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Today’s Plan

I Preliminaries and Reminders

I Soundness Proof

I Completeness: Preliminaries

I Proof of Completeness

I Examples of Counter-model Construction
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Preliminaries and Reminders

Reminder Soundness of LK

I We want all LK-provable sequents to be valid!

I If they are not, then LK would be incorrect or unsound . . .

Definition 1.1 (Soundness).

The sequent calculus LK is sound if every LK-provable sequent is valid.

Theorem 1.1.

The sequent calculus LK is sound.
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Preliminaries and Reminders

Assumptions about the first order language

I We assume that a first-order language is given, by sets of constants,
function symbols, and predicates.

I Some rules require “fresh” constants, so we assume that the set of
constant symbols A is (countably) infinite.

I A root sequent Γ =⇒ ∆ consists of closed formulae.

I We show that if Γ =⇒ ∆ is provable, then Γ =⇒ ∆ is valid
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Preliminaries and Reminders

Reminer: Semantics for Sequents

Definition 1.2 (Valid sequent).

A sequent Γ =⇒ ∆ is valid if all interpretations that satisfy all formulae
in Γ satisfy at least one formula in ∆.

Definition 1.3 (Countermodel/falsifiable sequent).

I An interpretation I is a countermodel for the sequent Γ =⇒ ∆ if
vI(A) = T for all formulae A ∈ Γ and vI(B) = F for all formulae
B ∈ ∆

I We say that a countermodel for a sequent falsifies the sequent.

I A sequent is falsifiable if it has a countermodel.
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Preliminaries and Reminders

Syntax vs. Semantics for Quantifiers

I Soundness and Completeness give the connection between

I syntax (= calculus)
I semantics (I |= ϕ)

I Quantifier rules use substitutions

I The semantics of quantifiers use variable assignments

I We therefore need a connection between

I substitutions (= syntactic operations)
I variable assignments (= semantic objects)

I This connection is given by the Substitution Lemma
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Preliminaries and Reminders

Reminder: Substitution Lemma

Theorem 1.2 (Substitution Lemma for Formulae).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V, a formula A and a term s ∈ T , such that
{y\s} is capture-free for A.

vI(α,A[y\s]) = vI(α{y←vI(α, s)},A)

Definition 1.4 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

Note: if t ∈ T is a closed term, then {y\t} is capture-free for any A.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 8 / 40



Preliminaries and Reminders

Reminder: Substitution Lemma

Theorem 1.2 (Substitution Lemma for Formulae).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V, a formula A and a term s ∈ T , such that
{y\s} is capture-free for A.

vI(α,A[y\s]) = vI(α{y←vI(α, s)},A)

Definition 1.4 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

Note: if t ∈ T is a closed term, then {y\t} is capture-free for any A.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 8 / 40



Preliminaries and Reminders

Reminder: Substitution Lemma

Theorem 1.2 (Substitution Lemma for Formulae).

Given an interpretation I = (D, ι) and a variable assignment α for I.
Given also a variable y ∈ V, a formula A and a term s ∈ T , such that
{y\s} is capture-free for A.

vI(α,A[y\s]) = vI(α{y←vI(α, s)},A)

Definition 1.4 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x
in A, none of the variables in σ(x) is bound in A.

Note: if t ∈ T is a closed term, then {y\t} is capture-free for any A.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 8 / 40



Soundness Proof

Outline

I Preliminaries and Reminders

I Soundness Proof

I Completeness: Preliminaries

I Proof of Completeness

I Examples of Counter-model Construction

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 9 / 40



Soundness Proof

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 10 / 40



Soundness Proof

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 10 / 40



Soundness Proof

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 10 / 40



Soundness Proof

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 10 / 40



Soundness Proof

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 10 / 40



Soundness Proof

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 10 / 40



Soundness Proof

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

IN3070/4070 :: Autumn 2020 Lecture 5 :: 17th September 10 / 40



Soundness Proof

Preservation of Falsifiability

Definition 2.1.

An LK-rule θ preserves falsifiability (upwards) if whenever the conclusion
w of an instance

w1 · · ·wn
w of θ is falsifiabile, then also at least one of

the premises wi is falsifiable

NEW: the falsifying interpretation for the conclusion does not need to be
the same as for the conclusion.

Lemma 2.1.

All LK-rules preserve falsifiability.

I We have shown that the rules for propositional connectives
(∧, ∨, →, ¬) have this property.

I It remains to show that also the ∀ and ∃ rules preserve falsifiability.
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Soundness Proof

Proof: ∀-left preserves falsifiability

Γ,∀x A,A[x\t] =⇒ ∆
∀-left

Γ,∀x A =⇒ ∆
t is a closed term

I Assume that I = (D, ι) falsifies the conclusion Γ, ∀x A =⇒ ∆.

I I makes all formulae in Γ ∪ {∀xA} true and all formulae in ∆ false.

I It suffices to show that I |= A[x\t].

Then, the premiss is falsified by
I.

I Since I |= ∀x A, we know that vI(α{x←d},A) = T for all d ∈ D
and any α.

(Using the semantics of ∀)

I In particular, vI(α{x←vI(α, t)},A) = T

I By the substitution lemma: vI(α,A[x\t]) = T

I And therefore: I |= A[x\t].
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I We have to find an interpretation that falsifies the premisse.

I But we can not simply assume that I |= A[x\a].

I Since I |= ∃x A we know that vI(α{x←d},A) = T for some d ∈ D.
I Based on I and d , we define a new model I ′ as follows:

I I ′ = (D, ι′) is identical to I except for the interpretation of the
constant a.

I a is interpreted as d , ie. aι
′

= d .

I Then I ′ falsifies the premisse:

I Since a does not occur in the conclusion, I ′ and I interpret the fml. in
Γ og ∆ equally.

I ′ makes all fml. in Γ true and all fml. in ∆ false.

I vI′(α{x←d},A) = vI(α{x←d},A) = T , and d = vI′(α, a), so
I ′ |= A[x\a], by the Substitution Lemma.
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Soundness Proof

An Example

I Assume that I = (D, ι) is an interpretation with domain D = {1, 2}
and pι = {2}.

I Assume that a og b are constants and aι = bι = 1.

I Then I 6|= p(a) og I 6|= p(b).

p(b) =⇒ p(a)
∃-left∃x p(x) =⇒ p(a)

I I falsifies the conclusion:

I |= ∃x p(x), since vI(α{x←2}, p(x)) = T
I 6|= p(a).

I But I does not falsify the premisse because I 6|= p(b).

I We define a new interpretation I ′ = (D, ι′) such that bι
′

= 2.

I Then I ′ falsifies the premisse.
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Soundness Proof

Proof: ∃-right and ∀-right preserve satisfiability

I The proof for ∀-right is dual to that for ∃-left

I The proof for ∃-right is dual to that for ∀-left
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Soundness Proof

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

2. An LK-derivation with a falsifiable root sequent has at least one
falsifiable leaf sequent

3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.
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Soundness Proof

Existence of a falsifiable leaf sequent

Lemma 2.2.

If the root sequent I of an an LK-derivation is falsifiable, then at least one
of the leaf sequents is falsifiable.

I As for propositional logic, the proof is by structural induction on the
LK-derivation.

I The base case (one sequent Γ =⇒ ∆) is trivial since Γ =⇒ ∆ is
both root and leaf sequent.

I Two induction steps, for one-premisse and two-premisse rules

I Both use the lemma that falsifiability is preserved upwards.

Difference from propositional logic: not necessarily the same interpretation!
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Soundness Proof

All axioms are valid

Lemma 2.3.

All axioms are valid

I The proof is the same as for propositional logic

I An axiom has the form

Γ, p(t1, . . . , tn) =⇒ p(t1, . . . , tn),∆

I Any interpretation that satisfies the antecedent satisfies p(t1, . . . , tn).

I Therefore, the same formula p(t1, . . . , tn) is satisfied in the succedent.
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Soundness Proof

Proof of the Soundness Theorem for LK

Proof of soundness.

I Assume that P is an LK-proof for the sequent Γ =⇒ ∆.

I P is an LK-derivation where every leaf is an axiom.

I For the sake of contradiction, assume that Γ =⇒ ∆ is not valid.

I Then there is a countermodel I that falsifies Γ =⇒ ∆.

I We know from the previous Lemma that there is an I ′ that falsifies at
least one leaf sequent of P.

I Then P has a leaf sequent that is not an axiom, since axioms are not
falsifiable.

I So P cannot be an LK-proof.
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Completeness: Preliminaries

Outline

I Preliminaries and Reminders

I Soundness Proof

I Completeness: Preliminaries

I Proof of Completeness

I Examples of Counter-model Construction
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Completeness: Preliminaries

Herbrand Universe

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then H(T ), the Herbrand universe of T , is the
smallest set such that

I H(T ) contains all constant symbols from T. If there are no constants
in T , we include some constant symbol o from A (called a dummy
constant) in H(T ).

I If f is a function symbol in T , with arity n and t1, . . . , tn are terms in
H(T ), then f (t1, . . . , tn) ∈ H(T ).

The Herbrand universe of a set of formulae is the Herbrand universe of the
set of terms occuring in the formulae. The Herbrand universe of a branch
of a derivation is the Herbrand universe of the set of formulae occurring on
that branch.

I Intuitively, the Herbrand universe of T is the set of all closed terms
that can be constructed from the constant and function symbols in T .
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Completeness: Preliminaries

Herbrand Universe: Examples

Example.

Let T = {f (x)}.

Then the Herbrand universe of T is the set

{o, f (o), f (f (o)), f (f (f (o))), . . .}

Example.

Let T = {a, f (x)}. Then the Herbrand universe of T is the set

{a, f (a), f (f (a)), f (f (f (a))), . . .}

Example.

Let F = {∀x p(f (g(x)))} Then the Herbrand universe of F is the set

{o, f (o), g(o), f (g(o)), g(f (o)), f (f (o)), g(g(o)), . . .}
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{a, f (a), f (f (a)), f (f (f (a))), . . .}

Example.

Let F = {∀x p(f (g(x)))} Then the Herbrand universe of F is the set

{o, f (o), g(o), f (g(o)), g(f (o)), f (f (o)), g(g(o)), . . .}
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Completeness: Preliminaries

Fairness

I To guarantee that a proof is found

I all formulae have to be used in a rule eventually, and
I all ∀-left and ∃-right rules are applied with all terms eventually.

I If we try to guarantee this,

1. Either all branches can be closed, giving a proof,
2. or there is an open branch that we can generate a counterexample

from.

I This only makes sense if we include infinite derivations,
i.e. derivations with infinitely long branches.

I We construct a limit by either continuing until no more rules can be
applied, or continuing to apply rules indefinitely. We call the result of
this process a limit derivation.

I When we talk about limit derivations, we include infinite trees.

I We won’t define these formally.

I If all branches in a derivation can be closed, then the derivation is
finite. I.e. proofs are finite.
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Completeness: Preliminaries

Fairness

Definition 3.2 (Fair derivations).

A limit derivation is fair if each open branch has the following properties:

1. There are no sequents Γ,A =⇒ A,∆ on the branch that could be
closed using the axiom.

2. If a ∧, ∨, →, or ¬ formula occurs, then the corresponding LK rule is
applied to the formula on that branch.

3. If a ∃ formula occurs in an antecedent, or a ∀ formula in a succedent,
then the ∃-left, resp. ∀-right rules are applied to the formula on that
branch.

4. If a ∀ formula occurs in an antecedent, or a ∃ formula in a succedent,
then the ∀-left, resp. ∃-right rules are applied to the formula on that
branch for every term t in the Herbrand universe of that branch.
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Completeness: Preliminaries

Königs Lemma

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many
descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let u0 be the root node of
the tree T . Since T is infinite and u0 has finitely many descendants, one
of u0’s descendents must be infinite. (Otherwise T would be finite.) Let
u1 be the root of such a sub-tree. If the branch u0, u1, . . . , un is defined,
we find the next node un+1 by the same kind of reasoning. This process
defines an infinitely long branch.

Corollary 3.1.

If T is a finitley branching tree, where all branches are finitely long, then
T is finite.
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Proof of Completeness

Proof of Completeness

Assume Γ =⇒ ∆ is not provable.

I Construct a fair (limit) derivation D from Γ =⇒ ∆. Possibly infinite.

I Then there is (at least) one branch B that does not end in an axiom.

I We construct an interpretation that falsifies Γ =⇒ ∆. Let

B> be the set of formulae that occur in an antecedent on B, and

B⊥ be the set of formulae that occur in an succedent on B, and

At be the set of atomic formulae in B>.
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Proof of Completeness

Proof of Completeness (Construction of counter-model)

I We construct a counter-model I = (D, ι) for Γ =⇒ ∆.

I Let the domain D be the Herbrand universe of the branch. (I.e. the
set of all closed terms that can be generated from the terms on the
branch).

I Let aι = a for all constant symbols a ∈ A.

I If f ∈ F is a function symbol with arity n, let
f ι(t1, . . . , tn) = f (t1, . . . , tn).

I Then vI(t) = t for all closed terms t.
I All terms are interpreted as themselves

I If p is a predicate symbol with arity n, let 〈t1, . . . , tn〉 ∈ pι if and only
if p(t1, . . . , tn) ∈ At.

I Such an intepretation is often called a Herbrand model or a term
model.
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Proof of Completeness

Proof of Completeness (Properties of I)

I We show by structural induction on first-order formlae that the
interpretation I makes all formlae i B> true and all formulae in B⊥
false.

I We show for all first-order formulae A that:

If A ∈ B>, then I |= A, i.e. vI(A) = T
If A ∈ B⊥, then I 6|= A, i.e. vI(A) = F

Base case 1: A is an atomic formula p(t1, . . . , tn) in B>.

I Then p(t1, . . . , tn) ∈ At og 〈t1, . . . , tn〉 ∈ pι by construction.

I Therefore I |= p(t1, . . . , tn).

Base case 2: A is an atomic formula p(t1, . . . , tn) i B⊥.

I Since B does not end in an axiom, and the derivation is fair,
p(t1, . . . , tn) /∈ At and 〈t1, . . . , tn〉 /∈ pι.

I Therefore I 6|= p(t1, . . . , tn).
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Proof of Completeness

Proof of Completeness (Propositional connectives)

Induction step: From the assumption (induction hypothesis) that our
statement holds for all smaller formulae, we have to show that it holds for
¬A, (A ∧ B), (A ∨ B), (A→ B), ∀x A, and ∃x A.

Most of this was done in the proof for propositional logic
E.g. assume that A ∧ B ∈ B>.

I By fairness of the derivation, the ∧-left rule has been applied to
A ∧ B on the branch B.

I Then A ∈ B> and B ∈ B>.

I By the induction hypothesis, I |= A and I |= B.

I By model semantics, I |= A ∧ B.

We only need to cover quantified formulae
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Proof of Completeness

Proof of Completeness (∃ in Antecedent)

Assume that ∃x A ∈ B>.

I By fairness of the derivation, ∃-left was applied to ∃x A on the branch.

I Then there is a constant a such that A[x\a] ∈ B>.

I By the ind. hyp., I |= A[x\a].

I I.e. vI(α,A[x\a]) = T for any assignment α, since A[x\a] is closed

I By the substitution lemma: vI(α{x←aι},A) = T .

I By model semantics: vI(α,∃x A) = T

I I.e. I |= ∃x A.
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Proof of Completeness

Proof of Completeness (∃ in Succedent)

Assume that ∃x A ∈ B⊥.

I We have to show that I 6|= ∃x A. Assume that this does not hold.

I I.e. I |= ∃x A
I Remember that the domain D of I = (D, ι) consists of terms

I Then vI(α{x←t},A) = T for some term t ∈ D.

I By fairness of the derivation, the ∃-right rule was applied on ∃x A
with the term t.

I It follows that:

I A[x\t] ∈ B⊥
I vI(A[x\t]) = F (induction hypothesis)
I vI(α{x←vI(t)},A) = F for any α (substitution lemma)
I vI(α{x←t},A) = F (since vI(t) = t)

I Contradiction!
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Proof of Completeness

Proof of Completeness (∀ in Succedent)

Assume that ∀x A ∈ B⊥.

I By fairness of the derivation, ∀-right was applied to ∃x A on the
branch.

I Then there is a constant a such that A[x\a] ∈ B⊥.

I By the ind. hyp., I 6|= A[x\a].

I I.e. vI(α,A[x\a]) = F for any assignment α, since A[x\a] is closed

I By the substitution lemma: vI(α{x←aι},A) = F .

I By model semantics: vI(α,∀x A) = F

I I.e. I 6|= ∀x A.
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Proof of Completeness

Proof of Completeness (∀ in Antecedent)

Assume that ∀x A ∈ B>.

I We have to show that I |= ∀x A. Assume that this does not hold.

I I.e. I 6|= ∀x A
I Remember that the domain D of I = (D, ι) consists of terms

I Then vI(α{x←t},A) = F for some term t ∈ D.

I By fairness of the derivation, the ∀-left rule was applied on ∀x A with
the term t.

I It follows that:

I A[x\t] ∈ B>
I vI(A[x\t]) = T (induction hypothesis)
I vI(α{x←vI(t)},A) = T for any α (substitution lemma)
I vI(α{x←t},A) = T (since vI(t) = t)

I Contradiction!
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I By fairness of the derivation, the ∀-left rule was applied on ∀x A with
the term t.

I It follows that:

I A[x\t] ∈ B>

I vI(A[x\t]) = T (induction hypothesis)
I vI(α{x←vI(t)},A) = T for any α (substitution lemma)
I vI(α{x←t},A) = T (since vI(t) = t)

I Contradiction!
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Proof of Completeness

Some comments

I We can see the construction of a limit derivation as approximating a
counter-model for Γ =⇒ ∆.

I The more often we apply the ∀-left and ∃-right rules, the ‘closer’ we
get to a possible counter-model

I But constructing a counter-model in this way may require using all
rules infinitely often.

I So this is not an algorithm for finding counter-models!

I It will find a proof if one exists, but may not terminate otherwise.

I There may be finite counter-models even when this method does not
terminate. Finding finite counter-models is a topic of active research.

I The idea of the completeness proof is important: we construct an
interpretation from something purely syntactic.
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Examples of Counter-model Construction

Outline

I Preliminaries and Reminders

I Soundness Proof

I Completeness: Preliminaries

I Proof of Completeness

I Examples of Counter-model Construction
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Examples of Counter-model Construction

Counter-model Construction, Ex. 1

A, pa⇒ ∀x qx , pa

B
qa,A, pa⇒ qb, pb qb, qa,A, pa⇒ qb

qa,A, pb → qb, pa ⇒ qb

qa,A, pa ⇒ qb

qa,A, pa ⇒ ∀x qx
A, pa→ qa, pa ⇒ ∀x qx

∀x (px → qx)︸ ︷︷ ︸
A

, pa ⇒ ∀x qx

I Abbreviate px for p(x), qb for q(b), etc.

I The Herbrand universe of branch B, and domain of I, is {a, b}.
I Since pa ∈ B>, define a ∈ pι, so I |= pa.
I Since qa ∈ B>, define a ∈ qι, so I |= qa and thus I |= pa→ qa.
I Since qb ∈ B⊥, define b /∈ qι, so I 6|= qb and thus I 6|= ∀x qx .
I Since pb ∈ B⊥, define b /∈ pι, so I 6|= pb and thus I |= pb → qb.
I Therefore also I |= ∀x (px → qx).
I I makes all of B> true and all of B⊥ false.
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Examples of Counter-model Construction

Counter-model Construction, Ex. 2

(Both branches closeable)

A, paa→ pab, paa⇒ pab

A, paa⇒ pab

A, pba⇒ pab, paa, pba
B

pbb,A, pba⇒ pab, paa

A, pba→ pbb, pba⇒ pab, paa

A, pba⇒ pab, paa pab,A, pba⇒ pab

A, paa→ pab, pba⇒ pab

A, pba⇒ pab

∀x (pxa→ pxb)︸ ︷︷ ︸
A

, paa ∨ pba⇒ pab

I Herbrand universe of branch B, and domain of I, is {a, b}.
I Since pab ∈ B⊥, define 〈a, b〉 /∈ pι, so I 6|= pab.

I Since pba ∈ B> vil 〈b, a〉 ∈ pι, so I |= pba and I |= paa ∨ pba.

I Since paa ∈ B⊥ vil 〈a, a〉 /∈ pι, so I 6|= paa and I |= paa→ pab.

I Since pbb ∈ B> vil 〈b, b〉 ∈ pι, so I |= pbb and I |= pba→ pbb.

I We thus have I |= ∀x (pxa→ pxb).

I I makes all of B> true and all of B⊥ false.
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Examples of Counter-model Construction

Summary and Outlook

I We can show things for ∞ many interpretations using finite proofs!

I OMG! Amazing!

I Uncloseable branches give counter-models

I Might be infinite: if there is no proof, we might search for ever

I First-order validity is undecidable

I Can this be automated?

I Sure! But. . .

I Instantiating quantifiers with every possible term is wasteful

I More goal-oriented ways of doing this?

I Coming up. . .
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