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» Soundness Proof
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Preliminaries and Reminders

Reminder Soundness of LK

» We want all LK-provable sequents to be valid!

» If they are not, then LK would be incorrect or unsound ...
Definition 1.1 (Soundness).

The sequent calculus LK is sound if every LK-provable sequent is valid.

Theorem 1.1.

The sequent calculus LK is sound.
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Assumptions about the first order language

» We assume that a first-order language is given, by sets of constants,
function symbols, and predicates.
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» We assume that a first-order language is given, by sets of constants,
function symbols, and predicates.

» Some rules require “fresh” constants, so we assume that the set of
constant symbols A is (countably) infinite.
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Preliminaries and Reminders

Assumptions about the first order language

» We assume that a first-order language is given, by sets of constants,
function symbols, and predicates.

» Some rules require “fresh” constants, so we assume that the set of
constant symbols A is (countably) infinite.

» A root sequent [ = A consists of closed formulae.

» We show that if [ = A is provable, then I = A is valid
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Preliminaries and Reminders

Reminer: Semantics for Sequents

Definition 1.2 (Valid sequent).

A sequent = A is valid if all interpretations that satisfy all formulae
in I satisfy at least one formula in A.

Definition 1.3 (Countermodel/falsifiable sequent).

» An interpretation Z is a countermodel for the sequent I —> A if

vz(A) = T for all formulae A € T and vz(B) = F for all formulae
BeA

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September




Preliminaries and Reminders

Reminer: Semantics for Sequents

Definition 1.2 (Valid sequent).

A sequent = A is valid if all interpretations that satisfy all formulae
in I satisfy at least one formula in A.

Definition 1.3 (Countermodel/falsifiable sequent).

» An interpretation Z is a countermodel for the sequent I —> A if

vz(A) = T for all formulae A € T and vz(B) = F for all formulae
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» We say that a countermodel for a sequent falsifies the sequent.
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Preliminaries and Reminders

Reminer: Semantics for Sequents

Definition 1.2 (Valid sequent).

A sequent = A is valid if all interpretations that satisfy all formulae
in I satisfy at least one formula in A.

Definition 1.3 (Countermodel/falsifiable sequent).

» An interpretation Z is a countermodel for the sequent I —> A if

vz(A) = T for all formulae A € T and vz(B) = F for all formulae
BeA

» We say that a countermodel for a sequent falsifies the sequent.
» A sequent is falsifiable if it has a countermodel.
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Preliminaries and Reminders

Syntax vs. Semantics for Quantifiers

» Soundness and Completeness give the connection between

> syntax (= calculus)
> semantics (Z E ¢)

» Quantifier rules use substitutions
» The semantics of quantifiers use variable assignments

» We therefore need a connection between

> substitutions (= syntactic operations)
> variable assignments (= semantic objects)
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Syntax vs. Semantics for Quantifiers

» Soundness and Completeness give the connection between

> syntax (= calculus)
> semantics (Z E ¢)

» Quantifier rules use substitutions

» The semantics of quantifiers use variable assignments
» We therefore need a connection between

> substitutions (= syntactic operations)
> variable assignments (= semantic objects)

» This connection is given by the Substitution Lemma
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Preliminaries and Reminders

Reminder: Substitution Lemma

Theorem 1.2 (Substitution Lemma for Formulae).

Given an interpretation Z = (D, 1) and a variable assignment « for Z.

Given also a variable y € V), a formula A and a term s € T, such that
{y\s} is capture-free for A.

vi(a, Aly\s]) = vz(afyvz(a, s)}, A)
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Preliminaries and Reminders

Reminder: Substitution Lemma

Theorem 1.2 (Substitution Lemma for Formulae).

Given an interpretation Z = (D, 1) and a variable assignment « for Z.
Given also a variable y € V, a formula A and a term s € T, such that
{y\s} is capture-free for A.

vi(a, Aly\s]) = vz(afyvz(a, s)}, A)

Definition 1.4 (Capture-free substitution).

A substitution o is capture-free for a formula A if for every free variable x
in A, none of the variables in o(x) is bound in A.
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Preliminaries and Reminders

Reminder: Substitution Lemma

Theorem 1.2 (Substitution Lemma for Formulae).

Given an interpretation Z = (D, 1) and a variable assignment « for Z.
Given also a variable y € V, a formula A and a term s € T, such that
{y\s} is capture-free for A.

vi(a, Aly\s]) = vz(afyvz(a, s)}, A)

Definition 1.4 (Capture-free substitution).

A substitution o is capture-free for a formula A if for every free variable x
in A, none of the variables in o(x) is bound in A.

Note: if t € T is a closed term, then {y\t} is capture-free for any A.
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How to show the Soundness Theorem?
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As for propositional logic, we show the following lemmas:
1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid
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How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:
1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.
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How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:
1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.
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Soundness Proof

Preservation of Falsifiability

Definition 2.1.

An LK-rule 0 preserves falsifiability (upwards) if whenever the conclusion

w of an instance -2 "n_ of @ is falsifiabile, then also at least one of
the premises w; is falsifiable
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Soundness Proof

Preservation of Falsifiability

Definition 2.1.
An LK-rule 0 preserves falsifiability (upwards) if whenever the conclusion

w of an instance -2 "n_ of @ is falsifiabile, then also at least one of

the premises w; is falsifiable

NEW: the falsifying interpretation for the conclusion does not need to be
the same as for the conclusion.
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Soundness Proof

Preservation of Falsifiability

Definition 2.1.

An LK-rule 0 preserves falsifiability (upwards) if whenever the conclusion

w of an instance -2 "n_ of @ is falsifiabile, then also at least one of

the premises w; is falsifiable
NEW: the falsifying interpretation for the conclusion does not need to be
the same as for the conclusion.

Lemma 2.1.
All LK-rules preserve falsifiability.

» We have shown that the rules for propositional connectives
(A, V, =, —) have this property.
» It remains to show that also the V and 3 rules preserve falsifiability.
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Proof: V-left preserves falsifiability
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Proof: V-left preserves falsifiability

MVxAAx\t] = A
NVxA = A

V-left t is a closed term
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Proof: V-left preserves falsifiability

MVxAAx\t] = A
NVxA = A

V-left t is a closed term

» Assume that Z = (D, ) falsifies the conclusion [,VxA = A.
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Proof: V-left preserves falsifiability

MVxAAx\t] = A

FVxA — A V-left t is a closed term

» Assume that Z = (D, ) falsifies the conclusion [[Vx A — A.
» 7 makes all formulae in ' U {VxA} true and all formulae in A false.
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Proof: V-left preserves falsifiability

MVxAAx\t] = A
NvVxA = A

V-left t is a closed term

» Assume that Z = (D, ) falsifies the conclusion [[Vx A — A.
» 7 makes all formulae in ' U {VxA} true and all formulae in A false.
» It suffices to show that Z = A[x\t].
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Soundness Proof

Proof: V-left preserves falsifiability

MVxAAx\t] = A
NvVxA = A

V-left t is a closed term

» Assume that Z = (D, ) falsifies the conclusion [[Vx A — A.
» 7 makes all formulae in ' U {VxA} true and all formulae in A false.

» It suffices to show that Z |= A[x\t]. Then, the premiss is falsified by
7.
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Proof: V-left preserves falsifiability

MVxAAx\t] = A
NvVxA = A

V-left t is a closed term

» Assume that Z = (D, ) falsifies the conclusion [[Vx A — A.
» 7 makes all formulae in ' U {VxA} true and all formulae in A false.

» It suffices to show that Z |= A[x\t]. Then, the premiss is falsified by
7.

» Since T |= Vx A, we know that vz(a{x«d},A) =T forall d € D
and any a.
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Proof: V-left preserves falsifiability

MVxAAx\t] = A
NvVxA = A

V-left t is a closed term

» Assume that Z = (D, ) falsifies the conclusion [[Vx A — A.
» 7 makes all formulae in ' U {VxA} true and all formulae in A false.

» It suffices to show that Z |= A[x\t]. Then, the premiss is falsified by
7.

» Since T |= Vx A, we know that vz(a{x«d},A) =T forall d € D
and any «. (Using the semantics of V)
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Proof: V-left preserves falsifiability

MVxAAx\t] = A
NvVxA = A

V-left t is a closed term

» Assume that Z = (D, ) falsifies the conclusion [[Vx A — A.
» 7 makes all formulae in ' U {VxA} true and all formulae in A false.

» It suffices to show that Z |= A[x\t]. Then, the premiss is falsified by
7.

» Since T |= Vx A, we know that vz(a{x«d},A) =T forall d € D
and any «. (Using the semantics of V)

» In particular, vz(a{x<vz(a,t)},A) =T
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Proof: V-left preserves falsifiability

MVxAAx\t] = A
NvVxA = A

V-left t is a closed term

» Assume that Z = (D, ) falsifies the conclusion [[Vx A — A.

v

Z makes all formulae in ' U {VxA} true and all formulae in A false.

» It suffices to show that Z |= A[x\t]. Then, the premiss is falsified by
7.

» Since T |= Vx A, we know that vz(a{x«d},A) =T forall d € D
and any «. (Using the semantics of V)

v

In particular, vz(a{x+vz(a,t)},A) =T
» By the substitution lemma: vz(«a, A[x\t]) =T

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September



Proof: V-left preserves falsifiability

MVxAAx\t] = A
NvVxA = A

V-left t is a closed term

» Assume that Z = (D, ) falsifies the conclusion [[Vx A — A.
» 7 makes all formulae in ' U {VxA} true and all formulae in A false.

» It suffices to show that Z |= A[x\t]. Then, the premiss is falsified by
7.

» Since T |= Vx A, we know that vz(a{x«d},A) =T forall d € D
and any «. (Using the semantics of V)

v

In particular, vz(a{x+vz(a,t)},A) =T
By the substitution lemma: vz(«a, A[x\t]) =T
> And therefore: 7 |= A[x\t].

v
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Proof: d-left preserves falsifiability

rAx\a = A

I left a is a constant that does not
NNixA — A

occur in the conculsion
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Proof: d-left preserves falsifiability

rAx\a = A

I left a is a constant that does not
NNixA = A

occur in the conculsion

» Assume that Z = (D, ) falsifies the conclusion I, IxA = A.

» 7 makes all formulae in ' U {3xA} true and alle formulae in A false.
» We have to find an interpretation that falsifies the premisse.

» But we can not simply assume that Z |= A[x\a].
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Proof: d-left preserves falsifiability

rAx\a = A

I left a is a constant that does not
NNixA = A

occur in the conculsion

» Assume that Z = (D, ) falsifies the conclusion I, IxA = A.

» 7 makes all formulae in ' U {3xA} true and alle formulae in A false.
» We have to find an interpretation that falsifies the premisse.

» But we can not simply assume that Z |= A[x\a].

» Since Z |= 3x A we know that vz(a{x<d},A) = T for some d € D.
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Proof: d-left preserves falsifiability

rAx\a = A

I left a is a constant that does not
NNixA = A

occur in the conculsion

Assume that Z = (D, () falsifies the conclusion [,IxA = A.

Z makes all formulae in ' U {3xA} true and alle formulae in A false.
We have to find an interpretation that falsifies the premisse.

But we can not simply assume that Z = A[x\a].

Since 7 |= 3x A we know that vz(a{x«d},A) = T for some d € D.
Based on Z and d, we define a new model Z’ as follows:

vVVvVvyYVYyYVYYy
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Proof: d-left preserves falsifiability

rAx\a = A

I left a is a constant that does not
NNixA = A

occur in the conculsion

» Assume that Z = (D, ) falsifies the conclusion I, IxA = A.

» 7 makes all formulae in ' U {3xA} true and alle formulae in A false.
» We have to find an interpretation that falsifies the premisse.

» But we can not simply assume that Z |= A[x\a].

» Since Z |= 3x A we know that vz(a{x<d},A) = T for some d € D.
» Based on 7 and d, we define a new model Z' as follows:

» I’ = (D,/') is identical to Z except for the interpretation of the
constant a.
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Proof: d-left preserves falsifiability

rAx\a = A

I left a is a constant that does not
NNixA = A

occur in the conculsion

» Assume that Z = (D, ) falsifies the conclusion I, IxA = A.
» 7 makes all formulae in ' U {3xA} true and alle formulae in A false.
» We have to find an interpretation that falsifies the premisse.
» But we can not simply assume that Z |= A[x\a].
» Since Z |= 3x A we know that vz(a{x<d},A) = T for some d € D.
» Based on 7 and d, we define a new model Z' as follows:

» I’ = (D,/') is identical to Z except for the interpretation of the

constant a. ,
» ais interpreted as d, ie. a* =d.
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Proof: d-left preserves falsifiability

rAx\a = A

I left a is a constant that does not
NNixA = A

occur in the conculsion

» Assume that Z = (D, ) falsifies the conclusion I, IxA = A.
» 7 makes all formulae in ' U {3xA} true and alle formulae in A false.
» We have to find an interpretation that falsifies the premisse.
» But we can not simply assume that Z |= A[x\a].
» Since Z |= 3x A we know that vz(a{x<d},A) = T for some d € D.
» Based on 7 and d, we define a new model Z' as follows:
» I’ = (D,/') is identical to Z except for the interpretation of the
constant a.
» ais interpreted as d, ie. ' =d.
» Then 7’ falsifies the premisse:
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Proof: d-left preserves falsifiability

rAx\a = A

I left a is a constant that does not
NNixA = A

occur in the conculsion

» Assume that Z = (D, ) falsifies the conclusion I, IxA = A.
» 7 makes all formulae in ' U {3xA} true and alle formulae in A false.
» We have to find an interpretation that falsifies the premisse.
» But we can not simply assume that Z |= A[x\a].
» Since Z |= 3x A we know that vz(a{x<d},A) = T for some d € D.
» Based on 7 and d, we define a new model Z' as follows:
» I’ = (D,/') is identical to Z except for the interpretation of the
constant a.
» ais interpreted as d, ie. ' =d.
» Then 7’ falsifies the premisse:
» Since a does not occur in the conclusion, Z’ and T interpret the fml. in
" og A equally.
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Proof: d-left preserves falsifiability

rAx\a = A

I left a is a constant that does not
NNixA = A

occur in the conculsion

» Assume that Z = (D, ) falsifies the conclusion I, IxA = A.
» 7 makes all formulae in ' U {3xA} true and alle formulae in A false.
» We have to find an interpretation that falsifies the premisse.
» But we can not simply assume that Z |= A[x\a].
» Since Z |= 3x A we know that vz(a{x<d},A) = T for some d € D.
» Based on 7 and d, we define a new model Z' as follows:
» I’ = (D,/') is identical to Z except for the interpretation of the
constant a.
» ais interpreted as d, ie. ' =d.
» Then 7’ falsifies the premisse:
» Since a does not occur in the conclusion, Z’ and T interpret the fml. in
I og A equally. 7/ makes all fml. in [ true and all fml. in A false.
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Proof: d-left preserves falsifiability

rAx\a = A

I left a is a constant that does not
NNixA = A

occur in the conculsion

» Assume that Z = (D, ) falsifies the conclusion I, IxA = A.
» 7 makes all formulae in ' U {3xA} true and alle formulae in A false.
» We have to find an interpretation that falsifies the premisse.
» But we can not simply assume that Z |= A[x\a].
» Since Z |= 3x A we know that vz(a{x<d},A) = T for some d € D.
» Based on 7 and d, we define a new model Z' as follows:
» I’ = (D,/') is identical to Z except for the interpretation of the
constant a.
» ais interpreted as d, ie. ' =d.
» Then 7’ falsifies the premisse:
» Since a does not occur in the conclusion, Z’ and T interpret the fml. in
I og A equally. 7/ makes all fml. in [ true and all fml. in A false.
> v (a{xd},A) = vr(a{x+d},A) =T, and d = vz (e, a), so
T’ E A[x\a], by the Substitution Lemma.
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An Example

» Assume that Z = (D, ¢) is an interpretation with domain D = {1,2}
and p* = {2}.
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An Example

» Assume that Z = (D, ¢) is an interpretation with domain D = {1,2}
and p* = {2}.

» Assume that a og b are constants and a* = b* = 1.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September



An Example

» Assume that Z = (D, ¢) is an interpretation with domain D = {1,2}
and p* = {2}.

» Assume that a og b are constants and a* = b* = 1.

» Then Z {~= p(a) og Z [~ p(b).
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An Example

» Assume that Z = (D, ) is an interpretation with domain D = {1, 2}
and p* = {2}.

» Assume that a og b are constants and a* = b* = 1.

» Then Z |~ p(a) og Z |~ p(b).

p(b) = p(a)
Ixp(x) = p(a)

3-left
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An Example

» Assume that Z = (D, ) is an interpretation with domain D = {1, 2}
and p* = {2}.

» Assume that a og b are constants and a* = b* = 1.

» Then Z |~ p(a) og Z |~ p(b).

p(b) = p(a)
Ixp(x) = p(a)

3-left

» 7 falsifies the conclusion:
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An Example

» Assume that Z = (D, ) is an interpretation with domain D = {1, 2}
and p* = {2}.

» Assume that a og b are constants and a* = b* = 1.

» Then Z |~ p(a) og Z |~ p(b).

p(b) = p(a)
Ixp(x) = p(a)

3-left

» 7 falsifies the conclusion:
T = 3x p(x), since vr(a{x<2},p(x)) =T
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An Example

» Assume that Z = (D, ) is an interpretation with domain D = {1, 2}
and p* = {2}.

» Assume that a og b are constants and a* = b* = 1.

» Then Z |~ p(a) og Z |~ p(b).

p(b) = p(a)
Ixp(x) = p(a)

3-left

» 7 falsifies the conclusion:
T = 3x p(x), since vr(a{x<2},p(x)) =T
T I p(a).
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An Example

» Assume that Z = (D, ) is an interpretation with domain D = {1, 2}
and p* = {2}.

» Assume that a og b are constants and a* = b* = 1.

» Then Z |~ p(a) og Z |~ p(b).

p(b) = p(a)
Ixp(x) = p(a)

3-left

» 7 falsifies the conclusion:
T = 3x p(x), since vr(a{x<2},p(x)) =T
I i p(a).
» But Z does not falsify the premisse because Z F~ p(b).
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An Example

» Assume that Z = (D, ) is an interpretation with domain D = {1, 2}
and p* = {2}.

» Assume that a og b are constants and a* = b* = 1.

» Then Z |~ p(a) og Z |~ p(b).

p(b) = p(a)
Ixp(x) = p(a)

3-left

» 7 falsifies the conclusion:
T = 3x p(x), since vr(a{x<2},p(x)) =T
T p(a).
» But Z does not falsify the premisse because Z F~ p(b).
» We define a new interpretation 7/ = (D, /') such that b = 2.
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An Example

» Assume that Z = (D, ) is an interpretation with domain D = {1, 2}
and p* = {2}.

» Assume that a og b are constants and a* = b* = 1.

» Then Z |~ p(a) og Z |~ p(b).

p(b) = p(a)
Ixp(x) = p(a)

3-left

» 7 falsifies the conclusion:
T = 3x p(x), since vr(a{x<2},p(x)) =T
T p(a).
» But Z does not falsify the premisse because Z F~ p(b).
» We define a new interpretation 7/ = (D, /') such that b = 2.

» Then 7’ falsifies the premisse.
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Proof: J-right and V-right preserve satisfiability

» The proof for V-right is dual to that for 3-left
» The proof for 3-right is dual to that for V-left
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How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:
1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.
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Soundness Proof

Existence of a falsifiable leaf sequent

Lemma 2.2.

If the root sequent T of an an LK-derivation is falsifiable, then at least one
of the leaf sequents is falsifiable.

» As for propositional logic, the proof is by structural induction on the
LK-derivation.

» The base case (one sequent = A) is trivial since I = A'is
both root and leaf sequent.

» Two induction steps, for one-premisse and two-premisse rules

» Both use the lemma that falsifiability is preserved upwards.
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Soundness Proof

Existence of a falsifiable leaf sequent

Lemma 2.2.

If the root sequent T of an an LK-derivation is falsifiable, then at least one
of the leaf sequents is falsifiable.

» As for propositional logic, the proof is by structural induction on the
LK-derivation.

» The base case (one sequent = A) is trivial since I = A'is
both root and leaf sequent.

» Two induction steps, for one-premisse and two-premisse rules

» Both use the lemma that falsifiability is preserved upwards.

Difference from propositional logic: not necessarily the same interpretation!
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How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:
1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.
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All axioms are valid

Lemma 2.3.

All axioms are valid
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All axioms are valid

Lemma 2.3.

All axioms are valid

» The proof is the same as for propositional logic
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All axioms are valid

Lemma 2.3.

All axioms are valid

» The proof is the same as for propositional logic

» An axiom has the form

rap(tb' "7tn) = p(tlv" 'atn)aA
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All axioms are valid

Lemma 2.3.

All axioms are valid

» The proof is the same as for propositional logic

» An axiom has the form
rap(tl7"'7tn) — p(tla"'atn)aA

> Any interpretation that satisfies the antecedent satisfies p(ti, ..., t,).
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All axioms are valid

Lemma 2.3.

All axioms are valid

» The proof is the same as for propositional logic

» An axiom has the form
rap(tl7"'7tn) — p(tla"'atn)aA

> Any interpretation that satisfies the antecedent satisfies p(ti, ..., t,).

» Therefore, the same formula p(ti, ..., t,) is satisfied in the succedent.
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Proof of the Soundness Theorem for LK

Proof of soundness.

» Assume that P is an LK-proof for the sequent I — A.
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Proof of the Soundness Theorem for LK

Proof of soundness.

» Assume that P is an LK-proof for the sequent I — A.
» P is an LK-derivation where every leaf is an axiom.
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Proof of the Soundness Theorem for LK

Proof of soundness.

» Assume that P is an LK-proof for the sequent I — A.
» P is an LK-derivation where every leaf is an axiom.

» For the sake of contradiction, assume that [ = A is not valid.
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Proof of the Soundness Theorem for LK

Proof of soundness.

» Assume that P is an LK-proof for the sequent I — A.
» P is an LK-derivation where every leaf is an axiom.

» For the sake of contradiction, assume that [ = A is not valid.
» Then there is a countermodel Z that falsifies T = A.
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Soundness Proof

Proof of the Soundness Theorem for LK

Proof of soundness.

» Assume that P is an LK-proof for the sequent I — A.
» P is an LK-derivation where every leaf is an axiom.

» For the sake of contradiction, assume that [ = A is not valid.
» Then there is a countermodel Z that falsifies T = A.

» We know from the previous Lemma that there is an Z’ that falsifies at
least one leaf sequent of P.
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Proof of the Soundness Theorem for LK

Proof of soundness.

» Assume that P is an LK-proof for the sequent I — A.
» P is an LK-derivation where every leaf is an axiom.
» For the sake of contradiction, assume that [ = A is not valid.
» Then there is a countermodel Z that falsifies [ — A.
» We know from the previous Lemma that there is an Z’ that falsifies at
least one leaf sequent of P.

» Then P has a leaf sequent that is not an axiom, since axioms are not
falsifiable.
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Proof of the Soundness Theorem for LK

Proof of soundness.

» Assume that P is an LK-proof for the sequent I — A.
» P is an LK-derivation where every leaf is an axiom.

» For the sake of contradiction, assume that [ = A is not valid.
» Then there is a countermodel Z that falsifies T = A.

» We know from the previous Lemma that there is an Z’ that falsifies at
least one leaf sequent of P.

» Then P has a leaf sequent that is not an axiom, since axioms are not
falsifiable.

» So P cannot be an LK-proof.
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Outline

» Completeness: Preliminaries
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Herbrand Universe

Definition 3.1 (Herbrand universe).
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Herbrand Universe

Definition 3.1 (Herbrand universe).

Let T be a set of terms.
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Herbrand Universe

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then H(T), the Herbrand universe of T, is the
smallest set such that
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Herbrand Universe
Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then H(T), the Herbrand universe of T, is the
smallest set such that

» H(T) contains all constant symbols from T.
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Herbrand Universe

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then H(T), the Herbrand universe of T, is the
smallest set such that

» H(T) contains all constant symbols from T. If there are no constants

in T, we include some constant symbol o from A (called a dummy
constant) in H(T).
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Completeness: Preliminaries

Herbrand Universe

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then H(T), the Herbrand universe of T, is the
smallest set such that

» H(T) contains all constant symbols from T. If there are no constants
in T, we include some constant symbol o from A (called a dummy
constant) in H(T).

» If f is a function symbol in T, with arity n and ty,
H(T), then f(t1,...,tn) € H(T).

...,t, are terms in
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Completeness: Preliminaries

Herbrand Universe

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then H(T), the Herbrand universe of T, is the
smallest set such that

» H(T) contains all constant symbols from T. If there are no constants
in T, we include some constant symbol o from A (called a dummy
constant) in H(T).

» If f is a function symbol in T, with arity n and ty, .
H(T), then f(t1,...,tn) € H(T).

The Herbrand universe of a set of formulae is the Herbrand universe of the
set of terms occuring in the formulae.

.., t, are terms in
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Herbrand Universe

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then H(T), the Herbrand universe of T, is the
smallest set such that

» H(T) contains all constant symbols from T. If there are no constants
in T, we include some constant symbol o from A (called a dummy
constant) in H(T).

» If f is a function symbol in T, with arity n and t1, ..., t, are terms in
H(T), then f(t1,...,tn) € H(T).

The Herbrand universe of a set of formulae is the Herbrand universe of the
set of terms occuring in the formulae. The Herbrand universe of a branch

of a derivation is the Herbrand universe of the set of formulae occurring on
that branch.
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Herbrand Universe

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then H(T), the Herbrand universe of T, is the
smallest set such that

» H(T) contains all constant symbols from T. If there are no constants
in T, we include some constant symbol o from A (called a dummy
constant) in H(T).

» If f is a function symbol in T, with arity n and t1, ..., t, are terms in
H(T), then f(t1,...,tn) € H(T).

The Herbrand universe of a set of formulae is the Herbrand universe of the
set of terms occuring in the formulae. The Herbrand universe of a branch

of a derivation is the Herbrand universe of the set of formulae occurring on
that branch.

» Intuitively, the Herbrand universe of T is the set of all closed terms
that can be constructed from the constant and function symbols in T.
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Herbrand Universe: Examples

Example.

Let T = {f(x)}.
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Herbrand Universe: Examples

Example.

Let T = {f(x)}. Then the Herbrand universe of T is
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Herbrand Universe: Examples

Example.

Let T = {f(x)}. Then the Herbrand universe of T is the set
{o,f(0), f(f(0)), F(£((0))), .-}
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Completeness: Preliminaries

Herbrand Universe: Examples

Example.
Let T = {f(x)}. Then the Herbrand universe of T is the set
{o,f(0), f(f(0)), F(£((0))), .-}

Example.

Let T ={a, f(x)}.
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Herbrand Universe: Examples

Example.
Let T = {f(x)}. Then the Herbrand universe of T is the set
{o,f(0), f(f(0)), F(£((0))), .-}

Example.

Let T ={a, f(x)}. Then the Herbrand universe of T is
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Herbrand Universe: Examples

Example.
Let T = {f(x)}. Then the Herbrand universe of T is the set
{o,f(0), f(f(0)), F(£((0))), .-}

Example.
Let T = {a, f(x)}. Then the Herbrand universe of T is the set

{a,f(a),f(f(a)), F(£(f(a))), -}
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Herbrand Universe: Examples

Example.
Let T = {f(x)}. Then the Herbrand universe of T is the set
{o,f(0), f(f(0)), f(£(f(0))), .. .}

Example.
Let T = {a, f(x)}. Then the Herbrand universe of T is the set
{a,f(a), f(f(a)), F(£(f(a))),. .}

Example.

Let F = {¥x p(f(g(x)))}

IN3070/4070 :: Autumn 2020

Lecture 5 :: 17th September



Completeness: Preliminaries

Herbrand Universe: Examples

Example.
Let T = {f(x)}. Then the Herbrand universe of T is the set
{o,f(0), f(f(0)), f(£(f(0))), .. .}

Example.
Let T = {a, f(x)}. Then the Herbrand universe of T is the set
{a,f(a), f(f(a)), F(£(f(a))),. .}

Example.

Let F = {Vxp(f(g(x)))} Then the Herbrand universe of F is
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Herbrand Universe: Examples

Example.
Let T = {f(x)}. Then the Herbrand universe of T is the set
{o,f(0), f(f(0)), f(£(f(0))), .. .}

Example.
Let T = {a, f(x)}. Then the Herbrand universe of T is the set
{a,f(a), f(f(a)), F(£(f(a))),. .}

Example.

Let F = {Vxp(f(g(x)))} Then the Herbrand universe of F is the set
{o,(0),&(0), f(g(0)),&(f(0)), f(f(0)),&(g(0)),-- -}
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Fairness

» To guarantee that a proof is found
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Fairness

» To guarantee that a proof is found
» all formulae have to be used in a rule eventually, and
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Fairness

» To guarantee that a proof is found
» all formulae have to be used in a rule eventually, and
» all V-left and F-right rules are applied with all terms eventually.
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Fairness

» To guarantee that a proof is found

» all formulae have to be used in a rule eventually, and

» all V-left and F-right rules are applied with all terms eventually.
» If we try to guarantee this,
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Fairness

» To guarantee that a proof is found

» all formulae have to be used in a rule eventually, and

» all V-left and 3-right rules are applied with all terms eventually.
» If we try to guarantee this,

1. Either all branches can be closed, giving a proof,
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Fairness

» To guarantee that a proof is found
» all formulae have to be used in a rule eventually, and
» all V-left and 3-right rules are applied with all terms eventually.
» If we try to guarantee this,
1. Either all branches can be closed, giving a proof,
2. or there is an open branch that we can generate a counterexample
from.
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Fairness

» To guarantee that a proof is found
» all formulae have to be used in a rule eventually, and
» all V-left and 3-right rules are applied with all terms eventually.
» If we try to guarantee this,
1. Either all branches can be closed, giving a proof,
2. or there is an open branch that we can generate a counterexample
from.
» This only makes sense if we include infinite derivations,
i.e. derivations with infinitely long branches.
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Fairness

» To guarantee that a proof is found
» all formulae have to be used in a rule eventually, and
» all V-left and 3-right rules are applied with all terms eventually.

» If we try to guarantee this,
1. Either all branches can be closed, giving a proof,
2. or there is an open branch that we can generate a counterexample
from.
» This only makes sense if we include infinite derivations,
i.e. derivations with infinitely long branches.
» We construct a /imit by either continuing until no more rules can be
applied, or continuing to apply rules indefinitely. We call the result of
this process a limit derivation.
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Fairness

» To guarantee that a proof is found
» all formulae have to be used in a rule eventually, and
» all V-left and 3-right rules are applied with all terms eventually.

» If we try to guarantee this,
1. Either all branches can be closed, giving a proof,
2. or there is an open branch that we can generate a counterexample
from.
» This only makes sense if we include infinite derivations,
i.e. derivations with infinitely long branches.

» We construct a /imit by either continuing until no more rules can be
applied, or continuing to apply rules indefinitely. We call the result of
this process a limit derivation.

» When we talk about limit derivations, we include infinite trees.
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Fairness

» To guarantee that a proof is found
» all formulae have to be used in a rule eventually, and
» all V-left and 3-right rules are applied with all terms eventually.

» If we try to guarantee this,
1. Either all branches can be closed, giving a proof,
2. or there is an open branch that we can generate a counterexample
from.
» This only makes sense if we include infinite derivations,
i.e. derivations with infinitely long branches.

» We construct a /imit by either continuing until no more rules can be
applied, or continuing to apply rules indefinitely. We call the result of
this process a limit derivation.

» When we talk about limit derivations, we include infinite trees.

» We won't define these formally.
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Fairness

» To guarantee that a proof is found
» all formulae have to be used in a rule eventually, and
» all V-left and 3-right rules are applied with all terms eventually.
» If we try to guarantee this,
1. Either all branches can be closed, giving a proof,
2. or there is an open branch that we can generate a counterexample
from.

» This only makes sense if we include infinite derivations,
i.e. derivations with infinitely long branches.

» We construct a /imit by either continuing until no more rules can be
applied, or continuing to apply rules indefinitely. We call the result of
this process a limit derivation.

» When we talk about limit derivations, we include infinite trees.

» We won't define these formally.

» If all branches in a derivation can be closed, then the derivation is
finite. l.e. proofs are finite.
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Fairness

Definition 3.2 (Fair derivations).
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Fairness

Definition 3.2 (Fair derivations).

A limit derivation is fair if each open branch has the following properties:
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Fairness

Definition 3.2 (Fair derivations).

A limit derivation is fair if each open branch has the following properties:

1. There are no sequents A —> A, A on the branch that could be
closed using the axiom.
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Fairness

Definition 3.2 (Fair derivations).

A limit derivation is fair if each open branch has the following properties:

1. There are no sequents A —> A, A on the branch that could be
closed using the axiom.

2. Ifa A, VvV, =, or = formula occurs, then the corresponding LK rule is
applied to the formula on that branch.
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Fairness

Definition 3.2 (Fair derivations).

A limit derivation is fair if each open branch has the following properties:
1. There are no sequents A —> A, A on the branch that could be
closed using the axiom.
2. Ifa A, VvV, =, or = formula occurs, then the corresponding LK rule is
applied to the formula on that branch.

3. If a 3 formula occurs in an antecedent, or a vV formula in a succedent,
then the 3-left, resp. V-right rules are applied to the formula on that
branch.
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Fairness

Definition 3.2 (Fair derivations).

A limit derivation is fair if each open branch has the following properties:

1. There are no sequents A —> A, A on the branch that could be
closed using the axiom.

2. Ifa A, V, —, or = formula occurs, then the corresponding LK rule is
applied to the formula on that branch.

3. If a 3 formula occurs in an antecedent, or a vV formula in a succedent,
then the 3-left, resp. V-right rules are applied to the formula on that
branch.

4. If aV formula occurs in an antecedent, or a 3 formula in a succedent,
then the Y-left, resp. 3-right rules are applied to the formula on that
branch for every term t in the Herbrand universe of that branch.
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Konigs Lemma

Lemma 3.1 (Konigs lemma).
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Konigs Lemma

Lemma 3.1 (Konigs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.
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Konigs Lemma

Lemma 3.1 (Konigs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.

Proof.
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Konigs Lemma

Lemma 3.1 (Konigs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch.
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Konigs Lemma

Lemma 3.1 (Konigs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let ug be the root node of
the tree T.
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Konigs Lemma

Lemma 3.1 (Konigs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let ug be the root node of
the tree T. Since T is infinite and up has finitely many descendants, one
of ug's descendents must be infinite.
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Konigs Lemma

Lemma 3.1 (Konigs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let ug be the root node of
the tree T. Since T is infinite and up has finitely many descendants, one
of up's descendents must be infinite. (Otherwise T would be finite.)
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Konigs Lemma

Lemma 3.1 (Konigs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let ug be the root node of
the tree T. Since T is infinite and up has finitely many descendants, one
of up's descendents must be infinite. (Otherwise T would be finite.) Let
up be the root of such a sub-tree.
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Konigs Lemma

Lemma 3.1 (Konigs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let ug be the root node of
the tree T. Since T is infinite and up has finitely many descendants, one
of up's descendents must be infinite. (Otherwise T would be finite.) Let
uy be the root of such a sub-tree. If the branch wug, u1, ..., u, is defined,
we find the next node u,+1 by the same kind of reasoning.
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Completeness: Preliminaries

Konigs Lemma

Lemma 3.1 (Konigs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let ug be the root node of
the tree T. Since T is infinite and up has finitely many descendants, one
of up's descendents must be infinite. (Otherwise T would be finite.) Let
uy be the root of such a sub-tree. If the branch wug, u1, ..., u, is defined,
we find the next node u,+1 by the same kind of reasoning. This process
defines an infinitely long branch.
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Konigs Lemma

Lemma 3.1 (Konigs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let up be the root node of
the tree T. Since T is infinite and up has finitely many descendants, one
of up's descendents must be infinite. (Otherwise T would be finite.) Let

uy be the root of such a sub-tree. If the branch wug, u1, ..., u, is defined,
we find the next node u,1 by the same kind of reasoning. This process
defines an infinitely long branch. Ol
Corollary 3.1.

If T is a finitley branching tree, where all branches are finitely long, then
T is finite.
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Proof of Completeness

Assume [ = A is not provable.
» Construct a fair (limit) derivation D from [ = A. Possibly infinite.
» Then there is (at least) one branch 5 that does not end in an axiom.
» We construct an interpretation that falsifies T =— A. Let

B' be the set of formulae that occur in an antecedent on B, and
B+ be the set of formulae that occur in an succedent on B, and

At be the set of atomic formulae in BT.
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Proof of Completeness (Construction of counter-model)

» We construct a counter-model Z = (D,¢) for = A.
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We construct a counter-model Z = (D,¢) for = A.

» Let the domain D be the Herbrand universe of the branch. (l.e. the
set of all closed terms that can be generated from the terms on the
branch).

» Let a* = a for all constant symbols a € A.

» If f € F is a function symbol with arity n, let
ity ..., ta) = f(t1,..., tn).

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September



Proof of Completeness

Proof of Completeness (Construction of counter-model)

\4

We construct a counter-model Z = (D,¢) for = A.

» Let the domain D be the Herbrand universe of the branch. (l.e. the
set of all closed terms that can be generated from the terms on the
branch).

» Let a* = a for all constant symbols a € A.

» If f € F is a function symbol with arity n, let
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> Then vz(t) = t for all closed terms t.
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We construct a counter-model Z = (D,¢) for = A.

» Let the domain D be the Herbrand universe of the branch. (l.e. the
set of all closed terms that can be generated from the terms on the
branch).

» Let a* = a for all constant symbols a € A.

» If f € F is a function symbol with arity n, let
ity ..., ta) = f(t1,..., tn).

> Then vz(t) = t for all closed terms t.
» All terms are interpreted as themselves

» If pis a predicate symbol with arity n, let (t1,...,t,) € p* if and only

if p(t1,...,t,) € At.
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Proof of Completeness

Proof of Completeness (Construction of counter-model)

\4

We construct a counter-model Z = (D,¢) for = A.

» Let the domain D be the Herbrand universe of the branch. (l.e. the
set of all closed terms that can be generated from the terms on the
branch).

» Let a* = a for all constant symbols a € A.

» If f € F is a function symbol with arity n, let
fr(te,. ., tn) = f(t1,-.., tn).

> Then vz(t) = t for all closed terms t.
» All terms are interpreted as themselves

» If pis a predicate symbol with arity n, let (t1,...,t,) € p* if and only
if p(t1,...,t,) € At.

» Such an intepretation is often called a Herbrand model or a term
model.
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Proof of Completeness (Properties of 7)

» We show by structural induction on first-order formlae that the
interpretation Z makes all formlae i B' true and all formulae in B+
false.
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interpretation Z makes all formlae i B' true and all formulae in B+
false.

» We show for all first-order formulae A that:

fAcBT, thenZT=A ie vr(A) =T
If Ac BL, then T £ A ie. vz(A)=F
Base case 1: A is an atomic formula p(ti,...,t,) in BT.
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» Therefore Z |= p(ti, ..., tn).

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September



Proof of Completeness (Properties of 7)

» We show by structural induction on first-order formlae that the
interpretation Z makes all formlae i B' true and all formulae in B+
false.

» We show for all first-order formulae A that:

fAcBT, thenZT=A ie vr(A) =T
If Ac BL, then T £ A ie. vz(A)=F

Base case 1: A is an atomic formula p(ti,...,t,) in BT.
» Then p(t1,...,ty) € At og (t1,...,ts) € p* by construction.
» Therefore Z |= p(ti, ..., tn).

Base case 2: A is an atomic formula p(ti,...,t,) i B*.
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Proof of Completeness (Properties of 7)

» We show by structural induction on first-order formlae that the
interpretation Z makes all formlae i B' true and all formulae in B+
false.

» We show for all first-order formulae A that:

fAcBT, thenZT=A ie vr(A) =T
If Ac BL, then T £ A ie. vz(A)=F

Base case 1: A is an atomic formula p(ti,...,t,) in BT.
» Then p(t1,...,ty) € At og (t1,...,ts) € p* by construction.
» Therefore Z |= p(ti, ..., tn).

Base case 2: A is an atomic formula p(ti,...,t,) i B*.

» Since B does not end in an axiom, and the derivation is fair,
p(ty, ..., tn) ¢ At and (t1,...,t,) ¢ p".
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Proof of Completeness (Properties of 7)

» We show by structural induction on first-order formlae that the
interpretation Z makes all formlae i B' true and all formulae in B+
false.

» We show for all first-order formulae A that:

fAcBT, thenZT=A ie vr(A) =T
If Ac BL, then T £ A ie. vz(A)=F

Base case 1: A is an atomic formula p(ti,...,t,) in BT.
» Then p(t1,...,ty) € At og (t1,...,ts) € p* by construction.
» Therefore Z |= p(ti, ..., tn).

Base case 2: A is an atomic formula p(ti,...,t,) i B*.

» Since B does not end in an axiom, and the derivation is fair,

p(ty, ..., tn) ¢ At and (t1,...,t,) ¢ p".
» Therefore Z [~ p(t1, ..., tn).
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Proof of Completeness

Proof of Completeness (Propositional connectives)

Induction step: From the assumption (induction hypothesis) that our

statement holds for all smaller formulae, we have to show that it holds for
-A, (AANB), (AV B), (A— B), ¥xA, and 3x A.
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Proof of Completeness (Propositional connectives)

Induction step: From the assumption (induction hypothesis) that our
statement holds for all smaller formulae, we have to show that it holds for
-A, (AANB), (AV B), (A— B), ¥xA, and 3x A.

Most of this was done in the proof for propositional logic

E.g. assume that AAB € BT.

» By fairness of the derivation, the A-left rule has been applied to
A A B on the branch B.

» Then Ac B" and Be B'.
» By the induction hypothesis, Z = A and Z = B.
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Induction step: From the assumption (induction hypothesis) that our
statement holds for all smaller formulae, we have to show that it holds for
-A, (AANB), (AV B), (A— B), ¥xA, and 3x A.
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Proof of Completeness

Proof of Completeness (Propositional connectives)

Induction step: From the assumption (induction hypothesis) that our
statement holds for all smaller formulae, we have to show that it holds for
-A, (AANB), (AV B), (A— B), ¥xA, and 3x A.

Most of this was done in the proof for propositional logic

E.g. assume that AAB € BT.

» By fairness of the derivation, the A-left rule has been applied to
A A B on the branch B.

» Then Ac B" and B B'.
» By the induction hypothesis, Z = A and Z = B.
» By model semantics, Z = AN B.

We only need to cover quantified formulae
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» By fairness of the derivation, 3-left was applied to 9x A on the branch.
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» By the ind. hyp., Z = Al[x\a].
» le. vz(a,A[x\a]) = T for any assignment «, since A[x\a] is closed
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By the substitution lemma: vz(a{x<+a‘},A)=T.
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Proof of Completeness (3 in Antecedent)

Assume that Ix A€ BT,

>

vVvyVvyVvyYyvyy

By fairness of the derivation, 3-left was applied to 9x A on the branch.
Then there is a constant a such that A[x\a] € B.

By the ind. hyp., Z = A[x\a].

l.e. vz(a, A[x\a]) = T for any assignment «, since A[x\a] is closed
By the substitution lemma: vz(a{x<+a‘},A)=T.

By model semantics: vz(a,IxA) =T

le. 7 = 3x A
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Proof of Completeness (3 in Succedent)

Assume that Ix A € B+.
» We have to show that Z [= Ix A. Assume that this does not hold.
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» We have to show that Z [= Ix A. Assume that this does not hold.
> le. T E=3dxA
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Proof of Completeness (3 in Succedent)

Assume that Ix A € B+,
» We have to show that Z [~ 3x A. Assume that this does not hold.
> le. 7= 3xA
» Remember that the domain D of Z = (D, ) consists of terms
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Assume that Ix A € B+.
» We have to show that Z [~ 3x A. Assume that this does not hold.
> le. 7= 3xA
» Remember that the domain D of Z = (D, ) consists of terms
» Then vz(a{x«t}, A) = T for some term t € D.
>

By fairness of the derivation, the 3-right rule was applied on Ix A
with the term t.
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Proof of Completeness

Proof of Completeness (3 in Succedent)

Assume that Ix A € B+,

>

vVvyyvyy

v

We have to show that Z [= 3x A. Assume that this does not hold.
le. Z |=3xA

Remember that the domain D of Z = (D, ) consists of terms
Then vz(a{x«t}, A) = T for some term t € D.

By fairness of the derivation, the 3-right rule was applied on Ix A
with the term t.

It follows that:
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We have to show that Z [= 3x A. Assume that this does not hold.
le. Z |=3xA

Remember that the domain D of Z = (D, ) consists of terms
Then vz(a{x«t}, A) = T for some term t € D.

By fairness of the derivation, the 3-right rule was applied on Ix A
with the term t.
It follows that:

> Alx\t] € B+
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Assume that Ix A € B+,
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We have to show that Z [= 3x A. Assume that this does not hold.
le. Z |=3xA

Remember that the domain D of Z = (D, ) consists of terms
Then vz(a{x«t}, A) = T for some term t € D.

By fairness of the derivation, the 3-right rule was applied on Ix A
with the term t.
It follows that:

> Alx\t] € B+

» vz(A[x\t]) = F (induction hypothesis)
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Assume that Ix A € B+,
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We have to show that Z [= 3x A. Assume that this does not hold.
le. ZEdxA
Remember that the domain D of Z = (D, ) consists of terms
Then vz(a{x«t}, A) = T for some term t € D.
By fairness of the derivation, the 3-right rule was applied on Ix A
with the term t.
It follows that:

> Alx\t] € B+

» vz(A[x\t]) = F (induction hypothesis)

> vz(a{x+vz(t)}, A) = F for any « (substitution lemma)
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Proof of Completeness (3 in Succedent)

Assume that Ix A € B+,
We have to show that Z [= 3x A. Assume that this does not hold.
le. Z |=3xA

Remember that the domain D of Z = (D, ) consists of terms

>

vVvyyvyy

v

Then vz(a{x«t}, A) = T for some term t € D.

By fairness of the derivation, the 3-right rule was applied on Ix A
with the term t.

It follows that:

>

>
>
>

Alx\t] € B+

vz(A[x\t]) = F (induction hypothesis)
vr(a{x«vz(t)}, A) = F for any « (substitution lemma)
vr(a{x+t}, A) = F (since vz(t) = t)
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Proof of Completeness

Proof of Completeness (3 in Succedent)

Assume that Ix A € B+,

>

vVvyyvyy

v

>

We have to show that Z [= 3x A. Assume that this does not hold.
le. ZEdxA
Remember that the domain D of Z = (D, ) consists of terms
Then vz(a{x«t}, A) = T for some term t € D.
By fairness of the derivation, the 3-right rule was applied on Ix A
with the term t.
It follows that:

> Alx\t] € B+

» vz(A[x\t]) = F (induction hypothesis)

> vz(a{x+vz(t)}, A) = F for any « (substitution lemma)

> vr(a{xst}, A) = F (since vz(t) = t)

Contradiction!
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Proof of Completeness (V in Succedent)

Assume that Vx A € BL.
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» By the ind. hyp., 7 |~ A[x\a].
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» By fairness of the derivation, V-right was applied to 9x A on the
branch.

» Then there is a constant a such that A[x\a] € B*.
» By the ind. hyp., 7 |~ A[x\a].

» le. vz(a,A[x\a]) = F for any assignment «, since A[x\a] is closed

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September



Proof of Completeness (V in Succedent)

Assume that Vx A € BL.

» By fairness of the derivation, V-right was applied to 9x A on the
branch.

» Then there is a constant a such that A[x\a] € B*.
» By the ind. hyp., 7 |~ A[x\a].
» le. vz(a,A[x\a]) = F for any assignment «, since A[x\a] is closed

» By the substitution lemma: vz(a{x<«a‘}, A) = F.
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Proof of Completeness (V in Succedent)

Assume that Vx A € BL.

» By fairness of the derivation, V-right was applied to 9x A on the
branch.

» Then there is a constant a such that A[x\a] € B*.

» By the ind. hyp., 7 |~ A[x\a].

» le. vz(a,A[x\a]) = F for any assignment «, since A[x\a] is closed
» By the substitution lemma: vz(a{x<«a‘}, A) = F.

» By model semantics: vz(a,VxA) = F
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Proof of Completeness (V in Succedent)

Assume that Vx A € BL.

» By fairness of the derivation, V-right was applied to 9x A on the
branch.

Then there is a constant a such that A[x\a] € B*.

By the ind. hyp., Z [~ A[x\a].

l.e. vz(a, A[x\a]) = F for any assignment «, since A[x\a] is closed
By the substitution lemma: vz(a{x<+a'},A) = F.

By model semantics: vz(a,VxA) = F

le. T |~ VxA.

vVvyVvyVvyYyvyy
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Proof of Completeness (V in Antecedent)

Assume that Vx A € BT.
» We have to show that Z |= Vx A. Assume that this does not hold.
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Assume that Vx A € BT.
» We have to show that Z |= Vx A. Assume that this does not hold.
> le. TEVVXA

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September



Proof of Completeness (V in Antecedent)

Assume that Vx A € BT.
» We have to show that Z = Vx A. Assume that this does not hold.
> le. T £ VxA
» Remember that the domain D of Z = (D, ) consists of terms
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Proof of Completeness

Proof of Completeness (V in Antecedent)

Assume that Vx A € BT.

» We have to show that Z = Vx A. Assume that this does not hold.
> le. TEVVXA

» Remember that the domain D of Z = (D, ) consists of terms

» Then vz(a{x<t}, A) = F for some term t € D.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September



Proof of Completeness

Proof of Completeness (V in Antecedent)

Assume that Vx A € BT.
» We have to show that Z = Vx A. Assume that this does not hold.
> le. TEVVXA
» Remember that the domain D of Z = (D, ) consists of terms
» Then vz(a{x<t}, A) = F for some term t € D.
>

By fairness of the derivation, the V-left rule was applied on Vx A with
the term t.
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Proof of Completeness

Proof of Completeness (V in Antecedent)

Assume that Vx A € BT.

>

vVvyyvyy

v

We have to show that Z |= Vx A. Assume that this does not hold.
le. Z = VxA

Remember that the domain D of Z = (D, ) consists of terms
Then vz(a{x<t}, A) = F for some term t € D.

By fairness of the derivation, the V-left rule was applied on Vx A with
the term t.

It follows that:
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Proof of Completeness

Proof of Completeness (V in Antecedent)

Assume that Vx A € BT.

>

vVvyyvyy

v

We have to show that Z |= Vx A. Assume that this does not hold.
le. Z = VxA

Remember that the domain D of Z = (D, ) consists of terms
Then vz(a{x<t}, A) = F for some term t € D.

By fairness of the derivation, the V-left rule was applied on Vx A with
the term t.
It follows that:

> Alx\t] € BT
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Proof of Completeness

Proof of Completeness (V in Antecedent)

Assume that Vx A € BT.

>

vVvyyvyy

v

We have to show that Z |= Vx A. Assume that this does not hold.
le. Z = VxA

Remember that the domain D of Z = (D, ) consists of terms
Then vz(a{x<t}, A) = F for some term t € D.

By fairness of the derivation, the V-left rule was applied on Vx A with
the term t.
It follows that:

> Alx\t] € BT

> vz(A[x\t]) = T (induction hypothesis)
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Proof of Completeness

Proof of Completeness (V in Antecedent)

Assume that Vx A € BT.

>

vVvyyvyy

v

We have to show that Z = Vx A. Assume that this does not hold.
le. ZHEVxA
Remember that the domain D of Z = (D, ) consists of terms
Then vz(a{x<t}, A) = F for some term t € D.
By fairness of the derivation, the V-left rule was applied on Vx A with
the term t.
It follows that:
> Alx\t] € BT
> vz(A[x\t]) = T (induction hypothesis)
> vz(a{x+vz(t)},A) = T for any «a (substitution lemma)
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Proof of Completeness

Proof of Completeness (V in Antecedent)

Assume that Vx A € BT.
We have to show that Z |= Vx A. Assume that this does not hold.
le. Z = VxA

Remember that the domain D of Z = (D, ) consists of terms

>

vVvyyvyy

v

Then vz(a{x<t}, A) = F for some term t € D.

By fairness of the derivation, the V-left rule was applied on Vx A with
the term t.

It follows that:

>

>
>
>

Alx\t] € BT

vz(A[x\t]) = T (induction hypothesis)
vr(a{x«vz(t)}, A) = T for any « (substitution lemma)
vr(a{x+t},A) =T (since vz(t) = t)
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Proof of Completeness

Proof of Completeness (V in Antecedent)

Assume that Vx A € BT.

>

vVvyyvyy

v

>

We have to show that Z |= Vx A. Assume that this does not hold.

le. ZHEVxA
Remember that the domain D of Z = (D, ) consists of terms
Then vz(a{x«t}, A) = F for some term t € D.
By fairness of the derivation, the V-left rule was applied on Vx A with
the term t.
It follows that:
> Alx\t] € BT
» vz(A[x\t]) = T (induction hypothesis)
> vz(a{x+vz(t)},A) = T for any «a (substitution lemma)
> vr(a{x«t}, A) = T (since vz(t) = t)

Contradiction!
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Some comments

» We can see the construction of a limit derivation as approximating a
counter-model for [ — A.
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counter-model for [ =— A.
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get to a possible counter-model
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Proof of Completeness

Some comments

» We can see the construction of a limit derivation as approximating a
counter-model for [ =— A.

» The more often we apply the V-left and 3-right rules, the ‘closer’ we
get to a possible counter-model

» But constructing a counter-model in this way may require using all
rules infinitely often.
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Proof of Completeness

Some comments

» We can see the construction of a limit derivation as approximating a
counter-model for [ =— A.

» The more often we apply the V-left and 3-right rules, the ‘closer’ we
get to a possible counter-model

» But constructing a counter-model in this way may require using all
rules infinitely often.

» So this is not an algorithm for finding counter-models!

» It will find a proof if one exists, but may not terminate otherwise.
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Some comments

» We can see the construction of a limit derivation as approximating a
counter-model for [ =— A.

» The more often we apply the V-left and 3-right rules, the ‘closer’ we
get to a possible counter-model

» But constructing a counter-model in this way may require using all
rules infinitely often.

» So this is not an algorithm for finding counter-models!

v

It will find a proof if one exists, but may not terminate otherwise.

» There may be finite counter-models even when this method does not
terminate. Finding finite counter-models is a topic of active research.
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Some comments

» We can see the construction of a limit derivation as approximating a
counter-model for [ =— A.

» The more often we apply the V-left and 3-right rules, the ‘closer’ we
get to a possible counter-model

» But constructing a counter-model in this way may require using all
rules infinitely often.

» So this is not an algorithm for finding counter-models!
» It will find a proof if one exists, but may not terminate otherwise.

» There may be finite counter-models even when this method does not
terminate. Finding finite counter-models is a topic of active research.

» The idea of the completeness proof is important: we construct an
interpretation from something purely syntactic.
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Examples of Counter-model Construction
Outline

» Examples of Counter-model Construction
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Counter-model Construction, Ex. 1

> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

Vx (px — gx), pa = Vx gx
—_——
A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

Vx (px — gx), pa = Vx gx
—_——
A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

A, pa — ga, pa = Vxqgx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

A, pa — ga, pa = Vxgx

Vx (px — gx), pa = Vx gx
—_——
A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

A, pa = Vx gx, pa ga, A, pa = Vx gx
A, pa — ga, pa = Vxqgx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

A, pa = Vx gx, pa ga, A, pa = Vxgx
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—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

A, pa = Vx gx, pa ga, A, pa = Vxgx
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A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

A, pa = Vx gx, pa ga, A, pa = Vxgx
A, pa — ga, pa = Vxqgx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vx gx
A, pa — ga, pa = Vxqgx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

ga,A,pa = gb
A, pa = Vx gx, pa ga, A, pa = Vx gx
A, pa — ga, pa = Vxqgx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

qa, A, pb — gb,pa = qb
ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vx gx
A, pa — ga, pa = Vxqgx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

qa, A, pb — gb,pa = qb
ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vx gx
A, pa — ga, pa = Vxqgx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

qga, A, pa = gb, pb gb, qa, A, pa = gb
qa,A,pb — gb,pa = qb
ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vxgx
A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

qga, A, pa = gb, pb gb, qa, A, pa = qgb
qa,A,pb — gb,pa = qb
ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vxgx
A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

qga, A, pa = gb, pb gb, qa, A, pa = qgb
qa,A,pb — gb,pa = qb
ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vxgx
A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

B
qga, A, pa = gb, pb gb, qa, A, pa = gb
qa,A,pb — gb,pa = qb
ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vxgx
A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
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Counter-model Construction, Ex. 1

B
qga, A, pa = gb, pb gb, qa, A, pa = gb
qa,A,pb — gb,pa = qb
ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vxgx
A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
—_——

A
> Abbreviate px for p(x), gb for q(b), etc.
» The Herbrand universe of branch B, and domain of Z, is {a, b}.
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Examples of Counter-model Construction

Counter-model Construction, Ex. 1

B
qga, A, pa = gb, pb gb, qa, A, pa = gb
qa,A,pb — gb,pa = qb
ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vxgx
A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
—_——

A
» Abbreviate px for p(x), gb for g(b), etc.
» The Herbrand universe of branch B, and domain of Z, is {a, b}.
» Since pa € BT, define a € p*, so T = pa.
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Examples of Counter-model Construction

Counter-model Construction, Ex. 1

B
qga, A, pa = gb, pb gb, qa, A, pa = gb
qa,A,pb — gb,pa = qb
ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vxgx
A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
—_——

A
» Abbreviate px for p(x), gb for g(b), etc.
» The Herbrand universe of branch B, and domain of Z, is {a, b}.
» Since pa € BT, define a € p*, so T = pa.
» Since ga € BT, define a € ¢, so Z |= ga and thus Z = pa — ga.
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Examples of Counter-model Construction

Counter-model Construction, Ex. 1

B
qga, A, pa = gb, pb gb, qa, A, pa = gb
qa,A,pb — gb,pa = qb
ga,A,pa= gb
A, pa = Vx gx, pa ga, A, pa = Vxgx
A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
—_——

A
Abbreviate px for p(x), gb for g(b), etc.
The Herbrand universe of branch 5, and domain of Z, is {a, b}.
Since pa € B, define a € p*, so T |= pa.
Since gqa € BT, define a € ¢*, so T |= ga and thus T |= pa — qa.
Since gb € B+, define b ¢ q*, so I [~ gb and thus T [~ Vx gx.

vVvVvyyVvyyYy
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Counter-model Construction, Ex. 1

vVvVvyVyYVYyYy

B
qa, A, pa = qb, pb gb,qa, A, pa = gb
qa, A, pb — qb, pa = gb
ga,A,pa= gb

A, pa = Vx gx, pa ga, A, pa = Vxgx

A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
|

A
Abbreviate px for p(x), gb for g(b), etc.
The Herbrand universe of branch 5, and domain of Z, is {a, b}.
Since pa € B, define a € p*, so T |= pa.
Since gqa € BT, define a € ¢*, so T |= ga and thus T |= pa — qa.
Since gb € B+, define b ¢ q*, so I [~ gb and thus T [~ Vx gx.
Since pb € B+, define b ¢ p*, so T [~ pb and thus Z |= pb — gb.
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Examples of Counter-model Construction

Counter-model Construction, Ex. 1

VVyVVYYVYYVYY

B
qa, A, pa = qb, pb gb,qa, A, pa = gb
qa, A, pb — qb, pa = gb
ga,A,pa= gb

A, pa = Vx gx, pa ga, A, pa = Vxgx

A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
|

A
Abbreviate px for p(x), gb for g(b), etc.
The Herbrand universe of branch 5, and domain of Z, is {a, b}.
Since pa € B, define a € p*, so T |= pa.
Since gqa € BT, define a € ¢*, so T |= ga and thus T |= pa — qa.
Since gb € B+, define b ¢ q*, so I [~ gb and thus T [~ Vx gx.
Since pb € B+, define b ¢ p*, so T [~ pb and thus Z |= pb — gb.
Therefore also Z = Vx (px — gx).
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Counter-model Construction, Ex. 1

VVVYyVYYVYYVYY

B
qa, A, pa = qb, pb gb,qa, A, pa = gb
qa, A, pb — qb, pa = gb
ga,A,pa= gb

A, pa = Vx gx, pa ga, A, pa = Vxgx

A, pa — ga, pa = Vx gx
Vx (px — gx), pa = Vx gx
|

A
Abbreviate px for p(x), gb for g(b), etc.
The Herbrand universe of branch 5, and domain of Z, is {a, b}.
Since pa € B, define a € p*, so T |= pa.
Since gqa € BT, define a € ¢*, so T |= ga and thus T |= pa — qa.
Since gb € B+, define b ¢ q*, so I [~ gb and thus T [~ Vx gx.
Since pb € B+, define b ¢ p*, so T [~ pb and thus Z |= pb — gb.
Therefore also Z = Vx (px — gx).
7 makes all of BT true and all of B+ false.
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Counter-model Construction, Ex. 2

Vx (pxa — pxb), paa V pba = pab
N————
A
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Counter-model Construction, Ex. 2

Vx (pxa — pxb), paa V pba = pab
N———
A
» Herbrand universe of branch B, and domain of Z, is {a, b}.
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Counter-model Construction, Ex. 2

Vx (pxa — pxb), paa V pba = pab
N———
A
» Herbrand universe of branch B, and domain of Z, is {a, b}.
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Counter-model Construction, Ex. 2

Vx (pxa — pxb), paa V pba = pab
N———
A
» Herbrand universe of branch B, and domain of Z, is {a, b}.

» Since pab € B*, define (a, b) ¢ p', so T [~ pab.
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Counter-model Construction, Ex. 2

Vx (pxa — pxb), paa \V pba = pab
N———
A
» Herbrand universe of branch B, and domain of Z, is {a, b}.

» Since pab € B*, define (a, b) ¢ p', so T [~ pab.
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Counter-model Construction, Ex. 2

A, paa = pab A, pba = pab
Vx (pxa — pxb), paa V pba = pab
N———

A
» Herbrand universe of branch B, and domain of Z, is {a, b}.

» Since pab € B*, define (a, b) ¢ p', so T [~ pab.
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Counter-model Construction, Ex. 2

A, paa = pab A, pba = pab
Vx (pxa — pxb), paa V pba = pab
N———

A
» Herbrand universe of branch B, and domain of Z, is {a, b}.

» Since pab € B*, define (a, b) ¢ p', so T [~ pab.
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Counter-model Construction, Ex. 2

A, paa — pab, paa = pab
A, paa = pab A, pba = pab
Vx (pxa — pxb), paa V pba = pab
N———

A
» Herbrand universe of branch B, and domain of Z, is {a, b}.

» Since pab € B*, define (a, b) ¢ p', so T [~ pab.
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Counter-model Construction, Ex. 2

A, paa — pab, paa = pab
A, paa = pab A, pba = pab
Vx (pxa — pxb), paa V pba = pab
N————

A
» Herbrand universe of branch B, and domain of Z, is {a, b}.

» Since pab € B*, define (a, b) ¢ p', so T [~ pab.
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Counter-model Construction, Ex. 2

(Both branches closeable)
A, paa — pab, paa = pab
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