occurs bound and free. The existential closure is $\exists x \, (\forall x \, p(x) \land q(x))$; renaming: $\exists y \, (\forall x \, p(x) \land q(y))$

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 12 / 4

Variables

Substitutions

Free variables in a first-order formula can be substituted by terms.

Definition 3.4 (Substitution).

Let $\mathcal V$ be a set of variables, $\mathcal T$ be the set of terms. A substitution $\sigma:\mathcal V\to\mathcal T$ assigns each variable a term.

Remark: The substitution σ is often represented as set $\{x \setminus t \mid \sigma(x) = t\}$.

Example: For the variable set $\{x,y\}$, $\sigma(x)=a$, $\sigma(y)=f(z,b)$ is a substitution and can also be represented as $\{x\setminus a,y\setminus f(z,b)\}$.

Ben-Ari: $\{x \leftarrow a, y \leftarrow f(z, b)\}.$

Others: [a/x, f(z, b)/y]

N3070/4070 :: Autumn 2020

Lecture 4 :: 10th September

13 / //

Variable

Application of Substitutions

Definition 3.7 (Application of Substitutions, formally).

The application of a subtitution σ to a term or formula is defined by structural induction:

- $ightharpoonup \sigma(x) = \sigma(x)$ for variables x in the range of σ
- $ightharpoonup \sigma(y) = y$ for variables y not in the range of σ
- $ightharpoonup \sigma(a) = a$ for constants $a \in \mathcal{A}$
- ullet $\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n))$ for a function symbol $f\in\mathcal{F}$
- lacksquare $\sigma(p(t_1,\ldots,t_n))=p(\sigma(t_1),\ldots,\sigma(t_n))$ for a predicate symbol $p\in\mathcal{P}$
- ▶ $\sigma(A \land B) = \sigma(A) \land \sigma(B)$ for formulae A, B
- ightharpoonup ... similarly for $\neg A$, $A \lor B$, $A \to B$...

where we define σ_x by: $\sigma_x(x) = x$, and $\sigma_x(y) = \sigma(y)$ for all $y \neq x$

Variable

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A, written $\sigma(t)$ or $\sigma(A)$, replaces every free variable in t or A according to its image under σ . Short hand: $A[x \setminus t] = \sigma(A)$ with $\sigma = \{x \setminus t\}$.

Example: Let $\sigma = \{x \setminus a, y \setminus f(z, b)\}$ be a substitution.

Then $\sigma(g(y)) = g(f(z,b))$

and $\sigma(p(x) \land \forall x \, q(x, g(y))) = p(a) \land \forall x \, q(x, g(f(z, b)))$

Problem: $\sigma(\forall z \, p(z, y)) = \forall z \, p(z, f(z, b))$

The free variable z in σ is captured by the quantifier.

This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x in A, none of the variables in $\sigma(x)$ is bound in A.

IN3070/4070 :: Autumn 2020

Lecture 4 :: 10th September

14 / A

Seman

Outline

- Motivation
- ► Syntax
- Variables
- Semantics
- ► The Substitution Lemma
- Satisfiability & Validity
- ► LK for First-order Logic
- Summary

2070 / 4070 ·· Autumn 2020 Lecture 4 ·· 10th Sentember 15 / 41 IN3070 / 4070 ·· Autumn 2020 Lecture 4 ·· 10th Sentember 15

Semantics — Interpretation

An interpretation assigns concrete objects, functions and relations to constant symbols, function symbols, and predicate symbols.

Definition 4.1 (Interpretation/Structure).

An interpretation (or structure) $\mathcal{I} = (D, \iota)$ consists of the following elements:

- 1. Domain D is a non-empty set
- 2. Interpretation of constant symbols assigns each constant $a \in A$ an element $a^{\iota} \in D$
- 3. Interpretation of function symbols assigns each n-ary function symbol $f \in \mathcal{F}$ with n>0 a function $f^{\iota}: D^n \to D$
- 4. Interpretation of propositional variables assigns each 0-ary predicate symbol $p \in \mathcal{P}$ a truth value $p^{\iota} \in \{T, F\}$
- 5. Interpretation of predicate symbols assigns each n-ary predicate symbol $p \in \mathcal{P}$ with n > 0 a relation $p^{\iota} \subseteq D^n$

Semantics — Value of Closed Terms

Terms are evaluated according to the interpretation of their constant and function symbols.

Definition 4.2 (Term Value for Closed Terms).

Let $\mathcal{I} = (D, \iota)$ be an interpretation. The term value $v_{\mathcal{I}}(t)$ of a closed term $t \in \mathcal{T}$ under the interpretation \mathcal{I} is inductively defined:

- 1. For a constant symbol $a \in A$ the term value is $v_T(a) = a^t$;
- 2. Let $f \in \mathcal{F}$ be an n-ary function, n>0, and t_1, \ldots, t_n be terms; the term value of $f(t_1, \ldots, t_n)$ is $v_{\mathcal{I}}(f(t_1, \ldots, t_n)) = f^{\iota}(v_{\mathcal{I}}(t_1), \ldots, v_{\mathcal{I}}(t_n))$

Examples:

- ightharpoonup f(a, f(a, b)) with $\mathcal{I} = (\mathbb{N}, \iota)$ with $f^{\iota} = +$, $a^{\iota} = 20$, $b^{\iota} = 2$; then $v_{\mathcal{T}}(f(a, f(a, b))) = 42$
- \blacktriangleright +(1,*(4,2)) with $\mathcal{I}=(\mathbb{Z},\iota)$ with $+^{\iota}=*$ (multiplication), $*^{\iota}=-$ (subtraction), $1^{\iota} = -20$, $2^{\iota} = 0$, $4^{\iota} = 10$; then $v_{\mathcal{I}}(+(1,*(4,2))) = -200$

Semantics — Examples

Example: $\forall x p(a, x)$ with the interpretations

- 1. $\mathcal{I} = (\mathbb{N}, \iota)$ with $p^{\iota} = <$ and $a^{\iota} = 0$
- 2. $\mathcal{I} = (\mathbb{N}, \iota)$ with $p^{\iota} = 4$ and $a^{\iota} = 3$
- 3. $\mathcal{I} = (\mathbb{Z}, \iota)$ with $p^{\iota} = <$ and $a^{\iota} = 0$
- 4. $\mathcal{I} = (\{c, d, e, f\}, \iota)$ with $p^{\iota} = \leq_{lexi}$ and $a^{\iota} = c$

Remark: In Ben-Ari: $(\mathbb{N}, \{\leq\}, \{0\})$, $(\mathbb{N}, \{\leq\}, \{3\})$, $(\mathbb{Z}, \{\leq\}, \{0\})$

Example: $\forall x \forall y (p(x, y) \rightarrow p(f(x, a), f(y, a)))$ with interpretations

- 1. $\mathcal{I} = (\mathbb{Z}, \iota)$ with $p^{\iota} = <$, $f^{\iota} = +$, and $a^{\iota} = 1$
- 2. $\mathcal{I} = (\mathbb{Z}, \iota)$ with $p^{\iota} = >$, $f^{\iota} = *$, and $a^{\iota} = -1$

Remark: In Ben-Ari: $(\mathbb{Z}, \{<\}, \{+\}, \{1\}), (\mathbb{Z}, \{>\}, \{*\}, \{-1\}).$

Semantics — Variable Assignments, Value of Terms

The interpretation doesn't tell what to do about variables. We need something additional.

Definition 4.3 (Variable Assignment).

Given the set of variables V, and an interpretation $I = (D, \iota)$, a variable assignment α for \mathcal{I} is a function $\alpha: \mathcal{V} \to \mathcal{D}$.

Ben-Ari (7.18) writes this $\sigma_{\mathcal{I}_A}$

Definition 4.4 (Term Value).

Let $\mathcal{I} = (D, \iota)$ be an interpretation, and α an variable assignment for \mathcal{I} . The term value $v_{\mathcal{I}}(\alpha, t)$ of a term $t \in \mathcal{T}$ under \mathcal{I} and α is inductively defined:

- 1. $v_{\mathcal{I}}(\alpha, x) = \alpha(x)$ for a variable $v \in \mathcal{V}$
- 2. $v_{\mathcal{I}}(\alpha, \mathbf{a}) = \mathbf{a}^{\iota}$ for a constant symbol $\mathbf{a} \in \mathcal{A}$
- 3. $v_T(\alpha, f(t_1, \dots, t_n)) = f^{\iota}(v_T(\alpha, t_1), \dots, v_T(\alpha, t_n))$ for an n-ary $f \in \mathcal{F}$

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September

 $\triangleright V = \{x, y\}$

ho $\alpha(x) = 3 \in \mathbb{N}$ and $\alpha(y) = 5 \in \mathbb{N}$ is an assignment for \mathcal{I}

 \triangleright $v_{\mathcal{I}}(\alpha, f(a, f(a, x))) = 23$

 $ightharpoonup \mathcal{I} = (\mathsf{Strings}, \iota) \text{ with } g^{\iota} = \mathsf{concatenation}, \ a^{\iota} = \mathsf{"Hello"}$

 $\blacktriangleright \ \mathcal{V} = \{y\}$

 $ightharpoonup \alpha(y) =$ "students"

 $\triangleright v_{\mathcal{I}}(\alpha, f(a, f(y, a))) =$ "HellostudentsHello"

IN3070/4070 :: Autumn 2020

Lecture 4 :: 10th September

21 / 4

Semantic

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let $\mathcal{I} = (D, \iota)$ be an interpretation and α an assignment for \mathcal{I} . The truth value $v_{\mathcal{I}}(\alpha, A) \in \{T, F\}$ of a formula A under \mathcal{I} and α is defined inductively as follows:

- 1. $v_{\mathcal{I}}(\alpha, p) = T$ for 0-ary $p \in \mathcal{P}$ iff $p^{\iota} = T$, otherwise $v_{\mathcal{I}}(\alpha, p) = F$
- 2. $v_{\mathcal{I}}(\alpha, p(t_1, \dots, t_n)) = T$ for $p \in \mathcal{P}$, n > 0, iff $(v_{\mathcal{I}}(\alpha, t_1), \dots, v_{\mathcal{I}}(\alpha, t_n)) \in p^{\iota}$, otherwise $v_{\mathcal{I}}(\alpha, p(t_1, \dots, t_n)) = F$
- 3. $v_{\mathcal{I}}(\alpha, \neg A) = T$ iff $v_{\mathcal{I}}(\alpha, A) = F$, otherwise $v_{\mathcal{I}}(\alpha, \neg A) = F$
- 4. $v_{\mathcal{I}}(\alpha, A \wedge B) = T$ iff $v_{\mathcal{I}}(\alpha, A) = T$ and $v_{\mathcal{I}}(\alpha, B) = T$, otherwise $v_{\mathcal{I}}(\alpha, A \wedge B) = F$
- 5. $v_{\mathcal{I}}(\alpha, A \lor B) = T$ iff $v_{\mathcal{I}}(\alpha, A) = T$ or $v_{\mathcal{I}}(\alpha, B) = T$, otherwise $v_{\mathcal{I}}(\alpha, A \lor B) = F$
- 6. $v_{\mathcal{I}}(\alpha, A \rightarrow B) = T$ iff $v_{\mathcal{I}}(\alpha, A) = F$ or $v_{\mathcal{I}}(\alpha, B) = T$, otherwise $v_{\mathcal{I}}(\alpha, A \rightarrow B) = F$
- 7. $v_T(\alpha, \forall x A) = T$ iff $v_T(\alpha \{x \leftarrow d\}, A) = T$ for all $d \in D$, otherwise $v_T(\alpha, \forall x A) = F$
- 8. $v_{\mathcal{I}}(\alpha, \exists x A) = T$ iff $v_{\mathcal{I}}(\alpha \{x \leftarrow d\}, A) = T$ for some $d \in D$, otherwise $v_{\mathcal{I}}(\alpha, \exists x A) = F$
- 9. $v_{\mathcal{I}}(\alpha, \top) = T$ and $v_{\mathcal{I}}(\alpha, \bot) = F$

Semanti

Semantics — Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation $\mathcal{I}=(D,\iota)$ and a variable assignment α for \mathcal{I} . Given also a variable $y\in\mathcal{V}$ and a domain element $d\in D$. The modified variable assignment $\alpha\{y\leftarrow d\}$ is defined as

$$\alpha\{y \leftarrow d\}(x) = \begin{cases} d & \text{if } x = y \\ \alpha(x) & \text{otherwise} \end{cases}$$

- $ightharpoonup \mathcal{I} = (\mathbb{N}, \iota)$
- $\triangleright V = \{x, y\}$
- ▶ $\alpha(x) = 3 \in \mathbb{N}$ and $\alpha(y) = 5 \in \mathbb{N}$ is an assignment for \mathcal{I}

IN3070/4070 :: Autumn 2020

_ecture 4 :: 10th Septembe

22 / 4

· ·

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term value or truth value. We can write $v_T(A)$ instead of $v_T(\alpha, A)$.

Example: $A = \forall x \, p(a, x)$ with the interpretations

- 1. $\mathcal{I} = (\mathbb{N}, \iota)$ with $p^{\iota} = \leq$ and $a^{\iota} = 0 \quad \rightsquigarrow \nu_{\mathcal{I}}(A) = T$
- 2. $\mathcal{I} = (\mathbb{N}, \iota)$ with $p^{\iota} = \leq$ and $a^{\iota} = 3 \rightsquigarrow v_{\mathcal{I}}(A) = F$
- 3. $\mathcal{I} = (\mathbb{Z}, \iota)$ with $p^{\iota} = \leq$ and $a^{\iota} = 0 \quad \rightsquigarrow \nu_{\mathcal{I}}(A) = F$
- 4. $\mathcal{I} = (\{c, d, e, f\}, \iota)$ with $p^{\iota} = \leq_{lexi}$ and $a^{\iota} = c \quad \rightsquigarrow v_{\mathcal{I}}(A) = T$

Example: $B = \forall x \forall y (p(x, y) \rightarrow p(f(x, a), f(y, a)))$ with interpretations

- 1. $\mathcal{I} = (\mathbb{Z}, \iota)$ with $p^{\iota} = \leq$, $f^{\iota} = +$, and $a^{\iota} = 1$ $\rightsquigarrow v_{\mathcal{I}}(B) = T$
- 2. $\mathcal{I} = (\mathbb{Z}, \iota)$ with $p^{\iota} =>$, $f^{\iota} = *$, and $a^{\iota} = -1$ $\rightsquigarrow v_{\mathcal{I}}(B) = F$

The Substitution Lemma

Outline

- Motivation
- Syntax
- Variables
- Semantics
- ► The Substitution Lemma
- ► Satisfiability & Validity
- ► LK for First-order Logic
- Summary

N3070/4070 :: Autumn 2020

Lecture 4 :: 10th Septembe

25 / 4

The Substitution Lemma

Proof of substitution lemma, continued

Proof.

For the variable
$$y$$
, $y[y \setminus s] = s$, so $v_{\mathcal{I}}(\alpha, y[y \setminus s]) = v_{\mathcal{I}}(\alpha, s) = v_{\mathcal{I}}(\alpha \{y \leftarrow v_{\mathcal{I}}(\alpha, s)\}, y)$

For a complex term, $f(\ldots t_i \ldots)[y \setminus s] = f(\ldots t_i[y \setminus s] \ldots)$, so

- $v_{\mathcal{I}}(\alpha, f(\ldots t_i \ldots)[y \setminus s])$
- $= v_{\mathcal{I}}(\alpha, f(\dots t_i[y \setminus s] \dots))$ by def. of substitution
- $= f^{\iota}(\dots v_{\mathcal{I}}(\alpha, t_i[y \setminus s])\dots)$ by model semantics
- $= f^{\iota}(\dots \nu_{\mathcal{I}}(\alpha', t_i)\dots)$ by the induction hypothesis
- = $v_{\mathcal{I}}(\alpha', f(\dots t_i \dots))$ by model semantics

The Substitution Lemr

The Substitution Lemma for Terms

Theorem 5.1 (Substitution Lemma for Terms).

Given an interpretation $\mathcal{I}=(D,\iota)$ and a variable assignment α for \mathcal{I} . Given also a variable $y\in\mathcal{V}$, and terms $t,s\in\mathcal{T}$

$$v_{\mathcal{I}}(\alpha, t[y \setminus s]) = v_{\mathcal{I}}(\alpha \{ y \leftarrow v_{\mathcal{I}}(\alpha, s) \}, t)$$

Proof.

By structural induction on t. We abbreviate: $\alpha' := \alpha \{ y \leftarrow v_I(\alpha, s) \}$

For a constant a,
$$a[y \setminus s] = a$$
, so $v_{\mathcal{I}}(\alpha, a[y \setminus s]) = v_{\mathcal{I}}(\alpha, a) = a^{\iota} = v_{\mathcal{I}}(\alpha', a)$

For a variable
$$x \neq y$$
, $x[y \setminus s] = x$, so $v_{\mathcal{I}}(\alpha, x[y \setminus s]) = v_{\mathcal{I}}(\alpha, x) = \alpha(x) = \alpha'(x) = v_{\mathcal{I}}(\alpha', x)$

N3070/4070 :: Autumn 2020

Lecture 4 :: 10th September

26 / 41

The Substitution Lem

The Substitution Lemma for Formulae

Theorem 5.2 (Substitution Lemma for Formulae).

Given an interpretation $\mathcal{I}=(D,\iota)$ and a variable assignment α for \mathcal{I} . Given also a variable $y\in\mathcal{V}$, a formula A and a term $s\in\mathcal{T}$, such that $\{y\backslash s\}$ is capture-free for A.

$$v_{\mathcal{I}}(\alpha, A[y \setminus s]) = v_{\mathcal{I}}(\alpha \{ y \leftarrow v_{\mathcal{I}}(\alpha, s) \}, A)$$

Satisfiability & Validity

Outline

Motivation

Syntax

Variables

Semantics

► The Substitution Lemma

► Satisfiability & Validity

► LK for First-order Logic

Summary

N3070/4070 :: Autumn 2020

Lecture 4 :: 10th September

20 / 4

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: $A = \forall x \, p(a, x)$

1. $\mathcal{I} = (\mathbb{N}, \iota)$ with $p^{\iota} = \leq$ and $a^{\iota} = 3 \quad \rightsquigarrow v_{\mathcal{I}}(A) = F$ $\rightsquigarrow A$ is invalid

2. $\mathcal{I} = (\{c, d, e, f\}, \iota)$ with $p^{\iota} = \leq_{lexi}$ and $a^{\iota} = c \rightsquigarrow v_{\mathcal{I}}(A) = T \rightsquigarrow A$ is satisfiable (\mathcal{I} is a model)

Example: $B = \forall x \forall y (p(x, y) \rightarrow p(f(x, a), f(y, a)))$

1. $\mathcal{I} = (\mathbb{Z}, \iota)$ with $p^{\iota} = \leq$, $f^{\iota} = +$, and $a^{\iota} = 1 \rightsquigarrow v_{\mathcal{I}}(B) = T \rightsquigarrow \text{satisfiable } (\mathcal{I} \text{ is a model})$

2. $\mathcal{I} = (\mathbb{Z}, \iota)$ with $p^{\iota} =>$, $f^{\iota} = *$, and $a^{\iota} = -1 \rightsquigarrow v_{\mathcal{I}}(B) = F \rightsquigarrow \text{invalid } (\mathcal{I} \text{ is a "counter-model"})$

Example: $\forall x \forall y (p(x, y) \rightarrow p(y, x))$

 \rightarrow satisfiable (e.g. $p^{\iota} = = "$), but invalid (e.g. $p^{\iota} = " < "$)

Example: $\exists x \exists y (p(x) \land \neg p(y))$

 \rightarrow only satisfiable for $|D| \ge 2$, invalid (e.g. $D = \mathbb{N}$, $p^{\iota} = even$)

atisfiability & Validi

Satisfiability and Validity

Definition 6.1 (Satisfiable, Model, Unsatisfiable, Valid, Invalid).

Let A be a closed (first-order) formula and $U=\{A_1,...\}$ be a set of closed (first-order) formulae A_i .

▶ A is satisfiable iff $v_{\mathcal{I}}(A) = T$ for some interpretation \mathcal{I} .

ightharpoonup A satisfying interpretation \mathcal{I} for A is called a model for A.

▶ $U=\{A_1,...\}$ is satisfiable iff there is (common) model for all A_i .

▶ A (resp. U) is unsatisfiable iff A (resp. U) is not satisfiable.

▶ A is valid, denoted \models A, iff $v_T(A) = T$ for all interpretations \mathcal{I} .

► A is invalid/falsifiable iff A is not valid.

Theorem 6.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is invalid.

IN3070/4070 :: Autumn 2020

Lecture 4 :: 10th September

20 / 4

Satisfiability & Validity

Logical Equivalence

The concept of logical equivalence can be adapted to first-order logic, i.e. to closed first-order formulae.

Definition 6.2 (Logical Equivalence).

Let A_1 , A_2 be two closed formulae. A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$ iff $v_{\mathcal{I}}(A_1) = v_{\mathcal{I}}(A_2)$ for all interpretations \mathcal{I} .

Theorem 6.2 (Relation \equiv and \leftrightarrow).

Let A, B be two closed formulae. Then $A \equiv B$ iff $\models A \leftrightarrow B$.

Remark: $A \leftrightarrow B := (A \rightarrow B) \land (B \rightarrow A)$

Important: even though \equiv and \leftrightarrow are closely related, they are different relations. Whereas \leftrightarrow is part of the object language (i.e. the definition of formulae), \equiv is used in the meta-language to talk about or relate formulae.

- $\blacktriangleright \models \forall x \, A(x) \leftrightarrow \neg \exists x \, \neg A(x)$
- $\blacktriangleright \models \exists x \, A(x) \leftrightarrow \neg \forall x \, \neg A(x)$

Commutativity:

- $\blacktriangleright \models \forall x \, \forall y \, A(x,y) \leftrightarrow \forall y \, \forall x \, A(x,y)$
- $\blacktriangleright \models \exists x \,\exists y \, A(x,y) \leftrightarrow \exists y \,\exists x \, A(x,y)$
- $ightharpoonup \models \exists x \, \forall y \, A(x,y) \rightarrow \forall y \, \exists x \, A(x,y)$ (other direction is not valid!)

Distributivity:

- $\blacktriangleright \models \exists x (A(x) \lor B(x)) \leftrightarrow \exists x A(x) \lor \exists x B(x)$
- $\blacktriangleright \ \models \forall x (A(x) \land B(x)) \leftrightarrow \forall x A(x) \land \forall x B(x)$
- ▶ $\models \forall x \, A(x) \vee \forall x \, B(x) \rightarrow \forall x \, (A(x) \vee B(x))$ (other direction not valid!)
- ▶ $\models \exists x (A(x) \land B(x)) \rightarrow \exists x A(x) \land \exists x B(x)$ (other direction not valid!)

See [Ben-Ari 2012] for more equivalences involving quantifiers.

N3070/4070 :: Autumn 2020

Lecture 4 :: 10th September

33 / 1

LK for First-order Logic

Outline

- Motivation
- ▶ Syntax
- Variables
- Semantics
- ► The Substitution Lemma
- ► Satisfiability & Validity
- ► LK for First-order Logic
- Summary

Satisfiability & Validit

Logical Consequence

Definition 6.3 (Logical Consequence).

Let A be a closed formula and U be a set of closed formulae. A is a logical consequence of U, denoted $U \models A$, iff every model of U is a model of A, i.e. $v_{\mathcal{I}}(A_i) = T$ for all $A_i \in U$ implies $v_{\mathcal{I}}(A) = T$.

Theorem 6.3 (Logical Consequence and Validity).

Let A be a closed formula and $U=\{A_1,\ldots,A_n\}$ be a set of closed formulae. Then $U\models A$ iff $\models (A_1\wedge\cdots\wedge A_n)\to A$.

- ▶ again, we can reduce the problem of "logical consequence" to the problem of determining if a formula is valid
- ► hence, we need methods or proof search calculi that can deal with first-order formulae

IN3070/4070 :: Autumn 2020

ecture 4 :: 10th September

24 / 4

LK for First-order Logic

LK — Axiom and Propositional Rules

axiom

$$\Gamma, A \implies A, \Delta$$
 axiom

▶ rules for ∧ (conjunction)

$$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A \land B \implies \Delta} \land \text{-left} \qquad \frac{\Gamma \implies A, \Delta \qquad \Gamma \implies B, \Delta}{\Gamma \implies A \land B, \Delta} \land \text{-right}$$

▶ rules for ∨ (disjunction)

$$\frac{\Gamma,A \implies \Delta \qquad \Gamma,B \implies \Delta}{\Gamma,A \vee B \implies \Delta} \vee \text{-left} \qquad \frac{\Gamma \implies A,B,\Delta}{\Gamma \implies A \vee B,\Delta} \vee \text{-right}$$

ightharpoonup rules for ightharpoonup (implication)

$$\frac{\Gamma \implies A, \Delta \qquad \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta} \rightarrow -left \qquad \frac{\Gamma, A \implies B, \Delta}{\Gamma \implies A \rightarrow B, \Delta} \rightarrow -right$$

▶ rules for ¬ (negation)

$$\frac{\Gamma \implies A, \Delta}{\Gamma, \neg A \implies \Delta} \neg \text{-left} \qquad \frac{\Gamma, A \implies \Delta}{\Gamma \implies \neg A, \Delta} \neg \text{-right}$$

LK — Rules for Universal and Existential Quantifier

rules for ∀ (universal quantifier)

$$\frac{\Gamma, A[x \backslash t], \forall x A \implies \Delta}{\Gamma, \forall x A \implies \Delta} \forall \text{-left} \qquad \frac{\Gamma \implies A[x \backslash a], \Delta}{\Gamma \implies \forall x A, \Delta} \forall \text{-right}^*$$

- ▶ t is an arbitrary closed term
- ► Eigenvariable condition for the rule \forall -right*: a must not occur in the conclusion. i.e. in Γ . Δ . or A
- \blacktriangleright the formula $\forall x A$ is preserved in the premise of the rule \forall -left
- rules for ∃ (existential quantifier)

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}^* \qquad \frac{\Gamma \implies \exists x A, A[x \setminus t], \Delta}{\Gamma \implies \exists x A, \Delta} \exists \text{-right}$$

- t is an arbitrary closed term
- ► Eigenvariable condition for the rule ∃-left*: a must not occur in the conclusion, i.e. in Γ , Δ , or A
- ▶ the formula $\exists x A$ is preserved in the premise of the rule \exists -right

Lecture 4 :: 10th September

LK for First-order Logic

Examples of LK Proofs

Example: $p(a) \rightarrow \exists x \, p(x)$

$$\frac{p(a) \implies p(a), \exists x \, p(x)}{p(a) \implies \exists x \, p(x)} \xrightarrow{\exists -right} \exists -right$$

$$\Rightarrow p(a) \rightarrow \exists x \, p(x) \rightarrow -right$$

$$\Rightarrow p(a) \rightarrow \exists x \, p(x) \rightarrow -right$$

Example: $\forall x \, p(x) \rightarrow \exists x \, p(x)$

Example: $p(a) \rightarrow p(b)$

Example: $\exists x \ p(x) \rightarrow p(a)$

(Eigenvariable condition!)

LK for First-order Logic

Soundness and Completeness

Theorem 7.1 (Soundness and Completeness of LK).

The calculus of natural deduction LK is sound and complete, i.e.

- ightharpoonup if A is provable in LK, then A is valid (if \vdash A then \models A)
- ightharpoonup if A is valid, then A is provable in LK (if \models A then \vdash A)

Proof.

Next week.

- Motivation
- Svntax

Outline

- ► LK for First-order Logic
- ► Summary

IN3070/4070 :: Autumn 2020