
IN3070/4070 – Logic – Autumn 2020
Lecture 4: First-order Logic

Martin Giese

10th September 2020

Department of
Informatics

University of
Oslo

Today’s Plan

I Motivation

I Syntax

I Variables

I Semantics

I The Substitution Lemma

I Satisfiability & Validity

I LK for First-order Logic

I Summary

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 2 / 41

Motivation

Outline

I Motivation

I Syntax

I Variables

I Semantics

I The Substitution Lemma

I Satisfiability & Validity

I LK for First-order Logic

I Summary

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 3 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal”

∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even”

∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3”

1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller”

∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16

= (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even”

∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime”

∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

Limitations of Propositional Logic

Propositional logic: atomic formula (p, q, r), ∧, ∨, ¬, →, (,)

Problem: How do we represent the following statements?

I “all men are mortal” ∀x(man(x)→ mortal(x))

I “there exist prime numbers that are even” ∃y(prime(y) ∧ even(y))

I “1 is smaller than 3” 1 < 3 or < (1, 3)

I “transitivity of smaller” ∀x ∀y ∀z (x<y ∧ y<z → x<z)

I 2 ∗ 8 = 16 = (∗(2, 8), 16)

I “if x is even than x + 2 is even” ∀x (even(x)→ even(x + 2))

I “if x is prime than x + 2 is prime” ∀x (prime(x)→ prime(x + 2))

First-order logic: extension of propositional logic

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 4 / 41

Motivation

First-Order Logic — Overview

Extending propositional logic by. . .

Syntax:

I constants (a, b, c), functions (f , g , h), variables (x , y , z)

I predicates (p, q, r)

I terms (t, u, v)

I quantifiers (∀, ∃)

I scope of variables, free variables, variable assignment/substitution

Semantics:

I interpretation of constants, functions, variables

I interpretation of predicates

I value of terms

I truth value of (quantified) formulae

I satisfiability, validity, logical equivalence,. . .

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 5 / 41

Motivation

First-Order Logic — Overview

Extending propositional logic by. . .

Syntax:

I constants (a, b, c), functions (f , g , h), variables (x , y , z)

I predicates (p, q, r)

I terms (t, u, v)

I quantifiers (∀, ∃)

I scope of variables, free variables, variable assignment/substitution

Semantics:

I interpretation of constants, functions, variables

I interpretation of predicates

I value of terms

I truth value of (quantified) formulae

I satisfiability, validity, logical equivalence,. . .

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 5 / 41

Motivation

First-Order Logic — Overview

Extending propositional logic by. . .

Syntax:

I constants (a, b, c), functions (f , g , h), variables (x , y , z)

I predicates (p, q, r)

I terms (t, u, v)

I quantifiers (∀, ∃)

I scope of variables, free variables, variable assignment/substitution

Semantics:

I interpretation of constants, functions, variables

I interpretation of predicates

I value of terms

I truth value of (quantified) formulae

I satisfiability, validity, logical equivalence,. . .

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 5 / 41

Motivation

First-Order Logic — Overview

Extending propositional logic by. . .

Syntax:

I constants (a, b, c), functions (f , g , h), variables (x , y , z)

I predicates (p, q, r)

I terms (t, u, v)

I quantifiers (∀, ∃)

I scope of variables, free variables, variable assignment/substitution

Semantics:

I interpretation of constants, functions, variables

I interpretation of predicates

I value of terms

I truth value of (quantified) formulae

I satisfiability, validity, logical equivalence,. . .

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 5 / 41

Syntax

Outline

I Motivation

I Syntax

I Variables

I Semantics

I The Substitution Lemma

I Satisfiability & Validity

I LK for First-order Logic

I Summary

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 6 / 41

Syntax

Syntax — Terms

Terms are built up of constant (symbols), variable (symbols), and function
(symbols).

Definition 2.1 (Terms).

Let A = {a, b, . . .} be a countable set of constant symbols,
V = {x , y , z , . . .} be a countable set of variable symbols, and
F = {f , g , h, . . .} be a countable set of function symbols.

Terms, denoted t, u, v, are inductively defined as follows:

1. Every variable x ∈ V is a term.

2. Every constant a ∈ A is a term.

3. If f ∈ F is an n-ary function (symbol) n>0 and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

Example: a, x , f (a, x), f (g(x), b), and g(f (a, g(y))) are terms.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 7 / 41

Syntax

Syntax — Terms

Terms are built up of constant (symbols), variable (symbols), and function
(symbols).

Definition 2.1 (Terms).

Let A = {a, b, . . .} be a countable set of constant symbols,
V = {x , y , z , . . .} be a countable set of variable symbols, and
F = {f , g , h, . . .} be a countable set of function symbols.

Terms, denoted t, u, v, are inductively defined as follows:

1. Every variable x ∈ V is a term.

2. Every constant a ∈ A is a term.

3. If f ∈ F is an n-ary function (symbol) n>0 and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

Example: a, x , f (a, x), f (g(x), b), and g(f (a, g(y))) are terms.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 7 / 41

Syntax

Syntax — Terms

Terms are built up of constant (symbols), variable (symbols), and function
(symbols).

Definition 2.1 (Terms).

Let A = {a, b, . . .} be a countable set of constant symbols,
V = {x , y , z , . . .} be a countable set of variable symbols, and
F = {f , g , h, . . .} be a countable set of function symbols.

Terms, denoted t, u, v, are inductively defined as follows:

1. Every variable x ∈ V is a term.

2. Every constant a ∈ A is a term.

3. If f ∈ F is an n-ary function (symbol) n>0 and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

Example: a, x , f (a, x), f (g(x), b), and g(f (a, g(y))) are terms.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 7 / 41

Syntax

Syntax — Terms

Terms are built up of constant (symbols), variable (symbols), and function
(symbols).

Definition 2.1 (Terms).

Let A = {a, b, . . .} be a countable set of constant symbols,
V = {x , y , z , . . .} be a countable set of variable symbols, and
F = {f , g , h, . . .} be a countable set of function symbols.

Terms, denoted t, u, v, are inductively defined as follows:

1. Every variable x ∈ V is a term.

2. Every constant a ∈ A is a term.

3. If f ∈ F is an n-ary function (symbol) n>0 and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

Example: a, x , f (a, x), f (g(x), b), and g(f (a, g(y))) are terms.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 7 / 41

Syntax

Syntax — Terms

Terms are built up of constant (symbols), variable (symbols), and function
(symbols).

Definition 2.1 (Terms).

Let A = {a, b, . . .} be a countable set of constant symbols,
V = {x , y , z , . . .} be a countable set of variable symbols, and
F = {f , g , h, . . .} be a countable set of function symbols.

Terms, denoted t, u, v, are inductively defined as follows:

1. Every variable x ∈ V is a term.

2. Every constant a ∈ A is a term.

3. If f ∈ F is an n-ary function (symbol) n>0 and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

Example: a, x , f (a, x), f (g(x), b), and g(f (a, g(y))) are terms.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 7 / 41

Syntax

Syntax — Terms

Terms are built up of constant (symbols), variable (symbols), and function
(symbols).

Definition 2.1 (Terms).

Let A = {a, b, . . .} be a countable set of constant symbols,
V = {x , y , z , . . .} be a countable set of variable symbols, and
F = {f , g , h, . . .} be a countable set of function symbols.

Terms, denoted t, u, v, are inductively defined as follows:

1. Every variable x ∈ V is a term.

2. Every constant a ∈ A is a term.

3. If f ∈ F is an n-ary function (symbol) n>0 and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

Example: a, x , f (a, x), f (g(x), b), and g(f (a, g(y))) are terms.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 7 / 41

Syntax

Syntax — First-Order Formulae

Formulae are built up of atomic formulae and the logical connectives¬, ∧,
∨, →, and ∀ (universal quantifier), ∃ (existential quantifier).

Definition 2.2 (Atomic Formulae).

Let P = {p, q, r , . . .} be a countable set of predicate symbols. If p ∈ P is
an n-ary predicate (symbol) n≥0 and t1, . . . , tn are terms, then
p(t1, . . . , tn), >, and ⊥ are atomic formulae (or atoms).

Definition 2.3 ((First-Order) Formulae).

(First-order) formulae, denoted A,B,C ,F ,G ,H, are inductively defined as
follows:

1. Every atomic formula p is a formula.

2. If A and B are formulae and x ∈ V, then (¬A), (A ∧ B), (A ∨ B),
(A→ B), ∀x A, and ∃x A are formulae.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 8 / 41

Syntax

Syntax — First-Order Formulae

Formulae are built up of atomic formulae and the logical connectives¬, ∧,
∨, →, and ∀ (universal quantifier), ∃ (existential quantifier).

Definition 2.2 (Atomic Formulae).

Let P = {p, q, r , . . .} be a countable set of predicate symbols. If p ∈ P is
an n-ary predicate (symbol) n≥0 and t1, . . . , tn are terms, then
p(t1, . . . , tn), >, and ⊥ are atomic formulae (or atoms).

Definition 2.3 ((First-Order) Formulae).

(First-order) formulae, denoted A,B,C ,F ,G ,H, are inductively defined as
follows:

1. Every atomic formula p is a formula.

2. If A and B are formulae and x ∈ V, then (¬A), (A ∧ B), (A ∨ B),
(A→ B), ∀x A, and ∃x A are formulae.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 8 / 41

Syntax

Syntax — First-Order Formulae

Formulae are built up of atomic formulae and the logical connectives¬, ∧,
∨, →, and ∀ (universal quantifier), ∃ (existential quantifier).

Definition 2.2 (Atomic Formulae).

Let P = {p, q, r , . . .} be a countable set of predicate symbols. If p ∈ P is
an n-ary predicate (symbol) n≥0 and t1, . . . , tn are terms, then
p(t1, . . . , tn), >, and ⊥ are atomic formulae (or atoms).

Definition 2.3 ((First-Order) Formulae).

(First-order) formulae, denoted A,B,C ,F ,G ,H, are inductively defined as
follows:

1. Every atomic formula p is a formula.

2. If A and B are formulae and x ∈ V, then (¬A), (A ∧ B), (A ∨ B),
(A→ B), ∀x A, and ∃x A are formulae.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 8 / 41

Syntax

Syntax — First-Order Formulae

Formulae are built up of atomic formulae and the logical connectives¬, ∧,
∨, →, and ∀ (universal quantifier), ∃ (existential quantifier).

Definition 2.2 (Atomic Formulae).

Let P = {p, q, r , . . .} be a countable set of predicate symbols. If p ∈ P is
an n-ary predicate (symbol) n≥0 and t1, . . . , tn are terms, then
p(t1, . . . , tn), >, and ⊥ are atomic formulae (or atoms).

Definition 2.3 ((First-Order) Formulae).

(First-order) formulae, denoted A,B,C ,F ,G ,H, are inductively defined as
follows:

1. Every atomic formula p is a formula.

2. If A and B are formulae and x ∈ V, then (¬A), (A ∧ B), (A ∨ B),
(A→ B), ∀x A, and ∃x A are formulae.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 8 / 41

Syntax

Formula Trees

A formula can be presented as formula tree.

Example:

∀x (¬∃y p(x , y) ∨ ¬∃y p(y , x))

p(x , y)

∃y

¬

p(y , x)

∃y

¬

����
XXXX
∨

∀x

Definition 2.4 (Subformula, Main Operator).

Formula A is a (proper) subformula of formula B iff A is a (proper)
subtree of B. If the root of a formula tree of A is a logical
connective/quantifier, then it is called the main operator of A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 9 / 41

Syntax

Formula Trees

A formula can be presented as formula tree.

Example:

∀x (¬∃y p(x , y) ∨ ¬∃y p(y , x))

p(x , y)

∃y

¬

p(y , x)

∃y

¬

����
XXXX
∨

∀x

Definition 2.4 (Subformula, Main Operator).

Formula A is a (proper) subformula of formula B iff A is a (proper)
subtree of B. If the root of a formula tree of A is a logical
connective/quantifier, then it is called the main operator of A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 9 / 41

Syntax

Formula Trees

A formula can be presented as formula tree.

Example:

∀x (¬∃y p(x , y) ∨ ¬∃y p(y , x))

p(x , y)

∃y

¬

p(y , x)

∃y

¬

����
XXXX
∨

∀x

Definition 2.4 (Subformula, Main Operator).

Formula A is a (proper) subformula of formula B iff A is a (proper)
subtree of B. If the root of a formula tree of A is a logical
connective/quantifier, then it is called the main operator of A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 9 / 41

Variables

Outline

I Motivation

I Syntax

I Variables

I Semantics

I The Substitution Lemma

I Satisfiability & Validity

I LK for First-order Logic

I Summary

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 10 / 41

Variables

Free Variables

A free variable is a variable that is not in the scope of a quantifier.

Definition 3.1 (Free/Bound Variables, Closed Formula/Term).

Free variables in a formula A are inductively defined:

1. If A is an atomic formula, then all variables in A are free.

2. If A = ¬B, then the free variables of A are exactly those of B.

3. If A = B ∧ C, A = B ∨ C, or A = B → C, then the free variables of A
are those of B together with those of C .

4. If A = ∀x B or A = ∃x B, then the free variables of A are those of B
without the variable x.

A bound variable in a formula C is a variable that appears in ∀x or ∃x in
some subformula of C . A formula/term is closed iff it has no free variables.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 11 / 41

Variables

Free Variables

A free variable is a variable that is not in the scope of a quantifier.

Definition 3.1 (Free/Bound Variables, Closed Formula/Term).

Free variables in a formula A are inductively defined:

1. If A is an atomic formula, then all variables in A are free.

2. If A = ¬B, then the free variables of A are exactly those of B.

3. If A = B ∧ C, A = B ∨ C, or A = B → C, then the free variables of A
are those of B together with those of C .

4. If A = ∀x B or A = ∃x B, then the free variables of A are those of B
without the variable x.

A bound variable in a formula C is a variable that appears in ∀x or ∃x in
some subformula of C . A formula/term is closed iff it has no free variables.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 11 / 41

Variables

Free Variables

A free variable is a variable that is not in the scope of a quantifier.

Definition 3.1 (Free/Bound Variables, Closed Formula/Term).

Free variables in a formula A are inductively defined:

1. If A is an atomic formula, then all variables in A are free.

2. If A = ¬B, then the free variables of A are exactly those of B.

3. If A = B ∧ C, A = B ∨ C, or A = B → C, then the free variables of A
are those of B together with those of C .

4. If A = ∀x B or A = ∃x B, then the free variables of A are those of B
without the variable x.

A bound variable in a formula C is a variable that appears in ∀x or ∃x in
some subformula of C . A formula/term is closed iff it has no free variables.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 11 / 41

Variables

Free Variables

A free variable is a variable that is not in the scope of a quantifier.

Definition 3.1 (Free/Bound Variables, Closed Formula/Term).

Free variables in a formula A are inductively defined:

1. If A is an atomic formula, then all variables in A are free.

2. If A = ¬B, then the free variables of A are exactly those of B.

3. If A = B ∧ C, A = B ∨ C, or A = B → C, then the free variables of A
are those of B together with those of C .

4. If A = ∀x B or A = ∃x B, then the free variables of A are those of B
without the variable x.

A bound variable in a formula C is a variable that appears in ∀x or ∃x in
some subformula of C . A formula/term is closed iff it has no free variables.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 11 / 41

Variables

Free Variables

A free variable is a variable that is not in the scope of a quantifier.

Definition 3.1 (Free/Bound Variables, Closed Formula/Term).

Free variables in a formula A are inductively defined:

1. If A is an atomic formula, then all variables in A are free.

2. If A = ¬B, then the free variables of A are exactly those of B.

3. If A = B ∧ C, A = B ∨ C, or A = B → C, then the free variables of A
are those of B together with those of C .

4. If A = ∀x B or A = ∃x B, then the free variables of A are those of B
without the variable x.

A bound variable in a formula C is a variable that appears in ∀x or ∃x in
some subformula of C . A formula/term is closed iff it has no free variables.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 11 / 41

Variables

Free Variables

A free variable is a variable that is not in the scope of a quantifier.

Definition 3.1 (Free/Bound Variables, Closed Formula/Term).

Free variables in a formula A are inductively defined:

1. If A is an atomic formula, then all variables in A are free.

2. If A = ¬B, then the free variables of A are exactly those of B.

3. If A = B ∧ C, A = B ∨ C, or A = B → C, then the free variables of A
are those of B together with those of C .

4. If A = ∀x B or A = ∃x B, then the free variables of A are those of B
without the variable x.

A bound variable in a formula C is a variable that appears in ∀x or ∃x in
some subformula of C . A formula/term is closed iff it has no free variables.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 11 / 41

Variables

Scope, Universal and Existential Closure

Definition 3.2 (Scope of Variables).

Let ∀x A or ∃x A be a universally or existentially quantified formula. Then
x is the quantified variable and its scope is the formula A.

Remark: It is not required that x actually appears in the scope of its

quantification, e.g. ∀x ∃y p(y , y).

Definition 3.3 (Universal and Existential Closure).

If {x1, . . . , xn} are all the free variables of A, the universal closure of A is
∀x1 . . . ∀xn A and the existential closure of A is ∃x1 . . . ∃xn A.

I p(x , y) has the two free variables x and y . Its universal closure is
∀x ∀y p(x , y) and its existential closure is ∃x ∃y p(x , y); ∃y p(x , y) has the
only free variable x ; ∀x ∃y p(x , y) is closed

I In ∀x p(x) ∧ q(x), the x occurs bound and free. The existential closure is
∃x (∀x p(x) ∧ q(x)); renaming: ∃y (∀x p(x) ∧ q(y))

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 12 / 41

Variables

Scope, Universal and Existential Closure

Definition 3.2 (Scope of Variables).

Let ∀x A or ∃x A be a universally or existentially quantified formula. Then
x is the quantified variable and its scope is the formula A.

Remark: It is not required that x actually appears in the scope of its

quantification, e.g. ∀x ∃y p(y , y).

Definition 3.3 (Universal and Existential Closure).

If {x1, . . . , xn} are all the free variables of A, the universal closure of A is
∀x1 . . . ∀xn A and the existential closure of A is ∃x1 . . . ∃xn A.

I p(x , y) has the two free variables x and y . Its universal closure is
∀x ∀y p(x , y) and its existential closure is ∃x ∃y p(x , y); ∃y p(x , y) has the
only free variable x ; ∀x ∃y p(x , y) is closed

I In ∀x p(x) ∧ q(x), the x occurs bound and free. The existential closure is
∃x (∀x p(x) ∧ q(x)); renaming: ∃y (∀x p(x) ∧ q(y))

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 12 / 41

Variables

Scope, Universal and Existential Closure

Definition 3.2 (Scope of Variables).

Let ∀x A or ∃x A be a universally or existentially quantified formula. Then
x is the quantified variable and its scope is the formula A.

Remark: It is not required that x actually appears in the scope of its

quantification, e.g. ∀x ∃y p(y , y).

Definition 3.3 (Universal and Existential Closure).

If {x1, . . . , xn} are all the free variables of A, the universal closure of A is
∀x1 . . . ∀xn A and the existential closure of A is ∃x1 . . . ∃xn A.

I p(x , y) has the two free variables x and y . Its universal closure is
∀x ∀y p(x , y) and its existential closure is ∃x ∃y p(x , y); ∃y p(x , y) has the
only free variable x ; ∀x ∃y p(x , y) is closed

I In ∀x p(x) ∧ q(x), the x occurs bound and free. The existential closure is
∃x (∀x p(x) ∧ q(x)); renaming: ∃y (∀x p(x) ∧ q(y))

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 12 / 41

Variables

Scope, Universal and Existential Closure

Definition 3.2 (Scope of Variables).

Let ∀x A or ∃x A be a universally or existentially quantified formula. Then
x is the quantified variable and its scope is the formula A.

Remark: It is not required that x actually appears in the scope of its

quantification, e.g. ∀x ∃y p(y , y).

Definition 3.3 (Universal and Existential Closure).

If {x1, . . . , xn} are all the free variables of A, the universal closure of A is
∀x1 . . . ∀xn A and the existential closure of A is ∃x1 . . . ∃xn A.

I p(x , y) has the two free variables x and y . Its universal closure is
∀x ∀y p(x , y) and its existential closure is ∃x ∃y p(x , y); ∃y p(x , y) has the
only free variable x ; ∀x ∃y p(x , y) is closed

I In ∀x p(x) ∧ q(x), the x occurs bound and free. The existential closure is
∃x (∀x p(x) ∧ q(x)); renaming: ∃y (∀x p(x) ∧ q(y))

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 12 / 41

Variables

Scope, Universal and Existential Closure

Definition 3.2 (Scope of Variables).

Let ∀x A or ∃x A be a universally or existentially quantified formula. Then
x is the quantified variable and its scope is the formula A.

Remark: It is not required that x actually appears in the scope of its

quantification, e.g. ∀x ∃y p(y , y).

Definition 3.3 (Universal and Existential Closure).

If {x1, . . . , xn} are all the free variables of A, the universal closure of A is
∀x1 . . . ∀xn A and the existential closure of A is ∃x1 . . . ∃xn A.

I p(x , y) has the two free variables x and y . Its universal closure is
∀x ∀y p(x , y) and its existential closure is ∃x ∃y p(x , y); ∃y p(x , y) has the
only free variable x ; ∀x ∃y p(x , y) is closed

I In ∀x p(x) ∧ q(x), the x occurs bound and free. The existential closure is
∃x (∀x p(x) ∧ q(x)); renaming: ∃y (∀x p(x) ∧ q(y))

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 12 / 41

Variables

Substitutions

Free variables in a first-order formula can be substituted by terms.

Definition 3.4 (Substitution).

Let V be a set of variables, T be the set of terms. A substitution σ : V → T
assigns each variable a term.

Remark: The substitution σ is often represented as set {x\t |σ(x) = t}.
Example: For the variable set {x , y}, σ(x) = a, σ(y) = f (z , b) is a substitution
and can also be represented as {x\a, y\f (z , b)}.
Ben-Ari: {x ← a, y ← f (z , b)}.
Others: [a/x , f (z , b)/y]

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 13 / 41

Variables

Substitutions

Free variables in a first-order formula can be substituted by terms.

Definition 3.4 (Substitution).

Let V be a set of variables, T be the set of terms. A substitution σ : V → T
assigns each variable a term.

Remark: The substitution σ is often represented as set {x\t |σ(x) = t}.

Example: For the variable set {x , y}, σ(x) = a, σ(y) = f (z , b) is a substitution
and can also be represented as {x\a, y\f (z , b)}.
Ben-Ari: {x ← a, y ← f (z , b)}.
Others: [a/x , f (z , b)/y]

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 13 / 41

Variables

Substitutions

Free variables in a first-order formula can be substituted by terms.

Definition 3.4 (Substitution).

Let V be a set of variables, T be the set of terms. A substitution σ : V → T
assigns each variable a term.

Remark: The substitution σ is often represented as set {x\t |σ(x) = t}.
Example: For the variable set {x , y}, σ(x) = a, σ(y) = f (z , b) is a substitution
and can also be represented as {x\a, y\f (z , b)}.

Ben-Ari: {x ← a, y ← f (z , b)}.
Others: [a/x , f (z , b)/y]

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 13 / 41

Variables

Substitutions

Free variables in a first-order formula can be substituted by terms.

Definition 3.4 (Substitution).

Let V be a set of variables, T be the set of terms. A substitution σ : V → T
assigns each variable a term.

Remark: The substitution σ is often represented as set {x\t |σ(x) = t}.
Example: For the variable set {x , y}, σ(x) = a, σ(y) = f (z , b) is a substitution
and can also be represented as {x\a, y\f (z , b)}.
Ben-Ari: {x ← a, y ← f (z , b)}.

Others: [a/x , f (z , b)/y]

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 13 / 41

Variables

Substitutions

Free variables in a first-order formula can be substituted by terms.

Definition 3.4 (Substitution).

Let V be a set of variables, T be the set of terms. A substitution σ : V → T
assigns each variable a term.

Remark: The substitution σ is often represented as set {x\t |σ(x) = t}.
Example: For the variable set {x , y}, σ(x) = a, σ(y) = f (z , b) is a substitution
and can also be represented as {x\a, y\f (z , b)}.
Ben-Ari: {x ← a, y ← f (z , b)}.
Others: [a/x , f (z , b)/y]

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 13 / 41

Variables

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A,
written σ(t) or σ(A), replaces every free variable in t or A according to its
image under σ.

Short hand: A[x\t]=σ(A) with σ={x\t}.

Example: Let σ={x\a, y\f (z , b)} be a substitution.
Then σ(g(y)) = g(f (z , b))
and σ(p(x) ∧ ∀x q(x , g(y))) = p(a) ∧ ∀x q(x , g(f (z , b)))

Problem: σ(∀z p(z , y)) = ∀z p(z , f (z , b))
The free variable z in σ is captured by the quantifier.
This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 14 / 41

Variables

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A,
written σ(t) or σ(A), replaces every free variable in t or A according to its
image under σ. Short hand: A[x\t]=σ(A) with σ={x\t}.

Example: Let σ={x\a, y\f (z , b)} be a substitution.
Then σ(g(y)) = g(f (z , b))
and σ(p(x) ∧ ∀x q(x , g(y))) = p(a) ∧ ∀x q(x , g(f (z , b)))

Problem: σ(∀z p(z , y)) = ∀z p(z , f (z , b))
The free variable z in σ is captured by the quantifier.
This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 14 / 41

Variables

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A,
written σ(t) or σ(A), replaces every free variable in t or A according to its
image under σ. Short hand: A[x\t]=σ(A) with σ={x\t}.

Example: Let σ={x\a, y\f (z , b)} be a substitution.
Then σ(g(y)) =

g(f (z , b))
and σ(p(x) ∧ ∀x q(x , g(y))) = p(a) ∧ ∀x q(x , g(f (z , b)))

Problem: σ(∀z p(z , y)) = ∀z p(z , f (z , b))
The free variable z in σ is captured by the quantifier.
This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 14 / 41

Variables

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A,
written σ(t) or σ(A), replaces every free variable in t or A according to its
image under σ. Short hand: A[x\t]=σ(A) with σ={x\t}.

Example: Let σ={x\a, y\f (z , b)} be a substitution.
Then σ(g(y)) = g(f (z , b))

and σ(p(x) ∧ ∀x q(x , g(y))) = p(a) ∧ ∀x q(x , g(f (z , b)))

Problem: σ(∀z p(z , y)) = ∀z p(z , f (z , b))
The free variable z in σ is captured by the quantifier.
This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 14 / 41

Variables

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A,
written σ(t) or σ(A), replaces every free variable in t or A according to its
image under σ. Short hand: A[x\t]=σ(A) with σ={x\t}.

Example: Let σ={x\a, y\f (z , b)} be a substitution.
Then σ(g(y)) = g(f (z , b))
and σ(p(x) ∧ ∀x q(x , g(y))) =

p(a) ∧ ∀x q(x , g(f (z , b)))

Problem: σ(∀z p(z , y)) = ∀z p(z , f (z , b))
The free variable z in σ is captured by the quantifier.
This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 14 / 41

Variables

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A,
written σ(t) or σ(A), replaces every free variable in t or A according to its
image under σ. Short hand: A[x\t]=σ(A) with σ={x\t}.

Example: Let σ={x\a, y\f (z , b)} be a substitution.
Then σ(g(y)) = g(f (z , b))
and σ(p(x) ∧ ∀x q(x , g(y))) = p(a) ∧ ∀x q(x , g(f (z , b)))

Problem: σ(∀z p(z , y)) =

∀z p(z , f (z , b))
The free variable z in σ is captured by the quantifier.
This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 14 / 41

Variables

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A,
written σ(t) or σ(A), replaces every free variable in t or A according to its
image under σ. Short hand: A[x\t]=σ(A) with σ={x\t}.

Example: Let σ={x\a, y\f (z , b)} be a substitution.
Then σ(g(y)) = g(f (z , b))
and σ(p(x) ∧ ∀x q(x , g(y))) = p(a) ∧ ∀x q(x , g(f (z , b)))

Problem: σ(∀z p(z , y)) = ∀z p(z , f (z , b))

The free variable z in σ is captured by the quantifier.
This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 14 / 41

Variables

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A,
written σ(t) or σ(A), replaces every free variable in t or A according to its
image under σ. Short hand: A[x\t]=σ(A) with σ={x\t}.

Example: Let σ={x\a, y\f (z , b)} be a substitution.
Then σ(g(y)) = g(f (z , b))
and σ(p(x) ∧ ∀x q(x , g(y))) = p(a) ∧ ∀x q(x , g(f (z , b)))

Problem: σ(∀z p(z , y)) = ∀z p(z , f (z , b))
The free variable z in σ is captured by the quantifier.

This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 14 / 41

Variables

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A,
written σ(t) or σ(A), replaces every free variable in t or A according to its
image under σ. Short hand: A[x\t]=σ(A) with σ={x\t}.

Example: Let σ={x\a, y\f (z , b)} be a substitution.
Then σ(g(y)) = g(f (z , b))
and σ(p(x) ∧ ∀x q(x , g(y))) = p(a) ∧ ∀x q(x , g(f (z , b)))

Problem: σ(∀z p(z , y)) = ∀z p(z , f (z , b))
The free variable z in σ is captured by the quantifier.
This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 14 / 41

Variables

Application of substitutions

Definition 3.5 (Application of Substitutions, informally).

Let σ be a substitution. The application of σ to a term t or formula A,
written σ(t) or σ(A), replaces every free variable in t or A according to its
image under σ. Short hand: A[x\t]=σ(A) with σ={x\t}.

Example: Let σ={x\a, y\f (z , b)} be a substitution.
Then σ(g(y)) = g(f (z , b))
and σ(p(x) ∧ ∀x q(x , g(y))) = p(a) ∧ ∀x q(x , g(f (z , b)))

Problem: σ(∀z p(z , y)) = ∀z p(z , f (z , b))
The free variable z in σ is captured by the quantifier.
This is bad because the effect depends on the choice of variable names

Definition 3.6 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 14 / 41

Variables

Application of Substitutions

Definition 3.7 (Application of Substitutions, formally).

The application of a subtitution σ to a term or formula is defined by
structural induction:

I σ(x) = σ(x) for variables x in the range of σ

I σ(y) = y for variables y not in the range of σ

I σ(a) = a for constants a ∈ A
I σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)) for a function symbol f ∈ F
I σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)) for a predicate symbol p ∈ P
I σ(A ∧ B) = σ(A) ∧ σ(B) for formulae A, B

I . . . similarly for ¬A, A ∨ B, A→ B. . .

I σ(∃x A) = ∃x σx(A), σ(∀x A) = ∀x σx(A)

where we define σx by: σx(x) = x, and σx(y) = σ(y) for all y 6= x

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 15 / 41

Variables

Application of Substitutions

Definition 3.7 (Application of Substitutions, formally).

The application of a subtitution σ to a term or formula is defined by
structural induction:

I σ(x) = σ(x) for variables x in the range of σ

I σ(y) = y for variables y not in the range of σ

I σ(a) = a for constants a ∈ A
I σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)) for a function symbol f ∈ F
I σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)) for a predicate symbol p ∈ P
I σ(A ∧ B) = σ(A) ∧ σ(B) for formulae A, B

I . . . similarly for ¬A, A ∨ B, A→ B. . .

I σ(∃x A) = ∃x σx(A), σ(∀x A) = ∀x σx(A)

where we define σx by: σx(x) = x, and σx(y) = σ(y) for all y 6= x

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 15 / 41

Variables

Application of Substitutions

Definition 3.7 (Application of Substitutions, formally).

The application of a subtitution σ to a term or formula is defined by
structural induction:

I σ(x) = σ(x) for variables x in the range of σ

I σ(y) = y for variables y not in the range of σ

I σ(a) = a for constants a ∈ A

I σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)) for a function symbol f ∈ F
I σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)) for a predicate symbol p ∈ P
I σ(A ∧ B) = σ(A) ∧ σ(B) for formulae A, B

I . . . similarly for ¬A, A ∨ B, A→ B. . .

I σ(∃x A) = ∃x σx(A), σ(∀x A) = ∀x σx(A)

where we define σx by: σx(x) = x, and σx(y) = σ(y) for all y 6= x

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 15 / 41

Variables

Application of Substitutions

Definition 3.7 (Application of Substitutions, formally).

The application of a subtitution σ to a term or formula is defined by
structural induction:

I σ(x) = σ(x) for variables x in the range of σ

I σ(y) = y for variables y not in the range of σ

I σ(a) = a for constants a ∈ A
I σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)) for a function symbol f ∈ F

I σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)) for a predicate symbol p ∈ P
I σ(A ∧ B) = σ(A) ∧ σ(B) for formulae A, B

I . . . similarly for ¬A, A ∨ B, A→ B. . .

I σ(∃x A) = ∃x σx(A), σ(∀x A) = ∀x σx(A)

where we define σx by: σx(x) = x, and σx(y) = σ(y) for all y 6= x

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 15 / 41

Variables

Application of Substitutions

Definition 3.7 (Application of Substitutions, formally).

The application of a subtitution σ to a term or formula is defined by
structural induction:

I σ(x) = σ(x) for variables x in the range of σ

I σ(y) = y for variables y not in the range of σ

I σ(a) = a for constants a ∈ A
I σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)) for a function symbol f ∈ F
I σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)) for a predicate symbol p ∈ P

I σ(A ∧ B) = σ(A) ∧ σ(B) for formulae A, B

I . . . similarly for ¬A, A ∨ B, A→ B. . .

I σ(∃x A) = ∃x σx(A), σ(∀x A) = ∀x σx(A)

where we define σx by: σx(x) = x, and σx(y) = σ(y) for all y 6= x

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 15 / 41

Variables

Application of Substitutions

Definition 3.7 (Application of Substitutions, formally).

The application of a subtitution σ to a term or formula is defined by
structural induction:

I σ(x) = σ(x) for variables x in the range of σ

I σ(y) = y for variables y not in the range of σ

I σ(a) = a for constants a ∈ A
I σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)) for a function symbol f ∈ F
I σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)) for a predicate symbol p ∈ P
I σ(A ∧ B) = σ(A) ∧ σ(B) for formulae A, B

I . . . similarly for ¬A, A ∨ B, A→ B. . .

I σ(∃x A) = ∃x σx(A), σ(∀x A) = ∀x σx(A)

where we define σx by: σx(x) = x, and σx(y) = σ(y) for all y 6= x

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 15 / 41

Variables

Application of Substitutions

Definition 3.7 (Application of Substitutions, formally).

The application of a subtitution σ to a term or formula is defined by
structural induction:

I σ(x) = σ(x) for variables x in the range of σ

I σ(y) = y for variables y not in the range of σ

I σ(a) = a for constants a ∈ A
I σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)) for a function symbol f ∈ F
I σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)) for a predicate symbol p ∈ P
I σ(A ∧ B) = σ(A) ∧ σ(B) for formulae A, B

I . . . similarly for ¬A, A ∨ B, A→ B. . .

I σ(∃x A) = ∃x σx(A), σ(∀x A) = ∀x σx(A)

where we define σx by: σx(x) = x, and σx(y) = σ(y) for all y 6= x

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 15 / 41

Variables

Application of Substitutions

Definition 3.7 (Application of Substitutions, formally).

The application of a subtitution σ to a term or formula is defined by
structural induction:

I σ(x) = σ(x) for variables x in the range of σ

I σ(y) = y for variables y not in the range of σ

I σ(a) = a for constants a ∈ A
I σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)) for a function symbol f ∈ F
I σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)) for a predicate symbol p ∈ P
I σ(A ∧ B) = σ(A) ∧ σ(B) for formulae A, B

I . . . similarly for ¬A, A ∨ B, A→ B. . .

I σ(∃x A) = ∃x σx(A), σ(∀x A) = ∀x σx(A)

where we define σx by: σx(x) = x, and σx(y) = σ(y) for all y 6= x

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 15 / 41

Semantics

Outline

I Motivation

I Syntax

I Variables

I Semantics

I The Substitution Lemma

I Satisfiability & Validity

I LK for First-order Logic

I Summary

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 16 / 41

Semantics

Semantics — Interpretation

An interpretation assigns concrete objects, functions and relations to
constant symbols, function symbols, and predicate symbols.

Definition 4.1 (Interpretation/Structure).

An interpretation (or structure) I = (D, ι) consists of the following
elements:

1. Domain D is a non-empty set
2. Interpretation of constant symbols assigns each constant a ∈ A an

element aι ∈ D
3. Interpretation of function symbols assigns each n-ary function symbol

f ∈ F with n>0 a function f ι : Dn → D
4. Interpretation of propositional variables assigns each 0-ary predicate

symbol p ∈ P a truth value pι∈{T ,F}
5. Interpretation of predicate symbols assigns each n-ary predicate symbol

p ∈ P with n>0 a relation pι ⊆ Dn

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 17 / 41

Semantics

Semantics — Interpretation

An interpretation assigns concrete objects, functions and relations to
constant symbols, function symbols, and predicate symbols.

Definition 4.1 (Interpretation/Structure).

An interpretation (or structure) I = (D, ι) consists of the following
elements:

1. Domain D is a non-empty set
2. Interpretation of constant symbols assigns each constant a ∈ A an

element aι ∈ D
3. Interpretation of function symbols assigns each n-ary function symbol

f ∈ F with n>0 a function f ι : Dn → D
4. Interpretation of propositional variables assigns each 0-ary predicate

symbol p ∈ P a truth value pι∈{T ,F}
5. Interpretation of predicate symbols assigns each n-ary predicate symbol

p ∈ P with n>0 a relation pι ⊆ Dn

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 17 / 41

Semantics

Semantics — Interpretation

An interpretation assigns concrete objects, functions and relations to
constant symbols, function symbols, and predicate symbols.

Definition 4.1 (Interpretation/Structure).

An interpretation (or structure) I = (D, ι) consists of the following
elements:

1. Domain D is a non-empty set

2. Interpretation of constant symbols assigns each constant a ∈ A an
element aι ∈ D

3. Interpretation of function symbols assigns each n-ary function symbol
f ∈ F with n>0 a function f ι : Dn → D

4. Interpretation of propositional variables assigns each 0-ary predicate
symbol p ∈ P a truth value pι∈{T ,F}

5. Interpretation of predicate symbols assigns each n-ary predicate symbol
p ∈ P with n>0 a relation pι ⊆ Dn

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 17 / 41

Semantics

Semantics — Interpretation

An interpretation assigns concrete objects, functions and relations to
constant symbols, function symbols, and predicate symbols.

Definition 4.1 (Interpretation/Structure).

An interpretation (or structure) I = (D, ι) consists of the following
elements:

1. Domain D is a non-empty set
2. Interpretation of constant symbols assigns each constant a ∈ A an

element aι ∈ D

3. Interpretation of function symbols assigns each n-ary function symbol
f ∈ F with n>0 a function f ι : Dn → D

4. Interpretation of propositional variables assigns each 0-ary predicate
symbol p ∈ P a truth value pι∈{T ,F}

5. Interpretation of predicate symbols assigns each n-ary predicate symbol
p ∈ P with n>0 a relation pι ⊆ Dn

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 17 / 41

Semantics

Semantics — Interpretation

An interpretation assigns concrete objects, functions and relations to
constant symbols, function symbols, and predicate symbols.

Definition 4.1 (Interpretation/Structure).

An interpretation (or structure) I = (D, ι) consists of the following
elements:

1. Domain D is a non-empty set
2. Interpretation of constant symbols assigns each constant a ∈ A an

element aι ∈ D
3. Interpretation of function symbols assigns each n-ary function symbol

f ∈ F with n>0 a function f ι : Dn → D

4. Interpretation of propositional variables assigns each 0-ary predicate
symbol p ∈ P a truth value pι∈{T ,F}

5. Interpretation of predicate symbols assigns each n-ary predicate symbol
p ∈ P with n>0 a relation pι ⊆ Dn

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 17 / 41

Semantics

Semantics — Interpretation

An interpretation assigns concrete objects, functions and relations to
constant symbols, function symbols, and predicate symbols.

Definition 4.1 (Interpretation/Structure).

An interpretation (or structure) I = (D, ι) consists of the following
elements:

1. Domain D is a non-empty set
2. Interpretation of constant symbols assigns each constant a ∈ A an

element aι ∈ D
3. Interpretation of function symbols assigns each n-ary function symbol

f ∈ F with n>0 a function f ι : Dn → D
4. Interpretation of propositional variables assigns each 0-ary predicate

symbol p ∈ P a truth value pι∈{T ,F}

5. Interpretation of predicate symbols assigns each n-ary predicate symbol
p ∈ P with n>0 a relation pι ⊆ Dn

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 17 / 41

Semantics

Semantics — Interpretation

An interpretation assigns concrete objects, functions and relations to
constant symbols, function symbols, and predicate symbols.

Definition 4.1 (Interpretation/Structure).

An interpretation (or structure) I = (D, ι) consists of the following
elements:

1. Domain D is a non-empty set
2. Interpretation of constant symbols assigns each constant a ∈ A an

element aι ∈ D
3. Interpretation of function symbols assigns each n-ary function symbol

f ∈ F with n>0 a function f ι : Dn → D
4. Interpretation of propositional variables assigns each 0-ary predicate

symbol p ∈ P a truth value pι∈{T ,F}
5. Interpretation of predicate symbols assigns each n-ary predicate symbol

p ∈ P with n>0 a relation pι ⊆ Dn

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 17 / 41

Semantics

Semantics — Examples

Example: ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

2. I = (N, ι) with pι =≤ and aι = 3

3. I = (Z, ι) with pι =≤ and aι = 0

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

Remark: In Ben-Ari: (N, {≤}, {0}), (N, {≤}, {3}), (Z, {≤}, {0})

Example: ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

Remark: In Ben-Ari: (Z, {≤}, {+}, {1}), (Z, {>}, {∗}, {−1}).

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 18 / 41

Semantics

Semantics — Examples

Example: ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

2. I = (N, ι) with pι =≤ and aι = 3

3. I = (Z, ι) with pι =≤ and aι = 0

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

Remark: In Ben-Ari: (N, {≤}, {0}), (N, {≤}, {3}), (Z, {≤}, {0})

Example: ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

Remark: In Ben-Ari: (Z, {≤}, {+}, {1}), (Z, {>}, {∗}, {−1}).

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 18 / 41

Semantics

Semantics — Examples

Example: ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

2. I = (N, ι) with pι =≤ and aι = 3

3. I = (Z, ι) with pι =≤ and aι = 0

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

Remark: In Ben-Ari: (N, {≤}, {0}), (N, {≤}, {3}), (Z, {≤}, {0})

Example: ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

Remark: In Ben-Ari: (Z, {≤}, {+}, {1}), (Z, {>}, {∗}, {−1}).

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 18 / 41

Semantics

Semantics — Examples

Example: ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

2. I = (N, ι) with pι =≤ and aι = 3

3. I = (Z, ι) with pι =≤ and aι = 0

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

Remark: In Ben-Ari: (N, {≤}, {0}), (N, {≤}, {3}), (Z, {≤}, {0})

Example: ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

Remark: In Ben-Ari: (Z, {≤}, {+}, {1}), (Z, {>}, {∗}, {−1}).

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 18 / 41

Semantics

Semantics — Examples

Example: ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

2. I = (N, ι) with pι =≤ and aι = 3

3. I = (Z, ι) with pι =≤ and aι = 0

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

Remark: In Ben-Ari: (N, {≤}, {0}), (N, {≤}, {3}), (Z, {≤}, {0})

Example: ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

Remark: In Ben-Ari: (Z, {≤}, {+}, {1}), (Z, {>}, {∗}, {−1}).

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 18 / 41

Semantics

Semantics — Examples

Example: ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

2. I = (N, ι) with pι =≤ and aι = 3

3. I = (Z, ι) with pι =≤ and aι = 0

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

Remark: In Ben-Ari: (N, {≤}, {0}), (N, {≤}, {3}), (Z, {≤}, {0})

Example: ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

Remark: In Ben-Ari: (Z, {≤}, {+}, {1}), (Z, {>}, {∗}, {−1}).

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 18 / 41

Semantics

Semantics — Examples

Example: ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

2. I = (N, ι) with pι =≤ and aι = 3

3. I = (Z, ι) with pι =≤ and aι = 0

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

Remark: In Ben-Ari: (N, {≤}, {0}), (N, {≤}, {3}), (Z, {≤}, {0})

Example: ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

Remark: In Ben-Ari: (Z, {≤}, {+}, {1}), (Z, {>}, {∗}, {−1}).

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 18 / 41

Semantics

Semantics — Examples

Example: ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

2. I = (N, ι) with pι =≤ and aι = 3

3. I = (Z, ι) with pι =≤ and aι = 0

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

Remark: In Ben-Ari: (N, {≤}, {0}), (N, {≤}, {3}), (Z, {≤}, {0})

Example: ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

Remark: In Ben-Ari: (Z, {≤}, {+}, {1}), (Z, {>}, {∗}, {−1}).

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 18 / 41

Semantics

Semantics — Examples

Example: ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

2. I = (N, ι) with pι =≤ and aι = 3

3. I = (Z, ι) with pι =≤ and aι = 0

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

Remark: In Ben-Ari: (N, {≤}, {0}), (N, {≤}, {3}), (Z, {≤}, {0})

Example: ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

Remark: In Ben-Ari: (Z, {≤}, {+}, {1}), (Z, {>}, {∗}, {−1}).

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 18 / 41

Semantics

Semantics — Examples

Example: ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

2. I = (N, ι) with pι =≤ and aι = 3

3. I = (Z, ι) with pι =≤ and aι = 0

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

Remark: In Ben-Ari: (N, {≤}, {0}), (N, {≤}, {3}), (Z, {≤}, {0})

Example: ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

Remark: In Ben-Ari: (Z, {≤}, {+}, {1}), (Z, {>}, {∗}, {−1}).

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 18 / 41

Semantics

Semantics — Value of Closed Terms

Terms are evaluated according to the interpretation of their constant and
function symbols.

Definition 4.2 (Term Value for Closed Terms).

Let I = (D, ι) be an interpretation. The term value vI(t) of a closed term
t ∈ T under the interpretation I is inductively defined:

1. For a constant symbol a ∈ A the term value is vI(a) = aι;

2. Let f ∈ F be an n-ary function, n>0, and t1, . . . , tn be terms; the
term value of f (t1, . . . , tn) is vI(f (t1, . . . , tn)) = f ι(vI(t1), . . . , vI(tn))

Examples:

I f (a, f (a, b)) with I = (N, ι) with f ι = +, aι = 20, bι = 2; then
vI(f (a, f (a, b))) = 42

I +(1, ∗(4, 2)) with I = (Z, ι) with +ι = ∗ (multiplication), ∗ι = −
(subtraction), 1ι = −20, 2ι = 0, 4ι = 10; then vI(+(1, ∗(4, 2))) = −200

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 19 / 41

Semantics

Semantics — Value of Closed Terms

Terms are evaluated according to the interpretation of their constant and
function symbols.

Definition 4.2 (Term Value for Closed Terms).

Let I = (D, ι) be an interpretation. The term value vI(t) of a closed term
t ∈ T under the interpretation I is inductively defined:

1. For a constant symbol a ∈ A the term value is vI(a) = aι;

2. Let f ∈ F be an n-ary function, n>0, and t1, . . . , tn be terms; the
term value of f (t1, . . . , tn) is vI(f (t1, . . . , tn)) = f ι(vI(t1), . . . , vI(tn))

Examples:

I f (a, f (a, b)) with I = (N, ι) with f ι = +, aι = 20, bι = 2; then
vI(f (a, f (a, b))) = 42

I +(1, ∗(4, 2)) with I = (Z, ι) with +ι = ∗ (multiplication), ∗ι = −
(subtraction), 1ι = −20, 2ι = 0, 4ι = 10; then vI(+(1, ∗(4, 2))) = −200

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 19 / 41

Semantics

Semantics — Value of Closed Terms

Terms are evaluated according to the interpretation of their constant and
function symbols.

Definition 4.2 (Term Value for Closed Terms).

Let I = (D, ι) be an interpretation. The term value vI(t) of a closed term
t ∈ T under the interpretation I is inductively defined:

1. For a constant symbol a ∈ A the term value is vI(a) = aι;

2. Let f ∈ F be an n-ary function, n>0, and t1, . . . , tn be terms; the
term value of f (t1, . . . , tn) is vI(f (t1, . . . , tn)) = f ι(vI(t1), . . . , vI(tn))

Examples:

I f (a, f (a, b)) with I = (N, ι) with f ι = +, aι = 20, bι = 2; then
vI(f (a, f (a, b))) = 42

I +(1, ∗(4, 2)) with I = (Z, ι) with +ι = ∗ (multiplication), ∗ι = −
(subtraction), 1ι = −20, 2ι = 0, 4ι = 10; then vI(+(1, ∗(4, 2))) = −200

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 19 / 41

Semantics

Semantics — Value of Closed Terms

Terms are evaluated according to the interpretation of their constant and
function symbols.

Definition 4.2 (Term Value for Closed Terms).

Let I = (D, ι) be an interpretation. The term value vI(t) of a closed term
t ∈ T under the interpretation I is inductively defined:

1. For a constant symbol a ∈ A the term value is vI(a) = aι;

2. Let f ∈ F be an n-ary function, n>0, and t1, . . . , tn be terms; the
term value of f (t1, . . . , tn) is vI(f (t1, . . . , tn)) = f ι(vI(t1), . . . , vI(tn))

Examples:

I f (a, f (a, b)) with I = (N, ι) with f ι = +, aι = 20, bι = 2; then
vI(f (a, f (a, b))) = 42

I +(1, ∗(4, 2)) with I = (Z, ι) with +ι = ∗ (multiplication), ∗ι = −
(subtraction), 1ι = −20, 2ι = 0, 4ι = 10; then vI(+(1, ∗(4, 2))) = −200

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 19 / 41

Semantics

Semantics — Value of Closed Terms

Terms are evaluated according to the interpretation of their constant and
function symbols.

Definition 4.2 (Term Value for Closed Terms).

Let I = (D, ι) be an interpretation. The term value vI(t) of a closed term
t ∈ T under the interpretation I is inductively defined:

1. For a constant symbol a ∈ A the term value is vI(a) = aι;

2. Let f ∈ F be an n-ary function, n>0, and t1, . . . , tn be terms; the
term value of f (t1, . . . , tn) is vI(f (t1, . . . , tn)) = f ι(vI(t1), . . . , vI(tn))

Examples:

I f (a, f (a, b)) with I = (N, ι) with f ι = +, aι = 20, bι = 2;

then
vI(f (a, f (a, b))) = 42

I +(1, ∗(4, 2)) with I = (Z, ι) with +ι = ∗ (multiplication), ∗ι = −
(subtraction), 1ι = −20, 2ι = 0, 4ι = 10; then vI(+(1, ∗(4, 2))) = −200

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 19 / 41

Semantics

Semantics — Value of Closed Terms

Terms are evaluated according to the interpretation of their constant and
function symbols.

Definition 4.2 (Term Value for Closed Terms).

Let I = (D, ι) be an interpretation. The term value vI(t) of a closed term
t ∈ T under the interpretation I is inductively defined:

1. For a constant symbol a ∈ A the term value is vI(a) = aι;

2. Let f ∈ F be an n-ary function, n>0, and t1, . . . , tn be terms; the
term value of f (t1, . . . , tn) is vI(f (t1, . . . , tn)) = f ι(vI(t1), . . . , vI(tn))

Examples:

I f (a, f (a, b)) with I = (N, ι) with f ι = +, aι = 20, bι = 2; then
vI(f (a, f (a, b))) = 42

I +(1, ∗(4, 2)) with I = (Z, ι) with +ι = ∗ (multiplication), ∗ι = −
(subtraction), 1ι = −20, 2ι = 0, 4ι = 10; then vI(+(1, ∗(4, 2))) = −200

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 19 / 41

Semantics

Semantics — Value of Closed Terms

Terms are evaluated according to the interpretation of their constant and
function symbols.

Definition 4.2 (Term Value for Closed Terms).

Let I = (D, ι) be an interpretation. The term value vI(t) of a closed term
t ∈ T under the interpretation I is inductively defined:

1. For a constant symbol a ∈ A the term value is vI(a) = aι;

2. Let f ∈ F be an n-ary function, n>0, and t1, . . . , tn be terms; the
term value of f (t1, . . . , tn) is vI(f (t1, . . . , tn)) = f ι(vI(t1), . . . , vI(tn))

Examples:

I f (a, f (a, b)) with I = (N, ι) with f ι = +, aι = 20, bι = 2; then
vI(f (a, f (a, b))) = 42

I +(1, ∗(4, 2)) with I = (Z, ι) with +ι = ∗ (multiplication), ∗ι = −
(subtraction), 1ι = −20, 2ι = 0, 4ι = 10;

then vI(+(1, ∗(4, 2))) = −200

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 19 / 41

Semantics

Semantics — Value of Closed Terms

Terms are evaluated according to the interpretation of their constant and
function symbols.

Definition 4.2 (Term Value for Closed Terms).

Let I = (D, ι) be an interpretation. The term value vI(t) of a closed term
t ∈ T under the interpretation I is inductively defined:

1. For a constant symbol a ∈ A the term value is vI(a) = aι;

2. Let f ∈ F be an n-ary function, n>0, and t1, . . . , tn be terms; the
term value of f (t1, . . . , tn) is vI(f (t1, . . . , tn)) = f ι(vI(t1), . . . , vI(tn))

Examples:

I f (a, f (a, b)) with I = (N, ι) with f ι = +, aι = 20, bι = 2; then
vI(f (a, f (a, b))) = 42

I +(1, ∗(4, 2)) with I = (Z, ι) with +ι = ∗ (multiplication), ∗ι = −
(subtraction), 1ι = −20, 2ι = 0, 4ι = 10; then vI(+(1, ∗(4, 2))) = −200

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 19 / 41

Semantics

Semantics — Variable Assignments, Value of Terms

The interpretation doesn’t tell what to do about variables.
We need something additional.

Definition 4.3 (Variable Assignment).

Given the set of variables V, and an interpretation I = (D, ι), a variable
assignment α for I is a function α : V → D.

Ben-Ari (7.18) writes this σIA

Definition 4.4 (Term Value).

Let I = (D, ι) be an interpretation, and α an variable assignment for I.
The term value vI(α, t) of a term t ∈ T under I and α is inductively
defined:

1. vI(α, x) = α(x) for a variable v ∈ V
2. vI(α, a) = aι for a constant symbol a ∈ A
3. vI(α, f (t1, . . . , tn)) = f ι(vI(α, t1), . . . , vI(α, tn)) for an n-ary f ∈ F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 20 / 41

Semantics

Semantics — Variable Assignments, Value of Terms

The interpretation doesn’t tell what to do about variables.
We need something additional.

Definition 4.3 (Variable Assignment).

Given the set of variables V, and an interpretation I = (D, ι), a variable
assignment α for I is a function α : V → D.

Ben-Ari (7.18) writes this σIA

Definition 4.4 (Term Value).

Let I = (D, ι) be an interpretation, and α an variable assignment for I.
The term value vI(α, t) of a term t ∈ T under I and α is inductively
defined:

1. vI(α, x) = α(x) for a variable v ∈ V
2. vI(α, a) = aι for a constant symbol a ∈ A
3. vI(α, f (t1, . . . , tn)) = f ι(vI(α, t1), . . . , vI(α, tn)) for an n-ary f ∈ F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 20 / 41

Semantics

Semantics — Variable Assignments, Value of Terms

The interpretation doesn’t tell what to do about variables.
We need something additional.

Definition 4.3 (Variable Assignment).

Given the set of variables V, and an interpretation I = (D, ι), a variable
assignment α for I is a function α : V → D.

Ben-Ari (7.18) writes this σIA

Definition 4.4 (Term Value).

Let I = (D, ι) be an interpretation, and α an variable assignment for I.
The term value vI(α, t) of a term t ∈ T under I and α is inductively
defined:

1. vI(α, x) = α(x) for a variable v ∈ V
2. vI(α, a) = aι for a constant symbol a ∈ A
3. vI(α, f (t1, . . . , tn)) = f ι(vI(α, t1), . . . , vI(α, tn)) for an n-ary f ∈ F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 20 / 41

Semantics

Semantics — Variable Assignments, Value of Terms

The interpretation doesn’t tell what to do about variables.
We need something additional.

Definition 4.3 (Variable Assignment).

Given the set of variables V, and an interpretation I = (D, ι), a variable
assignment α for I is a function α : V → D.

Ben-Ari (7.18) writes this σIA

Definition 4.4 (Term Value).

Let I = (D, ι) be an interpretation, and α an variable assignment for I.
The term value vI(α, t) of a term t ∈ T under I and α is inductively
defined:

1. vI(α, x) = α(x) for a variable v ∈ V

2. vI(α, a) = aι for a constant symbol a ∈ A
3. vI(α, f (t1, . . . , tn)) = f ι(vI(α, t1), . . . , vI(α, tn)) for an n-ary f ∈ F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 20 / 41

Semantics

Semantics — Variable Assignments, Value of Terms

The interpretation doesn’t tell what to do about variables.
We need something additional.

Definition 4.3 (Variable Assignment).

Given the set of variables V, and an interpretation I = (D, ι), a variable
assignment α for I is a function α : V → D.

Ben-Ari (7.18) writes this σIA

Definition 4.4 (Term Value).

Let I = (D, ι) be an interpretation, and α an variable assignment for I.
The term value vI(α, t) of a term t ∈ T under I and α is inductively
defined:

1. vI(α, x) = α(x) for a variable v ∈ V
2. vI(α, a) = aι for a constant symbol a ∈ A

3. vI(α, f (t1, . . . , tn)) = f ι(vI(α, t1), . . . , vI(α, tn)) for an n-ary f ∈ F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 20 / 41

Semantics

Semantics — Variable Assignments, Value of Terms

The interpretation doesn’t tell what to do about variables.
We need something additional.

Definition 4.3 (Variable Assignment).

Given the set of variables V, and an interpretation I = (D, ι), a variable
assignment α for I is a function α : V → D.

Ben-Ari (7.18) writes this σIA

Definition 4.4 (Term Value).

Let I = (D, ι) be an interpretation, and α an variable assignment for I.
The term value vI(α, t) of a term t ∈ T under I and α is inductively
defined:

1. vI(α, x) = α(x) for a variable v ∈ V
2. vI(α, a) = aι for a constant symbol a ∈ A
3. vI(α, f (t1, . . . , tn)) = f ι(vI(α, t1), . . . , vI(α, tn)) for an n-ary f ∈ F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 20 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) =

23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”
I vI(α, f (a, f (y , a))) = “HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}

I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) =

23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”
I vI(α, f (a, f (y , a))) = “HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I

I vI(α, f (a, f (a, x))) =

23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”
I vI(α, f (a, f (y , a))) = “HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) =

23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”
I vI(α, f (a, f (y , a))) = “HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) =

23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”
I vI(α, f (a, f (y , a))) = “HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) = 23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”
I vI(α, f (a, f (y , a))) = “HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) = 23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”
I vI(α, f (a, f (y , a))) =

“HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) = 23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}

I α(y) =”students”
I vI(α, f (a, f (y , a))) =

“HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) = 23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”

I vI(α, f (a, f (y , a))) =

“HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) = 23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”
I vI(α, f (a, f (y , a))) =

“HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) = 23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”
I vI(α, f (a, f (y , a))) =

“HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Term value Examples

I I = (N, ι) with f ι = +, aι = 10

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I vI(α, f (a, f (a, x))) = 23

I I = (Strings, ι) with g ι = concatenation, aι =”Hello”

I V = {y}
I α(y) =”students”
I vI(α, f (a, f (y , a))) = “HellostudentsHello”

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 21 / 41

Semantics

Semantics — Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V and a domain element d ∈ D.
The modified variable assignment α{y←d} is defined as

α{y←d}(x) =

{
d if x = y

α(x) otherwise

I I = (N, ι)
I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I α{y←7}(x) =3 and α{y←7}(y) =7

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 22 / 41

Semantics

Semantics — Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V and a domain element d ∈ D.
The modified variable assignment α{y←d} is defined as

α{y←d}(x) =

{
d if x = y

α(x) otherwise

I I = (N, ι)

I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I α{y←7}(x) =

3 and α{y←7}(y) =7

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 22 / 41

Semantics

Semantics — Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V and a domain element d ∈ D.
The modified variable assignment α{y←d} is defined as

α{y←d}(x) =

{
d if x = y

α(x) otherwise

I I = (N, ι)
I V = {x , y}

I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I α{y←7}(x) =

3 and α{y←7}(y) =7

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 22 / 41

Semantics

Semantics — Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V and a domain element d ∈ D.
The modified variable assignment α{y←d} is defined as

α{y←d}(x) =

{
d if x = y

α(x) otherwise

I I = (N, ι)
I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I

I α{y←7}(x) =

3 and α{y←7}(y) =7

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 22 / 41

Semantics

Semantics — Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V and a domain element d ∈ D.
The modified variable assignment α{y←d} is defined as

α{y←d}(x) =

{
d if x = y

α(x) otherwise

I I = (N, ι)
I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I α{y←7}(x) =

3 and α{y←7}(y) =7

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 22 / 41

Semantics

Semantics — Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V and a domain element d ∈ D.
The modified variable assignment α{y←d} is defined as

α{y←d}(x) =

{
d if x = y

α(x) otherwise

I I = (N, ι)
I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I α{y←7}(x) =

3 and α{y←7}(y) =7

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 22 / 41

Semantics

Semantics — Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V and a domain element d ∈ D.
The modified variable assignment α{y←d} is defined as

α{y←d}(x) =

{
d if x = y

α(x) otherwise

I I = (N, ι)
I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I α{y←7}(x) =3

and α{y←7}(y) =7

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 22 / 41

Semantics

Semantics — Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V and a domain element d ∈ D.
The modified variable assignment α{y←d} is defined as

α{y←d}(x) =

{
d if x = y

α(x) otherwise

I I = (N, ι)
I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I α{y←7}(x) =3 and α{y←7}(y) =

7

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 22 / 41

Semantics

Semantics — Modification of an assignment

Definition 4.5 (Modification of a variable assignment).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V and a domain element d ∈ D.
The modified variable assignment α{y←d} is defined as

α{y←d}(x) =

{
d if x = y

α(x) otherwise

I I = (N, ι)
I V = {x , y}
I α(x) = 3 ∈ N and α(y) = 5 ∈ N is an assignment for I
I α{y←7}(x) =3 and α{y←7}(y) =7

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 22 / 41

Semantics

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let I = (D, ι) be an interpretation and α an assignment for I. The truth
value vI(α,A)∈{T ,F} of a formula A under I and α is defined
inductively as follows:

1. vI(α, p)=T for 0-ary p ∈ P iff pι=T, otherwise vI(α, p)=F

2. vI(α, p(t1, . . . , tn))=T for p ∈ P, n>0, iff (vI(α, t1), . . . , vI(α, tn)) ∈ pι,
otherwise vI(α, p(t1, . . . , tn))=F

3. vI(α,¬A)=T iff vI(α,A)=F , otherwise vI(α,¬A)=F

4. vI(α,A∧B)=T iff vI(α,A)=T and vI(α,B)=T, otherwise vI(α,A∧B)=F

5. vI(α,A∨B)=T iff vI(α,A)=T or vI(α,B)=T, otherwise vI(α,A∨B)=F

6. vI(α,A→B)=T iff vI(α,A)=F or vI(α,B)=T, otherwise vI(α,A→B)=F

7. vI(α,∀xA)=T iff vI(α{x←d},A)=T for all d∈D, otherwise vI(α,∀xA)=F

8. vI(α,∃xA)=T iff vI(α{x←d},A)=T for some d∈D, otherwise vI(α,∃xA)=F

9. vI(α,>)=T and vI(α,⊥)=F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 23 / 41

Semantics

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let I = (D, ι) be an interpretation and α an assignment for I. The truth
value vI(α,A)∈{T ,F} of a formula A under I and α is defined
inductively as follows:

1. vI(α, p)=T for 0-ary p ∈ P iff pι=T, otherwise vI(α, p)=F

2. vI(α, p(t1, . . . , tn))=T for p ∈ P, n>0, iff (vI(α, t1), . . . , vI(α, tn)) ∈ pι,
otherwise vI(α, p(t1, . . . , tn))=F

3. vI(α,¬A)=T iff vI(α,A)=F , otherwise vI(α,¬A)=F

4. vI(α,A∧B)=T iff vI(α,A)=T and vI(α,B)=T, otherwise vI(α,A∧B)=F

5. vI(α,A∨B)=T iff vI(α,A)=T or vI(α,B)=T, otherwise vI(α,A∨B)=F

6. vI(α,A→B)=T iff vI(α,A)=F or vI(α,B)=T, otherwise vI(α,A→B)=F

7. vI(α,∀xA)=T iff vI(α{x←d},A)=T for all d∈D, otherwise vI(α,∀xA)=F

8. vI(α,∃xA)=T iff vI(α{x←d},A)=T for some d∈D, otherwise vI(α,∃xA)=F

9. vI(α,>)=T and vI(α,⊥)=F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 23 / 41

Semantics

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let I = (D, ι) be an interpretation and α an assignment for I. The truth
value vI(α,A)∈{T ,F} of a formula A under I and α is defined
inductively as follows:

1. vI(α, p)=T for 0-ary p ∈ P iff pι=T, otherwise vI(α, p)=F

2. vI(α, p(t1, . . . , tn))=T for p ∈ P, n>0, iff (vI(α, t1), . . . , vI(α, tn)) ∈ pι,
otherwise vI(α, p(t1, . . . , tn))=F

3. vI(α,¬A)=T iff vI(α,A)=F , otherwise vI(α,¬A)=F

4. vI(α,A∧B)=T iff vI(α,A)=T and vI(α,B)=T, otherwise vI(α,A∧B)=F

5. vI(α,A∨B)=T iff vI(α,A)=T or vI(α,B)=T, otherwise vI(α,A∨B)=F

6. vI(α,A→B)=T iff vI(α,A)=F or vI(α,B)=T, otherwise vI(α,A→B)=F

7. vI(α,∀xA)=T iff vI(α{x←d},A)=T for all d∈D, otherwise vI(α,∀xA)=F

8. vI(α,∃xA)=T iff vI(α{x←d},A)=T for some d∈D, otherwise vI(α,∃xA)=F

9. vI(α,>)=T and vI(α,⊥)=F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 23 / 41

Semantics

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let I = (D, ι) be an interpretation and α an assignment for I. The truth
value vI(α,A)∈{T ,F} of a formula A under I and α is defined
inductively as follows:

1. vI(α, p)=T for 0-ary p ∈ P iff pι=T, otherwise vI(α, p)=F

2. vI(α, p(t1, . . . , tn))=T for p ∈ P, n>0, iff (vI(α, t1), . . . , vI(α, tn)) ∈ pι,
otherwise vI(α, p(t1, . . . , tn))=F

3. vI(α,¬A)=T iff vI(α,A)=F , otherwise vI(α,¬A)=F

4. vI(α,A∧B)=T iff vI(α,A)=T and vI(α,B)=T, otherwise vI(α,A∧B)=F

5. vI(α,A∨B)=T iff vI(α,A)=T or vI(α,B)=T, otherwise vI(α,A∨B)=F

6. vI(α,A→B)=T iff vI(α,A)=F or vI(α,B)=T, otherwise vI(α,A→B)=F

7. vI(α,∀xA)=T iff vI(α{x←d},A)=T for all d∈D, otherwise vI(α,∀xA)=F

8. vI(α,∃xA)=T iff vI(α{x←d},A)=T for some d∈D, otherwise vI(α,∃xA)=F

9. vI(α,>)=T and vI(α,⊥)=F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 23 / 41

Semantics

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let I = (D, ι) be an interpretation and α an assignment for I. The truth
value vI(α,A)∈{T ,F} of a formula A under I and α is defined
inductively as follows:

1. vI(α, p)=T for 0-ary p ∈ P iff pι=T, otherwise vI(α, p)=F

2. vI(α, p(t1, . . . , tn))=T for p ∈ P, n>0, iff (vI(α, t1), . . . , vI(α, tn)) ∈ pι,
otherwise vI(α, p(t1, . . . , tn))=F

3. vI(α,¬A)=T iff vI(α,A)=F , otherwise vI(α,¬A)=F

4. vI(α,A∧B)=T iff vI(α,A)=T and vI(α,B)=T, otherwise vI(α,A∧B)=F

5. vI(α,A∨B)=T iff vI(α,A)=T or vI(α,B)=T, otherwise vI(α,A∨B)=F

6. vI(α,A→B)=T iff vI(α,A)=F or vI(α,B)=T, otherwise vI(α,A→B)=F

7. vI(α,∀xA)=T iff vI(α{x←d},A)=T for all d∈D, otherwise vI(α,∀xA)=F

8. vI(α,∃xA)=T iff vI(α{x←d},A)=T for some d∈D, otherwise vI(α,∃xA)=F

9. vI(α,>)=T and vI(α,⊥)=F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 23 / 41

Semantics

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let I = (D, ι) be an interpretation and α an assignment for I. The truth
value vI(α,A)∈{T ,F} of a formula A under I and α is defined
inductively as follows:

1. vI(α, p)=T for 0-ary p ∈ P iff pι=T, otherwise vI(α, p)=F

2. vI(α, p(t1, . . . , tn))=T for p ∈ P, n>0, iff (vI(α, t1), . . . , vI(α, tn)) ∈ pι,
otherwise vI(α, p(t1, . . . , tn))=F

3. vI(α,¬A)=T iff vI(α,A)=F , otherwise vI(α,¬A)=F

4. vI(α,A∧B)=T iff vI(α,A)=T and vI(α,B)=T, otherwise vI(α,A∧B)=F

5. vI(α,A∨B)=T iff vI(α,A)=T or vI(α,B)=T, otherwise vI(α,A∨B)=F

6. vI(α,A→B)=T iff vI(α,A)=F or vI(α,B)=T, otherwise vI(α,A→B)=F

7. vI(α,∀xA)=T iff vI(α{x←d},A)=T for all d∈D, otherwise vI(α,∀xA)=F

8. vI(α,∃xA)=T iff vI(α{x←d},A)=T for some d∈D, otherwise vI(α,∃xA)=F

9. vI(α,>)=T and vI(α,⊥)=F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 23 / 41

Semantics

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let I = (D, ι) be an interpretation and α an assignment for I. The truth
value vI(α,A)∈{T ,F} of a formula A under I and α is defined
inductively as follows:

1. vI(α, p)=T for 0-ary p ∈ P iff pι=T, otherwise vI(α, p)=F

2. vI(α, p(t1, . . . , tn))=T for p ∈ P, n>0, iff (vI(α, t1), . . . , vI(α, tn)) ∈ pι,
otherwise vI(α, p(t1, . . . , tn))=F

3. vI(α,¬A)=T iff vI(α,A)=F , otherwise vI(α,¬A)=F

4. vI(α,A∧B)=T iff vI(α,A)=T and vI(α,B)=T, otherwise vI(α,A∧B)=F

5. vI(α,A∨B)=T iff vI(α,A)=T or vI(α,B)=T, otherwise vI(α,A∨B)=F

6. vI(α,A→B)=T iff vI(α,A)=F or vI(α,B)=T, otherwise vI(α,A→B)=F

7. vI(α,∀xA)=T iff vI(α{x←d},A)=T for all d∈D, otherwise vI(α,∀xA)=F

8. vI(α,∃xA)=T iff vI(α{x←d},A)=T for some d∈D, otherwise vI(α,∃xA)=F

9. vI(α,>)=T and vI(α,⊥)=F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 23 / 41

Semantics

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let I = (D, ι) be an interpretation and α an assignment for I. The truth
value vI(α,A)∈{T ,F} of a formula A under I and α is defined
inductively as follows:

1. vI(α, p)=T for 0-ary p ∈ P iff pι=T, otherwise vI(α, p)=F

2. vI(α, p(t1, . . . , tn))=T for p ∈ P, n>0, iff (vI(α, t1), . . . , vI(α, tn)) ∈ pι,
otherwise vI(α, p(t1, . . . , tn))=F

3. vI(α,¬A)=T iff vI(α,A)=F , otherwise vI(α,¬A)=F

4. vI(α,A∧B)=T iff vI(α,A)=T and vI(α,B)=T, otherwise vI(α,A∧B)=F

5. vI(α,A∨B)=T iff vI(α,A)=T or vI(α,B)=T, otherwise vI(α,A∨B)=F

6. vI(α,A→B)=T iff vI(α,A)=F or vI(α,B)=T, otherwise vI(α,A→B)=F

7. vI(α,∀xA)=T iff vI(α{x←d},A)=T for all d∈D, otherwise vI(α,∀xA)=F

8. vI(α,∃xA)=T iff vI(α{x←d},A)=T for some d∈D, otherwise vI(α,∃xA)=F

9. vI(α,>)=T and vI(α,⊥)=F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 23 / 41

Semantics

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let I = (D, ι) be an interpretation and α an assignment for I. The truth
value vI(α,A)∈{T ,F} of a formula A under I and α is defined
inductively as follows:

1. vI(α, p)=T for 0-ary p ∈ P iff pι=T, otherwise vI(α, p)=F

2. vI(α, p(t1, . . . , tn))=T for p ∈ P, n>0, iff (vI(α, t1), . . . , vI(α, tn)) ∈ pι,
otherwise vI(α, p(t1, . . . , tn))=F

3. vI(α,¬A)=T iff vI(α,A)=F , otherwise vI(α,¬A)=F

4. vI(α,A∧B)=T iff vI(α,A)=T and vI(α,B)=T, otherwise vI(α,A∧B)=F

5. vI(α,A∨B)=T iff vI(α,A)=T or vI(α,B)=T, otherwise vI(α,A∨B)=F

6. vI(α,A→B)=T iff vI(α,A)=F or vI(α,B)=T, otherwise vI(α,A→B)=F

7. vI(α,∀xA)=T iff vI(α{x←d},A)=T for all d∈D, otherwise vI(α,∀xA)=F

8. vI(α,∃xA)=T iff vI(α{x←d},A)=T for some d∈D, otherwise vI(α,∃xA)=F

9. vI(α,>)=T and vI(α,⊥)=F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 23 / 41

Semantics

Semantics — Truth Value

Definition 4.6 (Truth Value).

Let I = (D, ι) be an interpretation and α an assignment for I. The truth
value vI(α,A)∈{T ,F} of a formula A under I and α is defined
inductively as follows:

1. vI(α, p)=T for 0-ary p ∈ P iff pι=T, otherwise vI(α, p)=F

2. vI(α, p(t1, . . . , tn))=T for p ∈ P, n>0, iff (vI(α, t1), . . . , vI(α, tn)) ∈ pι,
otherwise vI(α, p(t1, . . . , tn))=F

3. vI(α,¬A)=T iff vI(α,A)=F , otherwise vI(α,¬A)=F

4. vI(α,A∧B)=T iff vI(α,A)=T and vI(α,B)=T, otherwise vI(α,A∧B)=F

5. vI(α,A∨B)=T iff vI(α,A)=T or vI(α,B)=T, otherwise vI(α,A∨B)=F

6. vI(α,A→B)=T iff vI(α,A)=F or vI(α,B)=T, otherwise vI(α,A→B)=F

7. vI(α,∀xA)=T iff vI(α{x←d},A)=T for all d∈D, otherwise vI(α,∀xA)=F

8. vI(α,∃xA)=T iff vI(α{x←d},A)=T for some d∈D, otherwise vI(α,∃xA)=F

9. vI(α,>)=T and vI(α,⊥)=F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 23 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0

; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3

; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0

; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

Semantics

Semantics — Truth Value

Theorem 4.1 (Value of closed formulae).

For a closed term or formula, the assignment has no influence on the term
value or truth value. We can write vI(A) instead of vI(α,A).

Example: A = ∀x p(a, x) with the interpretations

1. I = (N, ι) with pι =≤ and aι = 0 ; vI(A) = T

2. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F

3. I = (Z, ι) with pι =≤ and aι = 0 ; vI(A) = F

4. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a))) with interpretations

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1
; vI(B) = T

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1
; vI(B) = F

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 24 / 41

The Substitution Lemma

Outline

I Motivation

I Syntax

I Variables

I Semantics

I The Substitution Lemma

I Satisfiability & Validity

I LK for First-order Logic

I Summary

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 25 / 41

The Substitution Lemma

The Substitution Lemma for Terms

Theorem 5.1 (Substitution Lemma for Terms).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V, and terms t, s ∈ T

vI(α, t[y\s]) = vI(α{y←vI(α, s)}, t)

Proof.

By structural induction on t. We abbreviate: α′ := α{y←vI(α, s)}

For a constant a, a[y\s] = a, so vI(α, a[y\s]) = vI(α, a) = aι = vI(α′, a)

For a variable x 6= y, x [y\s] = x, so
vI(α, x [y\s]) = vI(α, x) = α(x) = α′(x) = vI(α′, x)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 26 / 41

The Substitution Lemma

The Substitution Lemma for Terms

Theorem 5.1 (Substitution Lemma for Terms).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V, and terms t, s ∈ T

vI(α, t[y\s]) = vI(α{y←vI(α, s)}, t)

Proof.

By structural induction on t.

We abbreviate: α′ := α{y←vI(α, s)}

For a constant a, a[y\s] = a, so vI(α, a[y\s]) = vI(α, a) = aι = vI(α′, a)

For a variable x 6= y, x [y\s] = x, so
vI(α, x [y\s]) = vI(α, x) = α(x) = α′(x) = vI(α′, x)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 26 / 41

The Substitution Lemma

The Substitution Lemma for Terms

Theorem 5.1 (Substitution Lemma for Terms).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V, and terms t, s ∈ T

vI(α, t[y\s]) = vI(α{y←vI(α, s)}, t)

Proof.

By structural induction on t. We abbreviate: α′ := α{y←vI(α, s)}

For a constant a, a[y\s] = a, so vI(α, a[y\s]) = vI(α, a) = aι = vI(α′, a)

For a variable x 6= y, x [y\s] = x, so
vI(α, x [y\s]) = vI(α, x) = α(x) = α′(x) = vI(α′, x)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 26 / 41

The Substitution Lemma

The Substitution Lemma for Terms

Theorem 5.1 (Substitution Lemma for Terms).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V, and terms t, s ∈ T

vI(α, t[y\s]) = vI(α{y←vI(α, s)}, t)

Proof.

By structural induction on t. We abbreviate: α′ := α{y←vI(α, s)}

For a constant a, a[y\s] = a, so vI(α, a[y\s]) = vI(α, a) = aι = vI(α′, a)

For a variable x 6= y, x [y\s] = x, so
vI(α, x [y\s]) = vI(α, x) = α(x) = α′(x) = vI(α′, x)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 26 / 41

The Substitution Lemma

The Substitution Lemma for Terms

Theorem 5.1 (Substitution Lemma for Terms).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V, and terms t, s ∈ T

vI(α, t[y\s]) = vI(α{y←vI(α, s)}, t)

Proof.

By structural induction on t. We abbreviate: α′ := α{y←vI(α, s)}

For a constant a, a[y\s] = a, so vI(α, a[y\s]) = vI(α, a) = aι = vI(α′, a)

For a variable x 6= y, x [y\s] = x, so
vI(α, x [y\s]) = vI(α, x) = α(x) = α′(x) = vI(α′, x)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 26 / 41

The Substitution Lemma

Proof of substitution lemma, continued

Proof.

For the variable y , y [y\s] = s, so
vI(α, y [y\s]) = vI(α, s) = vI(α{y←vI(α, s)}, y)

For a complex term, f (. . . ti . . .)[y\s] = f (. . . ti [y\s] . . .), so

vI(α, f (. . . ti . . .)[y\s])

= vI(α, f (. . . ti [y\s] . . .)) by def. of substitution

= f ι(. . . vI(α, ti [y\s]) . . .) by model semantics

= f ι(. . . vI(α′, ti) . . .) by the induction hypothesis

= vI(α′, f (. . . ti . . .)) by model semantics

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 27 / 41

The Substitution Lemma

Proof of substitution lemma, continued

Proof.

For the variable y , y [y\s] = s, so
vI(α, y [y\s]) = vI(α, s) = vI(α{y←vI(α, s)}, y)

For a complex term, f (. . . ti . . .)[y\s] = f (. . . ti [y\s] . . .), so

vI(α, f (. . . ti . . .)[y\s])

= vI(α, f (. . . ti [y\s] . . .)) by def. of substitution

= f ι(. . . vI(α, ti [y\s]) . . .) by model semantics

= f ι(. . . vI(α′, ti) . . .) by the induction hypothesis

= vI(α′, f (. . . ti . . .)) by model semantics

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 27 / 41

The Substitution Lemma

Proof of substitution lemma, continued

Proof.

For the variable y , y [y\s] = s, so
vI(α, y [y\s]) = vI(α, s) = vI(α{y←vI(α, s)}, y)

For a complex term, f (. . . ti . . .)[y\s] = f (. . . ti [y\s] . . .), so

vI(α, f (. . . ti . . .)[y\s])

= vI(α, f (. . . ti [y\s] . . .)) by def. of substitution

= f ι(. . . vI(α, ti [y\s]) . . .) by model semantics

= f ι(. . . vI(α′, ti) . . .) by the induction hypothesis

= vI(α′, f (. . . ti . . .)) by model semantics

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 27 / 41

The Substitution Lemma

Proof of substitution lemma, continued

Proof.

For the variable y , y [y\s] = s, so
vI(α, y [y\s]) = vI(α, s) = vI(α{y←vI(α, s)}, y)

For a complex term, f (. . . ti . . .)[y\s] = f (. . . ti [y\s] . . .), so

vI(α, f (. . . ti . . .)[y\s])

= vI(α, f (. . . ti [y\s] . . .)) by def. of substitution

= f ι(. . . vI(α, ti [y\s]) . . .) by model semantics

= f ι(. . . vI(α′, ti) . . .) by the induction hypothesis

= vI(α′, f (. . . ti . . .)) by model semantics

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 27 / 41

The Substitution Lemma

Proof of substitution lemma, continued

Proof.

For the variable y , y [y\s] = s, so
vI(α, y [y\s]) = vI(α, s) = vI(α{y←vI(α, s)}, y)

For a complex term, f (. . . ti . . .)[y\s] = f (. . . ti [y\s] . . .), so

vI(α, f (. . . ti . . .)[y\s])

= vI(α, f (. . . ti [y\s] . . .)) by def. of substitution

= f ι(. . . vI(α, ti [y\s]) . . .) by model semantics

= f ι(. . . vI(α′, ti) . . .) by the induction hypothesis

= vI(α′, f (. . . ti . . .)) by model semantics

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 27 / 41

The Substitution Lemma

Proof of substitution lemma, continued

Proof.

For the variable y , y [y\s] = s, so
vI(α, y [y\s]) = vI(α, s) = vI(α{y←vI(α, s)}, y)

For a complex term, f (. . . ti . . .)[y\s] = f (. . . ti [y\s] . . .), so

vI(α, f (. . . ti . . .)[y\s])

= vI(α, f (. . . ti [y\s] . . .)) by def. of substitution

= f ι(. . . vI(α, ti [y\s]) . . .) by model semantics

= f ι(. . . vI(α′, ti) . . .) by the induction hypothesis

= vI(α′, f (. . . ti . . .)) by model semantics

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 27 / 41

The Substitution Lemma

The Substitution Lemma for Formulae

Theorem 5.2 (Substitution Lemma for Formulae).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V, a formula A and a term s ∈ T , such that
{y\s} is capture-free for A.

vI(α,A[y\s]) = vI(α{y←vI(α, s)},A)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 28 / 41

Satisfiability & Validity

Outline

I Motivation

I Syntax

I Variables

I Semantics

I The Substitution Lemma

I Satisfiability & Validity

I LK for First-order Logic

I Summary

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 29 / 41

Satisfiability & Validity

Satisfiability and Validity

Definition 6.1 (Satisfiable,Model,Unsatisfiable,Valid,Invalid).

Let A be a closed (first-order) formula and U={A1, . . .} be a set of closed
(first-order) formulae Ai .

I A is satisfiable iff vI(A) = T for some interpretation I.

I A satisfying interpretation I for A is called a model for A.

I U={A1, . . .} is satisfiable iff there is (common) model for all Ai .

I A (resp. U) is unsatisfiable iff A (resp. U) is not satisfiable.

I A is valid, denoted |= A, iff vI(A) = T for all interpretations I.

I A is invalid/falsifiable iff A is not valid.

Theorem 6.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

A is valid iff ¬A is unsatisfiable. A is satisfiable iff ¬A is invalid.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 30 / 41

Satisfiability & Validity

Satisfiability and Validity

Definition 6.1 (Satisfiable,Model,Unsatisfiable,Valid,Invalid).

Let A be a closed (first-order) formula and U={A1, . . .} be a set of closed
(first-order) formulae Ai .

I A is satisfiable iff vI(A) = T for some interpretation I.

I A satisfying interpretation I for A is called a model for A.

I U={A1, . . .} is satisfiable iff there is (common) model for all Ai .

I A (resp. U) is unsatisfiable iff A (resp. U) is not satisfiable.

I A is valid, denoted |= A, iff vI(A) = T for all interpretations I.

I A is invalid/falsifiable iff A is not valid.

Theorem 6.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

A is valid iff ¬A is unsatisfiable. A is satisfiable iff ¬A is invalid.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 30 / 41

Satisfiability & Validity

Satisfiability and Validity

Definition 6.1 (Satisfiable,Model,Unsatisfiable,Valid,Invalid).

Let A be a closed (first-order) formula and U={A1, . . .} be a set of closed
(first-order) formulae Ai .

I A is satisfiable iff vI(A) = T for some interpretation I.

I A satisfying interpretation I for A is called a model for A.

I U={A1, . . .} is satisfiable iff there is (common) model for all Ai .

I A (resp. U) is unsatisfiable iff A (resp. U) is not satisfiable.

I A is valid, denoted |= A, iff vI(A) = T for all interpretations I.

I A is invalid/falsifiable iff A is not valid.

Theorem 6.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

A is valid iff ¬A is unsatisfiable. A is satisfiable iff ¬A is invalid.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 30 / 41

Satisfiability & Validity

Satisfiability and Validity

Definition 6.1 (Satisfiable,Model,Unsatisfiable,Valid,Invalid).

Let A be a closed (first-order) formula and U={A1, . . .} be a set of closed
(first-order) formulae Ai .

I A is satisfiable iff vI(A) = T for some interpretation I.

I A satisfying interpretation I for A is called a model for A.

I U={A1, . . .} is satisfiable iff there is (common) model for all Ai .

I A (resp. U) is unsatisfiable iff A (resp. U) is not satisfiable.

I A is valid, denoted |= A, iff vI(A) = T for all interpretations I.

I A is invalid/falsifiable iff A is not valid.

Theorem 6.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

A is valid iff ¬A is unsatisfiable. A is satisfiable iff ¬A is invalid.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 30 / 41

Satisfiability & Validity

Satisfiability and Validity

Definition 6.1 (Satisfiable,Model,Unsatisfiable,Valid,Invalid).

Let A be a closed (first-order) formula and U={A1, . . .} be a set of closed
(first-order) formulae Ai .

I A is satisfiable iff vI(A) = T for some interpretation I.

I A satisfying interpretation I for A is called a model for A.

I U={A1, . . .} is satisfiable iff there is (common) model for all Ai .

I A (resp. U) is unsatisfiable iff A (resp. U) is not satisfiable.

I A is valid, denoted |= A, iff vI(A) = T for all interpretations I.

I A is invalid/falsifiable iff A is not valid.

Theorem 6.1 (Satisfiable, Valid, Unsatisfiable, Invalid).

A is valid iff ¬A is unsatisfiable. A is satisfiable iff ¬A is invalid.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 30 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3

; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c

; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1

; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1

; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))

; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”),

but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))

; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2,

invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Examples for Satisfiable and Invalid Formulae

Example: A = ∀x p(a, x)

1. I = (N, ι) with pι =≤ and aι = 3 ; vI(A) = F
; A is invalid

2. I = ({c , d , e, f }, ι) with pι =≤lexi and aι = c ; vI(A) = T
; A is satisfiable (I is a model)

Example: B = ∀x ∀y (p(x , y)→ p(f (x , a), f (y , a)))

1. I = (Z, ι) with pι =≤, f ι = +, and aι = 1 ; vI(B) = T
; satisfiable (I is a model)

2. I = (Z, ι) with pι =>, f ι = ∗, and aι = −1 ; vI(B) = F
; invalid (I is a “counter-model”)

Example: ∀x ∀y (p(x , y)→ p(y , x))
; satisfiable (e.g. pι =“=”), but invalid (e.g. pι =“<”)

Example: ∃x ∃y (p(x) ∧ ¬p(y))
; only satisfiable for |D| ≥ 2, invalid (e.g. D = N, pι = even)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 31 / 41

Satisfiability & Validity

Logical Equivalence

The concept of logical equivalence can be adapted to first-order logic, i.e.
to closed first-order formulae.

Definition 6.2 (Logical Equivalence).

Let A1, A2 be two closed formulae. A1 is logically equivalent to A2,
denoted A1 ≡ A2 iff vI(A1) = vI(A2) for all interpretations I.

Theorem 6.2 (Relation ≡ and ↔).

Let A,B be two closed formulae. Then A ≡ B iff |= A↔ B.

Remark: A↔ B := (A→ B) ∧ (B → A)

Important: even though ≡ and ↔ are closely related, they are different relations.

Whereas ↔ is part of the object language (i.e. the definition of formulae), ≡ is

used in the meta-language to talk about or relate formulae.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 32 / 41

Satisfiability & Validity

Logical Equivalence

The concept of logical equivalence can be adapted to first-order logic, i.e.
to closed first-order formulae.

Definition 6.2 (Logical Equivalence).

Let A1, A2 be two closed formulae. A1 is logically equivalent to A2,
denoted A1 ≡ A2 iff vI(A1) = vI(A2) for all interpretations I.

Theorem 6.2 (Relation ≡ and ↔).

Let A,B be two closed formulae. Then A ≡ B iff |= A↔ B.

Remark: A↔ B := (A→ B) ∧ (B → A)

Important: even though ≡ and ↔ are closely related, they are different relations.

Whereas ↔ is part of the object language (i.e. the definition of formulae), ≡ is

used in the meta-language to talk about or relate formulae.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 32 / 41

Satisfiability & Validity

Logical Equivalence

The concept of logical equivalence can be adapted to first-order logic, i.e.
to closed first-order formulae.

Definition 6.2 (Logical Equivalence).

Let A1, A2 be two closed formulae. A1 is logically equivalent to A2,
denoted A1 ≡ A2 iff vI(A1) = vI(A2) for all interpretations I.

Theorem 6.2 (Relation ≡ and ↔).

Let A,B be two closed formulae. Then A ≡ B iff |= A↔ B.

Remark: A↔ B := (A→ B) ∧ (B → A)

Important: even though ≡ and ↔ are closely related, they are different relations.

Whereas ↔ is part of the object language (i.e. the definition of formulae), ≡ is

used in the meta-language to talk about or relate formulae.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 32 / 41

Satisfiability & Validity

Logical Equivalence

The concept of logical equivalence can be adapted to first-order logic, i.e.
to closed first-order formulae.

Definition 6.2 (Logical Equivalence).

Let A1, A2 be two closed formulae. A1 is logically equivalent to A2,
denoted A1 ≡ A2 iff vI(A1) = vI(A2) for all interpretations I.

Theorem 6.2 (Relation ≡ and ↔).

Let A,B be two closed formulae. Then A ≡ B iff |= A↔ B.

Remark: A↔ B := (A→ B) ∧ (B → A)

Important: even though ≡ and ↔ are closely related, they are different relations.

Whereas ↔ is part of the object language (i.e. the definition of formulae), ≡ is

used in the meta-language to talk about or relate formulae.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 32 / 41

Satisfiability & Validity

Logically Equivalent Formulae

Duality: ∀ can be expressed with ∃, and vice versa

I |= ∀x A(x)↔ ¬∃x ¬A(x)

I |= ∃x A(x)↔ ¬∀x ¬A(x)

Commutativity:

I |= ∀x ∀y A(x , y)↔ ∀y ∀x A(x , y)

I |= ∃x ∃y A(x , y)↔ ∃y ∃x A(x , y)

I |= ∃x ∀y A(x , y)→ ∀y ∃x A(x , y) (other direction is not valid!)

Distributivity:

I |= ∃x (A(x) ∨ B(x))↔ ∃x A(x) ∨ ∃x B(x)

I |= ∀x (A(x) ∧ B(x))↔ ∀x A(x) ∧ ∀x B(x)

I |= ∀x A(x) ∨ ∀x B(x)→ ∀x (A(x) ∨ B(x)) (other direction not valid!)

I |= ∃x (A(x) ∧ B(x))→ ∃x A(x) ∧ ∃x B(x) (other direction not valid!)

See [Ben-Ari 2012] for more equivalences involving quantifiers.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 33 / 41

Satisfiability & Validity

Logically Equivalent Formulae

Duality: ∀ can be expressed with ∃, and vice versa

I |= ∀x A(x)↔ ¬∃x ¬A(x)

I |= ∃x A(x)↔ ¬∀x ¬A(x)

Commutativity:

I |= ∀x ∀y A(x , y)↔ ∀y ∀x A(x , y)

I |= ∃x ∃y A(x , y)↔ ∃y ∃x A(x , y)

I |= ∃x ∀y A(x , y)→ ∀y ∃x A(x , y) (other direction is not valid!)

Distributivity:

I |= ∃x (A(x) ∨ B(x))↔ ∃x A(x) ∨ ∃x B(x)

I |= ∀x (A(x) ∧ B(x))↔ ∀x A(x) ∧ ∀x B(x)

I |= ∀x A(x) ∨ ∀x B(x)→ ∀x (A(x) ∨ B(x)) (other direction not valid!)

I |= ∃x (A(x) ∧ B(x))→ ∃x A(x) ∧ ∃x B(x) (other direction not valid!)

See [Ben-Ari 2012] for more equivalences involving quantifiers.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 33 / 41

Satisfiability & Validity

Logically Equivalent Formulae

Duality: ∀ can be expressed with ∃, and vice versa

I |= ∀x A(x)↔ ¬∃x ¬A(x)

I |= ∃x A(x)↔ ¬∀x ¬A(x)

Commutativity:

I |= ∀x ∀y A(x , y)↔ ∀y ∀x A(x , y)

I |= ∃x ∃y A(x , y)↔ ∃y ∃x A(x , y)

I |= ∃x ∀y A(x , y)→ ∀y ∃x A(x , y) (other direction is not valid!)

Distributivity:

I |= ∃x (A(x) ∨ B(x))↔ ∃x A(x) ∨ ∃x B(x)

I |= ∀x (A(x) ∧ B(x))↔ ∀x A(x) ∧ ∀x B(x)

I |= ∀x A(x) ∨ ∀x B(x)→ ∀x (A(x) ∨ B(x)) (other direction not valid!)

I |= ∃x (A(x) ∧ B(x))→ ∃x A(x) ∧ ∃x B(x) (other direction not valid!)

See [Ben-Ari 2012] for more equivalences involving quantifiers.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 33 / 41

Satisfiability & Validity

Logical Consequence

Definition 6.3 (Logical Consequence).

Let A be a closed formula and U be a set of closed formulae. A is a logical
consequence of U, denoted U |= A, iff every model of U is a model of A,
i.e. vI(Ai) = T for all Ai ∈ U implies vI(A) = T.

Theorem 6.3 (Logical Consequence and Validity).

Let A be a closed formula and U={A1, . . . ,An} be a set of closed
formulae. Then U |= A iff |= (A1 ∧ · · · ∧ An)→ A.

I again, we can reduce the problem of “logical consequence” to the
problem of determining if a formula is valid

I hence, we need methods or proof search calculi that can deal with
first-order formulae

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 34 / 41

Satisfiability & Validity

Logical Consequence

Definition 6.3 (Logical Consequence).

Let A be a closed formula and U be a set of closed formulae. A is a logical
consequence of U, denoted U |= A, iff every model of U is a model of A,
i.e. vI(Ai) = T for all Ai ∈ U implies vI(A) = T.

Theorem 6.3 (Logical Consequence and Validity).

Let A be a closed formula and U={A1, . . . ,An} be a set of closed
formulae. Then U |= A iff |= (A1 ∧ · · · ∧ An)→ A.

I again, we can reduce the problem of “logical consequence” to the
problem of determining if a formula is valid

I hence, we need methods or proof search calculi that can deal with
first-order formulae

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 34 / 41

Satisfiability & Validity

Logical Consequence

Definition 6.3 (Logical Consequence).

Let A be a closed formula and U be a set of closed formulae. A is a logical
consequence of U, denoted U |= A, iff every model of U is a model of A,
i.e. vI(Ai) = T for all Ai ∈ U implies vI(A) = T.

Theorem 6.3 (Logical Consequence and Validity).

Let A be a closed formula and U={A1, . . . ,An} be a set of closed
formulae. Then U |= A iff |= (A1 ∧ · · · ∧ An)→ A.

I again, we can reduce the problem of “logical consequence” to the
problem of determining if a formula is valid

I hence, we need methods or proof search calculi that can deal with
first-order formulae

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 34 / 41

LK for First-order Logic

Outline

I Motivation

I Syntax

I Variables

I Semantics

I The Substitution Lemma

I Satisfiability & Validity

I LK for First-order Logic

I Summary

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 35 / 41

LK for First-order Logic

LK — Axiom and Propositional Rules

I axiom axiom
Γ,A =⇒ A,∆

I rules for ∧ (conjunction)
Γ,A,B =⇒ ∆

∧-left
Γ,A ∧ B =⇒ ∆

Γ =⇒ A,∆ Γ =⇒ B,∆
∧-right

Γ =⇒ A ∧ B,∆

I rules for ∨ (disjunction)
Γ,A =⇒ ∆ Γ,B =⇒ ∆

∨-left
Γ,A ∨ B =⇒ ∆

Γ =⇒ A,B,∆
∨-right

Γ =⇒ A ∨ B,∆

I rules for → (implication)
Γ =⇒ A,∆ Γ,B =⇒ ∆

→-left
Γ,A→ B =⇒ ∆

Γ,A =⇒ B,∆
→-right

Γ =⇒ A→ B,∆

I rules for ¬ (negation)
Γ =⇒ A,∆

¬-left
Γ,¬A =⇒ ∆

Γ,A =⇒ ∆
¬-right

Γ =⇒ ¬A,∆

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 36 / 41

LK for First-order Logic

LK — Rules for Universal and Existential Quantifier

I rules for ∀ (universal quantifier)

Γ,A[x\t],∀x A =⇒ ∆
∀-left

Γ,∀x A =⇒ ∆

Γ =⇒ A[x\a],∆
∀-right∗

Γ =⇒ ∀x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∀-right∗: a must not occur in the

conclusion, i.e. in Γ, ∆, or A
I the formula ∀x A is preserved in the premise of the rule ∀-left

I rules for ∃ (existential quantifier)

Γ,A[x\a] =⇒ ∆
∃-left∗

Γ,∃x A =⇒ ∆

Γ =⇒ ∃x A,A[x\t],∆
∃-right

Γ =⇒ ∃x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∃-left∗: a must not occur in the conclusion,

i.e. in Γ, ∆, or A
I the formula ∃x A is preserved in the premise of the rule ∃-right

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 37 / 41

LK for First-order Logic

LK — Rules for Universal and Existential Quantifier

I rules for ∀ (universal quantifier)

Γ,A[x\t],∀x A =⇒ ∆
∀-left

Γ,∀x A =⇒ ∆

Γ =⇒ A[x\a],∆
∀-right∗

Γ =⇒ ∀x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∀-right∗: a must not occur in the

conclusion, i.e. in Γ, ∆, or A
I the formula ∀x A is preserved in the premise of the rule ∀-left

I rules for ∃ (existential quantifier)

Γ,A[x\a] =⇒ ∆
∃-left∗

Γ,∃x A =⇒ ∆

Γ =⇒ ∃x A,A[x\t],∆
∃-right

Γ =⇒ ∃x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∃-left∗: a must not occur in the conclusion,

i.e. in Γ, ∆, or A
I the formula ∃x A is preserved in the premise of the rule ∃-right

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 37 / 41

LK for First-order Logic

LK — Rules for Universal and Existential Quantifier

I rules for ∀ (universal quantifier)

Γ,A[x\t],∀x A =⇒ ∆
∀-left

Γ,∀x A =⇒ ∆

Γ =⇒ A[x\a],∆
∀-right∗

Γ =⇒ ∀x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∀-right∗: a must not occur in the

conclusion, i.e. in Γ, ∆, or A
I the formula ∀x A is preserved in the premise of the rule ∀-left

I rules for ∃ (existential quantifier)

Γ,A[x\a] =⇒ ∆
∃-left∗

Γ,∃x A =⇒ ∆

Γ =⇒ ∃x A,A[x\t],∆
∃-right

Γ =⇒ ∃x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∃-left∗: a must not occur in the conclusion,

i.e. in Γ, ∆, or A
I the formula ∃x A is preserved in the premise of the rule ∃-right

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 37 / 41

LK for First-order Logic

LK — Rules for Universal and Existential Quantifier

I rules for ∀ (universal quantifier)

Γ,A[x\t],∀x A =⇒ ∆
∀-left

Γ,∀x A =⇒ ∆

Γ =⇒ A[x\a],∆
∀-right∗

Γ =⇒ ∀x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∀-right∗: a must not occur in the

conclusion, i.e. in Γ, ∆, or A
I the formula ∀x A is preserved in the premise of the rule ∀-left

I rules for ∃ (existential quantifier)

Γ,A[x\a] =⇒ ∆
∃-left∗

Γ,∃x A =⇒ ∆

Γ =⇒ ∃x A,A[x\t],∆
∃-right

Γ =⇒ ∃x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∃-left∗: a must not occur in the conclusion,

i.e. in Γ, ∆, or A
I the formula ∃x A is preserved in the premise of the rule ∃-right

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 37 / 41

LK for First-order Logic

LK — Rules for Universal and Existential Quantifier

I rules for ∀ (universal quantifier)

Γ,A[x\t],∀x A =⇒ ∆
∀-left

Γ,∀x A =⇒ ∆

Γ =⇒ A[x\a],∆
∀-right∗

Γ =⇒ ∀x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∀-right∗: a must not occur in the

conclusion, i.e. in Γ, ∆, or A
I the formula ∀x A is preserved in the premise of the rule ∀-left

I rules for ∃ (existential quantifier)

Γ,A[x\a] =⇒ ∆
∃-left∗

Γ,∃x A =⇒ ∆

Γ =⇒ ∃x A,A[x\t],∆
∃-right

Γ =⇒ ∃x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∃-left∗: a must not occur in the conclusion,

i.e. in Γ, ∆, or A
I the formula ∃x A is preserved in the premise of the rule ∃-right

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 37 / 41

LK for First-order Logic

LK — Rules for Universal and Existential Quantifier

I rules for ∀ (universal quantifier)

Γ,A[x\t],∀x A =⇒ ∆
∀-left

Γ,∀x A =⇒ ∆

Γ =⇒ A[x\a],∆
∀-right∗

Γ =⇒ ∀x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∀-right∗: a must not occur in the

conclusion, i.e. in Γ, ∆, or A
I the formula ∀x A is preserved in the premise of the rule ∀-left

I rules for ∃ (existential quantifier)

Γ,A[x\a] =⇒ ∆
∃-left∗

Γ,∃x A =⇒ ∆

Γ =⇒ ∃x A,A[x\t],∆
∃-right

Γ =⇒ ∃x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∃-left∗: a must not occur in the conclusion,

i.e. in Γ, ∆, or A
I the formula ∃x A is preserved in the premise of the rule ∃-right

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 37 / 41

LK for First-order Logic

LK — Rules for Universal and Existential Quantifier

I rules for ∀ (universal quantifier)

Γ,A[x\t],∀x A =⇒ ∆
∀-left

Γ,∀x A =⇒ ∆

Γ =⇒ A[x\a],∆
∀-right∗

Γ =⇒ ∀x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∀-right∗: a must not occur in the

conclusion, i.e. in Γ, ∆, or A
I the formula ∀x A is preserved in the premise of the rule ∀-left

I rules for ∃ (existential quantifier)

Γ,A[x\a] =⇒ ∆
∃-left∗

Γ,∃x A =⇒ ∆

Γ =⇒ ∃x A,A[x\t],∆
∃-right

Γ =⇒ ∃x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∃-left∗: a must not occur in the conclusion,

i.e. in Γ, ∆, or A
I the formula ∃x A is preserved in the premise of the rule ∃-right

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 37 / 41

LK for First-order Logic

LK — Rules for Universal and Existential Quantifier

I rules for ∀ (universal quantifier)

Γ,A[x\t],∀x A =⇒ ∆
∀-left

Γ,∀x A =⇒ ∆

Γ =⇒ A[x\a],∆
∀-right∗

Γ =⇒ ∀x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∀-right∗: a must not occur in the

conclusion, i.e. in Γ, ∆, or A
I the formula ∀x A is preserved in the premise of the rule ∀-left

I rules for ∃ (existential quantifier)

Γ,A[x\a] =⇒ ∆
∃-left∗

Γ,∃x A =⇒ ∆

Γ =⇒ ∃x A,A[x\t],∆
∃-right

Γ =⇒ ∃x A,∆

I t is an arbitrary closed term
I Eigenvariable condition for the rule ∃-left∗: a must not occur in the conclusion,

i.e. in Γ, ∆, or A
I the formula ∃x A is preserved in the premise of the rule ∃-right

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 37 / 41

LK for First-order Logic

Soundness and Completeness

Theorem 7.1 (Soundness and Completeness of LK).

The calculus of natural deduction LK is sound and complete, i.e.

I if A is provable in LK, then A is valid (if ` A then |= A)

I if A is valid, then A is provable in LK (if |= A then ` A)

Proof.

Next week.

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 38 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right

=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right

p(a) =⇒ ∃x p(x)
→-right

=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom

p(a) =⇒ p(a),∃x p(x)
∃-right

p(a) =⇒ ∃x p(x)
→-right

=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right

=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)

p(a) =⇒ p(b)
→-right

=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left

∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right

p(c),∀x p(x) =⇒ ∃x p(x)
∀-left∀x p(x) =⇒ ∃x p(x)

→-right
=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom

p(c),∀x p(x) =⇒ p(c),∃x p(x)
∃-right

p(c),∀x p(x) =⇒ ∃x p(x)
∀-left∀x p(x) =⇒ ∃x p(x)

→-right
=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗

∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗

∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

LK for First-order Logic

Examples of LK Proofs

Example: p(a)→ ∃x p(x)

axiom
p(a) =⇒ p(a),∃x p(x)

∃-right
p(a) =⇒ ∃x p(x)

→-right
=⇒ p(a)→ ∃x p(x)

Example: p(a)→ p(b)

(?)
p(a) =⇒ p(b)

→-right
=⇒ p(a)→ p(b)

Example: ∀x p(x)→ ∃x p(x)

axiom
p(c),∀x p(x) =⇒ p(c),∃x p(x)

∃-right
p(c),∀x p(x) =⇒ ∃x p(x)

∀-left∀x p(x) =⇒ ∃x p(x)
→-right

=⇒ ∀x p(x)→ ∃x p(x)

Example: ∃x p(x)→ p(a)

∃-left∗∃x p(x) =⇒ p(a)
→-right

=⇒ ∃x p(x)→ p(a)

rule ∃-left∗with p(x)[x\a] cannot be
applied as a occurs in the premise
(Eigenvariable condition!)

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 39 / 41

Summary

Outline

I Motivation

I Syntax

I Variables

I Semantics

I The Substitution Lemma

I Satisfiability & Validity

I LK for First-order Logic

I Summary

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 40 / 41

Summary

Summary

I first-order logic extends the syntax of propositional logic by: constants,
functions, variables, predicates, and the quantifiers ∀/∃

I the semantics consists of a domain D and an interpretation ι

I the interpretation ι relates constants to elements of the domain,
function symbols to actual functions, and predicates to relations

I variables are interpreted by a variable assignment α

I the formula ∀x p(x)/∃x p(x) evaluates to T iff p(x) evaluates
to T for all/some element(s) in D

I the truth value of formulae is inductively evaluated, and takes the value
of terms into account

I most concepts from propositional logic can be adapted

I four semantical concepts: satisfiable, valid, unsatisfiable, invalid

I logical consequence in first-order logic can be reduced to validity

I Next week: Soundness and completeness

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 41 / 41

Summary

Summary

I first-order logic extends the syntax of propositional logic by: constants,
functions, variables, predicates, and the quantifiers ∀/∃

I the semantics consists of a domain D and an interpretation ι

I the interpretation ι relates constants to elements of the domain,
function symbols to actual functions, and predicates to relations

I variables are interpreted by a variable assignment α

I the formula ∀x p(x)/∃x p(x) evaluates to T iff p(x) evaluates
to T for all/some element(s) in D

I the truth value of formulae is inductively evaluated, and takes the value
of terms into account

I most concepts from propositional logic can be adapted

I four semantical concepts: satisfiable, valid, unsatisfiable, invalid

I logical consequence in first-order logic can be reduced to validity

I Next week: Soundness and completeness

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 41 / 41

Summary

Summary

I first-order logic extends the syntax of propositional logic by: constants,
functions, variables, predicates, and the quantifiers ∀/∃

I the semantics consists of a domain D and an interpretation ι

I the interpretation ι relates constants to elements of the domain,
function symbols to actual functions, and predicates to relations

I variables are interpreted by a variable assignment α

I the formula ∀x p(x)/∃x p(x) evaluates to T iff p(x) evaluates
to T for all/some element(s) in D

I the truth value of formulae is inductively evaluated, and takes the value
of terms into account

I most concepts from propositional logic can be adapted

I four semantical concepts: satisfiable, valid, unsatisfiable, invalid

I logical consequence in first-order logic can be reduced to validity

I Next week: Soundness and completeness

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 41 / 41

Summary

Summary

I first-order logic extends the syntax of propositional logic by: constants,
functions, variables, predicates, and the quantifiers ∀/∃

I the semantics consists of a domain D and an interpretation ι

I the interpretation ι relates constants to elements of the domain,
function symbols to actual functions, and predicates to relations

I variables are interpreted by a variable assignment α

I the formula ∀x p(x)/∃x p(x) evaluates to T iff p(x) evaluates
to T for all/some element(s) in D

I the truth value of formulae is inductively evaluated, and takes the value
of terms into account

I most concepts from propositional logic can be adapted

I four semantical concepts: satisfiable, valid, unsatisfiable, invalid

I logical consequence in first-order logic can be reduced to validity

I Next week: Soundness and completeness

IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 41 / 41

Summary

Summary

I first-order logic extends the syntax of propositional logic by: constants,
functions, variables, predicates, and the quantifiers ∀/∃

I the semantics consists of a domain D and an interpretation ι

I the interpretation ι relates constants to elements of the domain,
function symbols to actual functions, and predicates to relations

I variables are interpreted by a variable assignment α

I the formula ∀x p(x)/∃x p(x) evaluates to T iff p(x) evaluates
to T for all/some element(s) in D

I the truth value of formulae is inductively evaluated, and takes the value
of terms into account

I most concepts from propositional logic can be adapted

I four semantical concepts: satisfiable, valid, unsatisfiable, invalid

I logical consequence in first-order logic can be reduced to validity

I Next week: Soundness and completeness
IN3070/4070 :: Autumn 2020 Lecture 4 :: 10th September 41 / 41

	Motivation
	Syntax
	Variables
	Semantics
	The Substitution Lemma
	Satisfiability & Validity
	LK for First-order Logic
	Summary

