IN3070/4070 – Logic – Autumn 2020 Lecture 5: Soundness & Completeness for 1st-order LK

Martin Giese

17th September 2020

UNIVERSITY OF OSLO

- Preliminaries and Reminders
- Soundness Proof
- ► Completeness: Preliminaries
- Proof of Completeness
- Examples of Counter-model Construction

Outline

- Preliminaries and Reminders
- Soundness Proof
- ► Completeness: Preliminaries
- Proof of Completeness
- Examples of Counter-model Construction

Reminder Soundness of LK

- We want all LK-provable sequents to be valid!
- If they are not, then LK would be incorrect or unsound ...

Definition 1.1 (Soundness).

The sequent calculus LK is sound if every LK-provable sequent is valid.

Theorem 1.1.

The sequent calculus LK is sound.

Assumptions about the first order language

- We assume that a first-order language is given, by sets of constants, function symbols, and predicates.
- ► Some rules require "fresh" constants, so we assume that the set of constant symbols A is (countably) infinite.
- A root sequent $\Gamma \implies \Delta$ consists of *closed* formulae.
- We show that if $\Gamma \implies \Delta$ is provable, then $\Gamma \implies \Delta$ is valid

Reminer: Semantics for Sequents

Definition 1.2 (Valid sequent).

A sequent $\Gamma \implies \Delta$ is valid if all interpretations that satisfy all formulae in Γ satisfy at least one formula in Δ .

Definition 1.3 (Countermodel/falsifiable sequent).

- An interpretation I is a countermodel for the sequent Γ ⇒ Δ if v_I(A) = T for all formulae A ∈ Γ and v_I(B) = F for all formulae B ∈ Δ
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- ► A sequent is falsifiable if it has a countermodel.

Syntax vs. Semantics for Quantifiers

- Soundness and Completeness give the connection between
 - syntax (= calculus)
 - semantics $(\mathcal{I} \models \varphi)$
- Quantifier rules use substitutions
- The semantics of quantifiers use variable assignments
- We therefore need a connection between
 - substitutions (= syntactic operations)
 - variable assignments (= semantic objects)
- ▶ This connection is given by the Substitution Lemma

Reminder: Substitution Lemma

Theorem 1.2 (Substitution Lemma for Formulae).

Given an interpretation $\mathcal{I} = (D, \iota)$ and a variable assignment α for \mathcal{I} . Given also a variable $y \in \mathcal{V}$, a formula A and a term $s \in \mathcal{T}$, such that $\{y \setminus s\}$ is capture-free for A.

$$v_{\mathcal{I}}(\alpha, \mathcal{A}[\mathbf{y} \setminus \mathbf{s}]) = v_{\mathcal{I}}(\alpha \{ \mathbf{y} \leftarrow v_{\mathcal{I}}(\alpha, \mathbf{s}) \}, \mathcal{A})$$

Definition 1.4 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x in A, none of the variables in $\sigma(x)$ is bound in A.

Note: if $t \in \mathcal{T}$ is a *closed* term, then $\{y \setminus t\}$ is capture-free for any A.

Outline

- Preliminaries and Reminders
- Soundness Proof
- ► Completeness: Preliminaries
- Proof of Completeness
- Examples of Counter-model Construction

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

Preservation of Falsifiability

Definition 2.1.

An LK-rule θ preserves falsifiability (upwards) if whenever the conclusion w of an instance $\frac{w_1 \cdots w_n}{w}$ of θ is falsifiabile, then also at least one of the premises w_i is falsifiable

NEW: the falsifying interpretation for the conclusion does not need to be the same as for the conclusion.

Lemma 2.1.

All LK-rules preserve falsifiability.

- We have shown that the rules for propositional connectives (∧, ∨, →, ¬) have this property.
- ▶ It remains to show that also the \forall and \exists rules preserve falsifiability.

Proof: ∀-left preserves falsifiability

$$\frac{ \Gamma, \forall x \, A, A[x \setminus t] \implies \Delta }{ \Gamma, \forall x \, A \implies \Delta} \forall \text{-left} \qquad t \text{ is a closed term}$$

- Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \forall x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\forall xA\}$ true and all formulae in Δ false.
- ▶ It suffices to show that $\mathcal{I} \models A[x \setminus t]$. Then, the premiss is falsified by \mathcal{I} .
- Since I ⊨ ∀x A, we know that v_I(α{x←d}, A) = T for all d ∈ D and any α. (Using the semantics of ∀)
- ► In particular, $v_{\mathcal{I}}(\alpha \{x \leftarrow v_{\mathcal{I}}(\alpha, t)\}, A) = T$
- By the substitution lemma: $v_{\mathcal{I}}(\alpha, A[x \setminus t]) = T$
- And therefore: $\mathcal{I} \models A[x \setminus t]$.

Proof: ∃-left preserves falsifiability

$$\frac{\Gamma, \mathcal{A}[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

a is a constant that does not occur in the conculsion

- Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- We have to find an interpretation that falsifies the premisse.
- But we can not simply assume that $\mathcal{I} \models A[x \setminus a]$.
- ▶ Since $\mathcal{I} \models \exists x A$ we know that $v_{\mathcal{I}}(\alpha \{x \leftarrow d\}, A) = T$ for some $d \in D$.
- ▶ Based on \mathcal{I} and d, we define a new model \mathcal{I}' as follows:

 - ▶ *a* is interpreted as *d*, ie. $a^{\iota'} = d$.
- Then \mathcal{I}' falsifies the premisse:
 - Since a does not occur in the conclusion, \mathcal{I}' and \mathcal{I} interpret the fml. in Γ og Δ equally. \mathcal{I}' makes all fml. in Γ true and all fml. in Δ false.

▶
$$v_{\mathcal{I}'}(\alpha\{x\leftarrow d\}, A) = v_{\mathcal{I}}(\alpha\{x\leftarrow d\}, A) = T$$
, and $d = v_{\mathcal{I}'}(\alpha, a)$, so $\mathcal{I}' \models A[x \setminus a]$, by the Substitution Lemma.

An Example

- Assume that I = (D, ι) is an interpretation with domain D = {1,2} and p^ι = {2}.
- Assume that a og b are constants and $a^{\iota} = b^{\iota} = 1$.
- Then $\mathcal{I} \not\models p(a)$ og $\mathcal{I} \not\models p(b)$.

$$\frac{p(b) \implies p(a)}{\exists x \ p(x) \implies p(a)} \exists \text{-left}$$

 \blacktriangleright *I* falsifies the conclusion:

$$\mathcal{I} \models \exists x \, p(x), \text{ since } v_{\mathcal{I}}(\alpha \{x \leftarrow 2\}, p(x)) = T$$
$$\mathcal{I} \not\models p(a).$$

- ▶ But \mathcal{I} does not falsify the premisse because $\mathcal{I} \not\models p(b)$.
- We define a new interpretation $\mathcal{I}' = (D, \iota')$ such that $b^{\iota'} = 2$.
- ▶ Then \mathcal{I}' falsifies the premisse.

Proof: \exists -right and \forall -right preserve satisfiability

The proof for ∀-right is dual to that for ∃-left
The proof for ∃-right is dual to that for ∀-left

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

Existence of a falsifiable leaf sequent

Lemma 2.2.

If the root sequent \mathcal{I} of an an LK-derivation is falsifiable, then at least one of the leaf sequents is falsifiable.

- As for propositional logic, the proof is by structural induction on the LK-derivation.
- ► The base case (one sequent Γ ⇒ Δ) is trivial since Γ ⇒ Δ is both root and leaf sequent.
- ► Two induction steps, for one-premisse and two-premisse rules
- ▶ Both use the lemma that falsifiability is preserved upwards.

Difference from propositional logic: not necessarily the same interpretation!

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

All axioms are valid

Lemma 2.3.

All axioms are valid

- The proof is the same as for propositional logic
- An axiom has the form

$$\Gamma, p(t_1, \ldots, t_n) \implies p(t_1, \ldots, t_n), \Delta$$

Any interpretation that satisfies the antecedent satisfies p(t₁,..., t_n).
Therefore, the same formula p(t₁,..., t_n) is satisfied in the succedent.

Proof of the Soundness Theorem for LK

Proof of soundness.

- Assume that \mathcal{P} is an LK-proof for the sequent $\Gamma \implies \Delta$.
 - $\blacktriangleright \ \mathcal{P}$ is an LK-derivation where every leaf is an axiom.
- For the sake of contradiction, assume that $\Gamma \implies \Delta$ is not valid.
- Then there is a countermodel \mathcal{I} that falsifies $\Gamma \implies \Delta$.
- ► We know from the previous Lemma that there is an *I*' that falsifies at least one leaf sequent of *P*.
- Then P has a leaf sequent that is not an axiom, since axioms are not falsifiable.
- ▶ So *P* cannot be an LK-proof.

Outline

- Preliminaries and Reminders
- Soundness Proof
- ► Completeness: Preliminaries
- Proof of Completeness
- Examples of Counter-model Construction

Herbrand Universe

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then $\mathcal{H}(T)$, the Herbrand universe of T, is the smallest set such that

- ► H(T) contains all constant symbols from T. If there are no constants in T, we include some constant symbol o from A (called a dummy constant) in H(T).
- ▶ If f is a function symbol in T, with arity n and $t_1, ..., t_n$ are terms in $\mathcal{H}(T)$, then $f(t_1, ..., t_n) \in \mathcal{H}(T)$.

The Herbrand universe of a set of formulae is the Herbrand universe of the set of terms occuring in the formulae. The Herbrand universe of a branch of a derivation is the Herbrand universe of the set of formulae occurring on that branch.

▶ Intuitively, the Herbrand universe of *T* is the set of all *closed* terms that can be constructed from the constant and function symbols in *T*.

Herbrand Universe: Examples

Example.

Let $T = \{f(x)\}$. Then the Herbrand universe of T is the set $\{o, f(o), f(f(o)), f(f(o))), \ldots\}$

Example.

Let $T = \{a, f(x)\}$. Then the Herbrand universe of T is the set $\{a, f(a), f(f(a)), f(f(f(a))), \ldots\}$

Example.

Let $F = \{ \forall x \, p(f(g(x))) \}$ Then the Herbrand universe of F is the set $\{o, f(o), g(o), f(g(o)), g(f(o)), f(f(o)), g(g(o)), \ldots \}$

Fairness

- To guarantee that a proof is found
 - all formulae have to be used in a rule eventually, and
 - ▶ all \forall -left and \exists -right rules are applied with *all terms* eventually.
- If we try to guarantee this,
 - 1. Either all branches can be closed, giving a proof,
 - 2. or there is an open branch that we can generate a counterexample from.
- This only makes sense if we include infinite derivations, i.e. derivations with infinitely long branches.
- We construct a *limit* by either continuing until no more rules can be applied, or continuing to apply rules indefinitely. We call the result of this process a *limit derivation*.
- ▶ When we talk about limit derivations, we include infinite trees.
- ▶ We won't define these formally.
- If all branches in a derivation can be closed, then the derivation is finite. I.e. proofs are finite.

Fairness

Definition 3.2 (Fair derivations).

A limit derivation is fair if each open branch has the following properties:

- 1. There are no sequents $\Gamma, A \implies A, \Delta$ on the branch that could be closed using the axiom.
- 2. If a \land , \lor , \rightarrow , or \neg formula occurs, then the corresponding LK rule is applied to the formula on that branch.
- 3. If a ∃ formula occurs in an antecedent, or a ∀ formula in a succedent, then the ∃-left, resp. ∀-right rules are applied to the formula on that branch.
- If a ∀ formula occurs in an antecedent, or a ∃ formula in a succedent, then the ∀-left, resp. ∃-right rules are applied to the formula on that branch for every term t in the Herbrand universe of that branch.

Königs Lemma

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let u_0 be the root node of the tree T. Since T is infinite and u_0 has finitely many descendants, one of u_0 's descendents must be infinite. (Otherwise T would be finite.) Let u_1 be the root of such a sub-tree. If the branch u_0, u_1, \ldots, u_n is defined, we find the next node u_{n+1} by the same kind of reasoning. This process defines an infinitely long branch.

Corollary 3.1.

If T is a finitley branching tree, where all branches are finitely long, then T is finite.

IN3070/4070 :: Autumn 2020

Outline

- Preliminaries and Reminders
- Soundness Proof
- ► Completeness: Preliminaries
- Proof of Completeness

Examples of Counter-model Construction

Proof of Completeness

Assume $\Gamma \implies \Delta$ is not provable.

- Construct a fair (limit) derivation \mathcal{D} from $\Gamma \implies \Delta$. Possibly infinite.
- Then there is (at least) one branch \mathcal{B} that does not end in an axiom.

▶ We construct an interpretation that falsifies $\Gamma \implies \Delta$. Let

 \mathcal{B}^{\top} be the set of formulae that occur in an antecedent on \mathcal{B} , and \mathcal{B}^{\perp} be the set of formulae that occur in an succedent on \mathcal{B} , and $\mathcal{A}t$ be the set of *atomic* formulae in \mathcal{B}^{\top} .

Proof of Completeness (Construction of counter-model)

- We construct a counter-model $\mathcal{I} = (D, \iota)$ for $\Gamma \implies \Delta$.
- ▶ Let the domain *D* be the Herbrand universe of the branch. (I.e. the set of all closed terms that can be generated from the terms on the branch).
- Let $a^{\iota} = a$ for all constant symbols $a \in \mathcal{A}$.
- ▶ If $f \in \mathcal{F}$ is a function symbol with arity *n*, let $f^{\iota}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.
 - Then $v_{\mathcal{I}}(t) = t$ for all closed terms t.
 - ► All terms are interpreted as themselves
- If p is a predicate symbol with arity n, let ⟨t₁,..., t_n⟩ ∈ p^ℓ if and only if p(t₁,..., t_n) ∈ At.
- Such an intepretation is often called a Herbrand model or a term model.

Proof of Completeness (Properties of \mathcal{I})

- We show by structural induction on first-order formlae that the interpretation *I* makes *all* formlae i B^T true and all formulae in B[⊥] false.
- ▶ We show for all first-order formulae A that:

If $A \in \mathcal{B}^{\top}$, then $\mathcal{I} \models A$, i.e. $v_{\mathcal{I}}(A) = T$ If $A \in \mathcal{B}^{\perp}$, then $\mathcal{I} \not\models A$, i.e. $v_{\mathcal{I}}(A) = F$

<u>Base case 1:</u> A is an atomic formula $p(t_1, \ldots, t_n)$ in \mathcal{B}^{\top} .

▶ Then $p(t_1, ..., t_n) \in At$ og $\langle t_1, ..., t_n \rangle \in p^{\iota}$ by construction.

• Therefore
$$\mathcal{I} \models p(t_1, \ldots, t_n)$$
.

<u>Base case 2:</u> A is an atomic formula $p(t_1, \ldots, t_n)$ i \mathcal{B}^{\perp} .

Since \mathcal{B} does not end in an axiom, and the derivation is fair, $p(t_1, \ldots, t_n) \notin At$ and $\langle t_1, \ldots, t_n \rangle \notin p^{\iota}$.

• Therefore
$$\mathcal{I} \not\models p(t_1, \ldots, t_n)$$
.

h

Proof of Completeness (Propositional connectives)

Induction step: From the assumption (induction hypothesis) that our statement holds for all smaller formulae, we have to show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$. Most of this was done in the proof for propositional logic E.g. assume that $A \land B \in \mathcal{B}^{\top}$.

- ▶ By fairness of the derivation, the \land -left rule has been applied to $A \land B$ on the branch \mathcal{B} .
- ▶ Then $A \in B^{\top}$ and $B \in B^{\top}$.
- By the induction hypothesis, $\mathcal{I} \models A$ and $\mathcal{I} \models B$.
- By model semantics, $\mathcal{I} \models A \land B$.

We only need to cover quantified formulae

Proof of Completeness (\exists in Antecedent)

Assume that $\exists x A \in \mathcal{B}^{\top}$.

- ▶ By fairness of the derivation, \exists -left was applied to $\exists x A$ on the branch.
- ▶ Then there is a constant *a* such that $A[x \setminus a] \in B^{\top}$.

▶ By the ind. hyp.,
$$\mathcal{I} \models A[x \setminus a]$$
.

- ▶ I.e. $v_{\mathcal{I}}(\alpha, A[x \setminus a]) = T$ for any assignment α , since $A[x \setminus a]$ is closed
- ▶ By the substitution lemma: $v_{\mathcal{I}}(\alpha \{x \leftarrow a^{\iota}\}, A) = T$.
- By model semantics: $v_{\mathcal{I}}(\alpha, \exists x A) = T$
- ▶ I.e. $\mathcal{I} \models \exists x A$.

Proof of Completeness (\exists in Succedent)

Assume that $\exists x A \in \mathcal{B}^{\perp}$.

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ► Then $v_{\mathcal{I}}(\alpha \{x \leftarrow t\}, A) = T$ for some term $t \in D$.
- By fairness of the derivation, the ∃-right rule was applied on ∃x A with the term t.
- It follows that:

•
$$A[x \setminus t] \in \mathcal{B}^{\perp}$$

- $v_{\mathcal{I}}(A[x \setminus t]) = F$ (induction hypothesis)
- ν_I(α{x←v_I(t)}, A) = F for any α (substitution lemma)

•
$$v_{\mathcal{I}}(\alpha \{x \leftarrow t\}, A) = F$$
 (since $v_{\mathcal{I}}(t) = t$)

Contradiction!

Proof of Completeness (\forall in Succedent)

Assume that $\forall x A \in \mathcal{B}^{\perp}$.

- By fairness of the derivation, ∀-right was applied to ∃x A on the branch.
- ▶ Then there is a constant *a* such that $A[x \setminus a] \in B^{\perp}$.
- By the ind. hyp., $\mathcal{I} \not\models A[x \setminus a]$.
- ▶ I.e. $v_{\mathcal{I}}(\alpha, A[x \setminus a]) = F$ for any assignment α , since $A[x \setminus a]$ is closed
- ▶ By the substitution lemma: $v_{\mathcal{I}}(\alpha \{x \leftarrow a^{\iota}\}, A) = F$.
- ▶ By model semantics: $v_{\mathcal{I}}(\alpha, \forall x A) = F$
- ▶ I.e. $\mathcal{I} \not\models \forall x A$.

Proof of Completeness (\forall in Antecedent)

Assume that $\forall x A \in \mathcal{B}^{\top}$.

- We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ► I.e. $\mathcal{I} \not\models \forall x A$
- Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha \{x \leftarrow t\}, A) = F$ for some term $t \in D$.
- ▶ By fairness of the derivation, the ∀-left rule was applied on ∀*x A* with the term *t*.
- It follows that:

•
$$A[x \setminus t] \in \mathcal{B}^{\top}$$

- $v_{\mathcal{I}}(A[x \setminus t]) = T$ (induction hypothesis)
- ▶ $v_{\mathcal{I}}(\alpha \{x \leftarrow v_{\mathcal{I}}(t)\}, A) = T$ for any α (substitution lemma)

•
$$v_{\mathcal{I}}(\alpha \{x \leftarrow t\}, A) = T$$
 (since $v_{\mathcal{I}}(t) = t$)

Contradiction!

Some comments

- ► We can see the construction of a limit derivation as approximating a counter-model for $\Gamma \implies \Delta$.
- ► The more often we apply the \forall -left and \exists -right rules, the 'closer' we get to a possible counter-model
- But constructing a counter-model in this way may require using all rules infinitely often.
- So this is not an algorithm for finding counter-models!
- ▶ It will find a proof if one exists, but may not terminate otherwise.
- There may be finite counter-models even when this method does not terminate. Finding finite counter-models is a topic of active research.
- The idea of the completeness proof is important: we construct an interpretation from something purely syntactic.

Outline

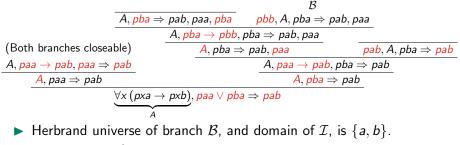
- Preliminaries and Reminders
- Soundness Proof
- ► Completeness: Preliminaries
- Proof of Completeness
- Examples of Counter-model Construction

Counter-model Construction, Ex. 1

• Abbreviate px for p(x), qb for q(b), etc.

- ▶ The Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pa \in B^{\top}$, define $a \in p^{\iota}$, so $\mathcal{I} \models pa$.
- ▶ Since $qa \in \mathcal{B}^{\top}$, define $a \in q^{\iota}$, so $\mathcal{I} \models qa$ and thus $\mathcal{I} \models pa \rightarrow qa$.
- ▶ Since $qb \in B^{\perp}$, define $b \notin q^{\iota}$, so $\mathcal{I} \not\models qb$ and thus $\mathcal{I} \not\models \forall x qx$.
- ▶ Since $pb \in B^{\perp}$, define $b \notin p^{\iota}$, so $\mathcal{I} \not\models pb$ and thus $\mathcal{I} \models pb \rightarrow qb$.
- ▶ Therefore also $\mathcal{I} \models \forall x (px \rightarrow qx)$.
- \mathcal{I} makes all of \mathcal{B}^{\top} true and all of \mathcal{B}^{\perp} false.

Counter-model Construction, Ex. 2



Since
$$pab \in \mathcal{B}^{\perp}$$
, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.

▶ Since
$$pba \in B^{\top}$$
 vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.

- ▶ Since $paa \in B^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.
- ▶ Since $pbb \in B^{\top}$ vil $\langle b, b \rangle \in p^{\iota}$, so $\mathcal{I} \models pbb$ and $\mathcal{I} \models pba \rightarrow pbb$.
- We thus have $\mathcal{I} \models \forall x (pxa \rightarrow pxb)$.
- \mathcal{I} makes all of \mathcal{B}^{\top} true and all of \mathcal{B}^{\perp} false.

Summary and Outlook

- \blacktriangleright We can show things for ∞ many interpretations using finite proofs!
- ► OMG! Amazing!
- Uncloseable branches give counter-models
- ▶ Might be infinite: if there is no proof, we might search for ever
- First-order validity is undecidable
- Can this be automated?
- Sure! But...
- Instantiating quantifiers with every possible term is wasteful
- More goal-oriented ways of doing this?
- Coming up...