IN3070/4070 - Logic - Autumn 2020

Lecture 5: Soundness & Completeness for 1st-order LK

Martin Giese

17th September 2020

Today's Plan

- ▶ Preliminaries and Reminders
- Soundness Proof
- ► Completeness: Preliminaries
- Proof of Completeness
- ► Examples of Counter-model Construction

Outline

- ▶ Preliminaries and Reminders
- ▶ Soundness Proof
- Completeness: Preliminaries
- ▶ Proof of Completeness
- Examples of Counter-model Construction

▶ We want all LK-provable sequents to be valid!

- ▶ We want all LK-provable sequents to be valid!
- ▶ If they are not, then LK would be incorrect or unsound . . .

- ▶ We want all LK-provable sequents to be valid!
- ▶ If they are not, then LK would be incorrect or unsound . . .

Definition 1.1 (Soundness).

The sequent calculus LK is sound if every LK-provable sequent is valid.

- ▶ We want all LK-provable sequents to be valid!
- ▶ If they are not, then LK would be incorrect or unsound . . .

Definition 1.1 (Soundness).

The sequent calculus LK is sound if every LK-provable sequent is valid.

Theorem 1.1.

The sequent calculus LK is sound.

▶ We assume that a first-order language is given, by sets of constants, function symbols, and predicates.

- ▶ We assume that a first-order language is given, by sets of constants, function symbols, and predicates.
- ➤ Some rules require "fresh" constants, so we assume that the set of constant symbols A is (countably) infinite.

- ▶ We assume that a first-order language is given, by sets of constants, function symbols, and predicates.
- ➤ Some rules require "fresh" constants, so we assume that the set of constant symbols A is (countably) infinite.
- ightharpoonup A root sequent $\Gamma \implies \Delta$ consists of *closed* formulae.

- ▶ We assume that a first-order language is given, by sets of constants, function symbols, and predicates.
- Some rules require "fresh" constants, so we assume that the set of constant symbols A is (countably) infinite.
- ▶ A root sequent $\Gamma \implies \Delta$ consists of *closed* formulae.
- lackbox We show that if $\Gamma \Longrightarrow \Delta$ is provable, then $\Gamma \Longrightarrow \Delta$ is valid

Reminer: Semantics for Sequents

Definition 1.2 (Valid sequent).

A sequent $\Gamma \implies \Delta$ is valid if all interpretations that satisfy all formulae in Γ satisfy at least one formula in Δ .

Definition 1.3 (Countermodel/falsifiable sequent).

▶ An interpretation \mathcal{I} is a countermodel for the sequent $\Gamma \Longrightarrow \Delta$ if $v_{\mathcal{I}}(A) = T$ for all formulae $A \in \Gamma$ and $v_{\mathcal{I}}(B) = F$ for all formulae $B \in \Delta$

Reminer: Semantics for Sequents

Definition 1.2 (Valid sequent).

A sequent $\Gamma \implies \Delta$ is valid if all interpretations that satisfy all formulae in Γ satisfy at least one formula in Δ .

Definition 1.3 (Countermodel/falsifiable sequent).

- ▶ An interpretation $\mathcal I$ is a countermodel for the sequent $\Gamma \Longrightarrow \Delta$ if $v_{\mathcal I}(A) = T$ for all formulae $A \in \Gamma$ and $v_{\mathcal I}(B) = F$ for all formulae $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.

Reminer: Semantics for Sequents

Definition 1.2 (Valid sequent).

A sequent $\Gamma \implies \Delta$ is valid if all interpretations that satisfy all formulae in Γ satisfy at least one formula in Δ .

Definition 1.3 (Countermodel/falsifiable sequent).

- ▶ An interpretation $\mathcal I$ is a countermodel for the sequent $\Gamma \Longrightarrow \Delta$ if $v_{\mathcal I}(A) = T$ for all formulae $A \in \Gamma$ and $v_{\mathcal I}(B) = F$ for all formulae $B \in \Delta$
- ▶ We say that a countermodel for a sequent falsifies the sequent.
- A sequent is falsifiable if it has a countermodel.

▶ Soundness and Completeness give the connection between

- ▶ Soundness and Completeness give the connection between
 - ▶ syntax (= calculus)

- ► Soundness and Completeness give the connection between
 - ▶ syntax (= calculus)
 - ightharpoonup semantics ($\mathcal{I} \models \varphi$)

- Soundness and Completeness give the connection between
 - ➤ syntax (= calculus)
 - ightharpoonup semantics ($\mathcal{I} \models \varphi$)
- Quantifier rules use substitutions

- Soundness and Completeness give the connection between
 - ▶ syntax (= calculus)
 - \blacktriangleright semantics ($\mathcal{I} \models \varphi$)
- Quantifier rules use substitutions
- ▶ The semantics of quantifiers use variable assignments

- Soundness and Completeness give the connection between
 - ▶ syntax (= calculus)
 - ightharpoonup semantics ($\mathcal{I} \models \varphi$)
- Quantifier rules use substitutions
- ▶ The semantics of quantifiers use variable assignments
- ▶ We therefore need a connection between

- ▶ Soundness and Completeness give the connection between
 - ▶ syntax (= calculus)
 - ightharpoonup semantics ($\mathcal{I} \models \varphi$)
- Quantifier rules use substitutions
- ▶ The semantics of quantifiers use variable assignments
- ▶ We therefore need a connection between
 - substitutions (= syntactic operations)

- Soundness and Completeness give the connection between
 - ➤ syntax (= calculus)
 - ightharpoonup semantics ($\mathcal{I} \models \varphi$)
- Quantifier rules use substitutions
- ▶ The semantics of quantifiers use variable assignments
- ▶ We therefore need a connection between
 - substitutions (= syntactic operations)
 - variable assignments (= semantic objects)

- Soundness and Completeness give the connection between
 - ▶ syntax (= calculus)
 - ightharpoonup semantics ($\mathcal{I} \models \varphi$)
- Quantifier rules use substitutions
- ▶ The semantics of quantifiers use variable assignments
- We therefore need a connection between
 - substitutions (= syntactic operations)
 - variable assignments (= semantic objects)
- ▶ This connection is given by the Substitution Lemma

Reminder: Substitution Lemma

Theorem 1.2 (Substitution Lemma for Formulae).

Given an interpretation $\mathcal{I}=(D,\iota)$ and a variable assignment α for \mathcal{I} . Given also a variable $y\in\mathcal{V}$, a formula A and a term $s\in\mathcal{T}$, such that $\{y\slash s\$ is capture-free for A.

$$v_{\mathcal{I}}(\alpha, A[y \setminus s]) = v_{\mathcal{I}}(\alpha \{ y \leftarrow v_{\mathcal{I}}(\alpha, s) \}, A)$$

Reminder: Substitution Lemma

Theorem 1.2 (Substitution Lemma for Formulae).

Given an interpretation $\mathcal{I}=(D,\iota)$ and a variable assignment α for \mathcal{I} . Given also a variable $y\in\mathcal{V}$, a formula A and a term $s\in\mathcal{T}$, such that $\{y\backslash s\}$ is capture-free for A.

$$v_{\mathcal{I}}(\alpha, A[y \setminus s]) = v_{\mathcal{I}}(\alpha \{ y \leftarrow v_{\mathcal{I}}(\alpha, s) \}, A)$$

Definition 1.4 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x in A, none of the variables in $\sigma(x)$ is bound in A.

Reminder: Substitution Lemma

Theorem 1.2 (Substitution Lemma for Formulae).

Given an interpretation $\mathcal{I}=(D,\iota)$ and a variable assignment α for \mathcal{I} . Given also a variable $y\in\mathcal{V}$, a formula A and a term $s\in\mathcal{T}$, such that $\{y\backslash s\}$ is capture-free for A.

$$v_{\mathcal{I}}(\alpha, A[y \setminus s]) = v_{\mathcal{I}}(\alpha \{ y \leftarrow v_{\mathcal{I}}(\alpha, s) \}, A)$$

Definition 1.4 (Capture-free substitution).

A substitution σ is capture-free for a formula A if for every free variable x in A, none of the variables in $\sigma(x)$ is bound in A.

Note: if $t \in \mathcal{T}$ is a *closed* term, then $\{y \setminus t\}$ is capture-free for any A.

Outline

- Preliminaries and Reminders
- ► Soundness Proof
- Completeness: Preliminaries
- ▶ Proof of Completeness
- Examples of Counter-model Construction

As for propositional logic, we show the following lemmas:

As for propositional logic, we show the following lemmas:

1. All LK-rules preserve falsifiability upwards.

As for propositional logic, we show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent

As for propositional logic, we show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

As for propositional logic, we show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

As for propositional logic, we show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

Preservation of Falsifiability

Definition 2.1.

An LK-rule θ preserves falsifiability (upwards) if whenever the conclusion w of an instance $\frac{w_1 \cdots w_n}{w}$ of θ is falsifiabile, then also at least one of the premises w_i is falsifiable

Preservation of Falsifiability

Definition 2.1.

An LK-rule θ preserves falsifiability (upwards) if whenever the conclusion w of an instance $\frac{w_1 \cdots w_n}{w}$ of θ is falsifiabile, then also at least one of the premises w_i is falsifiable

NEW: the falsifying interpretation for the conclusion does not need to be the same as for the conclusion.

Preservation of Falsifiability

Definition 2.1.

An LK-rule θ preserves falsifiability (upwards) if whenever the conclusion w of an instance $\frac{w_1 \cdots w_n}{w}$ of θ is falsifiabile, then also at least one of the premises w_i is falsifiable

NEW: the falsifying interpretation for the conclusion does not need to be the same as for the conclusion.

Lemma 2.1.

All LK-rules preserve falsifiability.

- ▶ We have shown that the rules for propositional connectives $(\land, \lor, \rightarrow, \neg)$ have this property.
- ▶ It remains to show that also the ∀ and ∃ rules preserve falsifiability.

$$\frac{\Gamma, \forall x \, A, A[x \setminus t] \implies \Delta}{\Gamma, \forall x \, A \implies \Delta} \, \forall \text{-left}$$

t is a closed term

$$\frac{\Gamma, \forall x \, A, A[x \setminus t] \implies \Delta}{\Gamma, \forall x \, A \implies \Delta} \, \forall \text{-left} \qquad t \text{ is a closed term}$$

Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \forall x A \implies \Delta$.

$$\frac{\Gamma, \forall x \, A, A[x \setminus t] \implies \Delta}{\Gamma, \forall x \, A \implies \Delta} \, \forall \text{-left} \qquad t \text{ is a closed term}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \forall x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{ \forall xA \}$ true and all formulae in Δ false.

$$\frac{\Gamma, \forall x \, A, A[x \setminus t] \implies \Delta}{\Gamma, \forall x \, A \implies \Delta} \, \forall \text{-left} \qquad t \text{ is a closed term}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \forall x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{ \forall xA \}$ true and all formulae in Δ false.
- ▶ It suffices to show that $\mathcal{I} \models A[x \setminus t]$.

$$\frac{\Gamma, \forall x \, A, A[x \setminus t] \implies \Delta}{\Gamma, \forall x \, A \implies \Delta} \, \forall \text{-left} \qquad t \text{ is a closed term}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \forall x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{ \forall xA \}$ true and all formulae in Δ false.
- ▶ It suffices to show that $\mathcal{I} \models A[x \setminus t]$. Then, the premiss is falsified by \mathcal{I} .

$$\frac{\Gamma, \forall x \, A, A[x \setminus t] \implies \Delta}{\Gamma, \forall x \, A \implies \Delta} \, \forall \text{-left} \qquad t \text{ is a closed term}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \forall x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{ \forall xA \}$ true and all formulae in Δ false.
- ▶ It suffices to show that $\mathcal{I} \models A[x \setminus t]$. Then, the premiss is falsified by \mathcal{I} .
- ▶ Since $\mathcal{I} \models \forall x A$, we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for all $d \in D$ and any α .

$$\frac{\Gamma, \forall x \, A, A[x \setminus t] \implies \Delta}{\Gamma, \forall x \, A \implies \Delta} \, \forall \text{-left} \qquad t \text{ is a closed term}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \forall x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{ \forall xA \}$ true and all formulae in Δ false.
- ▶ It suffices to show that $\mathcal{I} \models A[x \setminus t]$. Then, the premiss is falsified by \mathcal{I} .
- ▶ Since $\mathcal{I} \models \forall x A$, we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for all $d \in D$ and any α . (Using the semantics of \forall)

$$\frac{\Gamma, \forall x \, A, A[x \setminus t] \implies \Delta}{\Gamma, \forall x \, A \implies \Delta} \, \forall \text{-left} \qquad t \text{ is a closed term}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \forall x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\forall xA\}$ true and all formulae in Δ false.
- ▶ It suffices to show that $\mathcal{I} \models A[x \setminus t]$. Then, the premiss is falsified by \mathcal{I} .
- ▶ Since $\mathcal{I} \models \forall x A$, we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for all $d \in D$ and any α . (Using the semantics of \forall)
- ▶ In particular, $v_{\mathcal{I}}(\alpha\{x\leftarrow v_{\mathcal{I}}(\alpha,t)\},A)=T$

$$\frac{\Gamma, \forall x \, A, A[x \setminus t] \implies \Delta}{\Gamma, \forall x \, A \implies \Delta} \, \forall \text{-left} \qquad t \text{ is a closed term}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \forall x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\forall xA\}$ true and all formulae in Δ false.
- ▶ It suffices to show that $\mathcal{I} \models A[x \setminus t]$. Then, the premiss is falsified by \mathcal{I} .
- ▶ Since $\mathcal{I} \models \forall x A$, we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for all $d \in D$ and any α . (Using the semantics of \forall)
- ▶ In particular, $v_{\mathcal{I}}(\alpha\{x\leftarrow v_{\mathcal{I}}(\alpha,t)\},A)=T$
- ▶ By the substitution lemma: $v_{\mathcal{I}}(\alpha, A[x \setminus t]) = T$

$$\frac{\Gamma, \forall x \, A, A[x \setminus t] \implies \Delta}{\Gamma, \forall x \, A \implies \Delta} \, \forall \text{-left} \qquad t \text{ is a closed term}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \forall x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\forall xA\}$ true and all formulae in Δ false.
- ▶ It suffices to show that $\mathcal{I} \models A[x \setminus t]$. Then, the premiss is falsified by \mathcal{I} .
- ▶ Since $\mathcal{I} \models \forall x A$, we know that $v_{\mathcal{I}}(\alpha\{x\leftarrow d\}, A) = T$ for all $d \in D$ and any α . (Using the semantics of \forall)
- ▶ In particular, $v_{\mathcal{I}}(\alpha\{x\leftarrow v_{\mathcal{I}}(\alpha,t)\},A)=T$
- ▶ By the substitution lemma: $v_{\mathcal{I}}(\alpha, A[x \setminus t]) = T$
- ▶ And therefore: $\mathcal{I} \models A[x \setminus t]$.

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

a is a constant that does not occur in the conculsion

▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x \, A \implies \Delta$.

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- ▶ We have to find an interpretation that falsifies the premisse.

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x \ A \implies \Delta} \exists \text{-left}$$

- Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- ▶ We have to find an interpretation that falsifies the premisse.
- ▶ But we can not simply assume that $\mathcal{I} \models A[x \setminus a]$.

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

- Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- ▶ We have to find an interpretation that falsifies the premisse.
- ▶ But we can not simply assume that $\mathcal{I} \models A[x \setminus a]$.
- ▶ Since $\mathcal{I} \models \exists x A$ we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for some $d \in D$.

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x \, A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- ▶ We have to find an interpretation that falsifies the premisse.
- ▶ But we can not simply assume that $\mathcal{I} \models A[x \setminus a]$.
- ▶ Since $\mathcal{I} \models \exists x A$ we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for some $d \in D$.
- ▶ Based on \mathcal{I} and d, we define a new model \mathcal{I}' as follows:

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- ▶ We have to find an interpretation that falsifies the premisse.
- ▶ But we can not simply assume that $\mathcal{I} \models A[x \setminus a]$.
- ▶ Since $\mathcal{I} \models \exists x A$ we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for some $d \in D$.
- ▶ Based on \mathcal{I} and d, we define a new model \mathcal{I}' as follows:
 - ▶ $\mathcal{I}' = (D, \iota')$ is identical to \mathcal{I} except for the interpretation of the constant a.

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x \, A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- ▶ We have to find an interpretation that falsifies the premisse.
- ▶ But we can not simply assume that $\mathcal{I} \models A[x \setminus a]$.
- ▶ Since $\mathcal{I} \models \exists x A$ we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for some $d \in D$.
- ▶ Based on \mathcal{I} and d, we define a new model \mathcal{I}' as follows:
 - ▶ $\mathcal{I}' = (D, \iota')$ is identical to \mathcal{I} except for the interpretation of the constant a.
 - ▶ a is interpreted as d, ie. $a^{\iota'} = d$.

$$\begin{array}{ccc} \Gamma, A[x \backslash a] & \Longrightarrow & \Delta \\ \hline \Gamma, \exists x A & \Longrightarrow & \Delta \end{array} \exists \text{-left}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x \, A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- ▶ We have to find an interpretation that falsifies the premisse.
- ▶ But we can not simply assume that $\mathcal{I} \models A[x \setminus a]$.
- ▶ Since $\mathcal{I} \models \exists x A$ we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for some $d \in D$.
- ▶ Based on \mathcal{I} and d, we define a new model \mathcal{I}' as follows:
 - ▶ $\mathcal{I}' = (D, \iota')$ is identical to \mathcal{I} except for the interpretation of the constant a.
 - ▶ a is interpreted as d, ie. $a^{\iota'} = d$.
- ▶ Then \mathcal{I}' falsifies the premisse:

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x \, A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- ▶ We have to find an interpretation that falsifies the premisse.
- ▶ But we can not simply assume that $\mathcal{I} \models A[x \setminus a]$.
- ▶ Since $\mathcal{I} \models \exists x A$ we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for some $d \in D$.
- ▶ Based on \mathcal{I} and d, we define a new model \mathcal{I}' as follows:
 - ▶ $\mathcal{I}' = (D, \iota')$ is identical to \mathcal{I} except for the interpretation of the constant a.
 - ▶ a is interpreted as d, ie. $a^{\iota'} = d$.
- ▶ Then \mathcal{I}' falsifies the premisse:
 - Since a does not occur in the conclusion, \mathcal{I}' and \mathcal{I} interpret the fml. in Γ og Δ equally.

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x \, A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- ▶ We have to find an interpretation that falsifies the premisse.
- ▶ But we can not simply assume that $\mathcal{I} \models A[x \setminus a]$.
- ▶ Since $\mathcal{I} \models \exists x A$ we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for some $d \in D$.
- ▶ Based on \mathcal{I} and d, we define a new model \mathcal{I}' as follows:
 - ▶ $\mathcal{I}' = (D, \iota')$ is identical to \mathcal{I} except for the interpretation of the constant a.
 - ▶ a is interpreted as d, ie. $a^{\iota'} = d$.
- ▶ Then \mathcal{I}' falsifies the premisse:
 - Since a does not occur in the conclusion, \mathcal{I}' and \mathcal{I} interpret the fml. in Γ og Δ equally. \mathcal{I}' makes all fml. in Γ true and all fml. in Δ false.

$$\frac{\Gamma, A[x \setminus a] \implies \Delta}{\Gamma, \exists x A \implies \Delta} \exists \text{-left}$$

- ▶ Assume that $\mathcal{I} = (D, \iota)$ falsifies the conclusion $\Gamma, \exists x \, A \implies \Delta$.
- ▶ \mathcal{I} makes all formulae in $\Gamma \cup \{\exists xA\}$ true and alle formulae in Δ false.
- ▶ We have to find an interpretation that falsifies the premisse.
- ▶ But we can not simply assume that $\mathcal{I} \models A[x \setminus a]$.
- ▶ Since $\mathcal{I} \models \exists x A$ we know that $v_{\mathcal{I}}(\alpha\{x \leftarrow d\}, A) = T$ for some $d \in D$.
- ▶ Based on \mathcal{I} and d, we define a new model \mathcal{I}' as follows:
 - ▶ $\mathcal{I}' = (D, \iota')$ is identical to \mathcal{I} except for the interpretation of the constant a.
 - ▶ a is interpreted as d, ie. $a^{\iota'} = d$.
- ▶ Then \mathcal{I}' falsifies the premisse:
 - Since a does not occur in the conclusion, \mathcal{I}' and \mathcal{I} interpret the fml. in Γ og Δ equally. \mathcal{I}' makes all fml. in Γ true and all fml. in Δ false.
 - ▶ $v_{\mathcal{I}'}(\alpha\{x\leftarrow d\}, A) = v_{\mathcal{I}}(\alpha\{x\leftarrow d\}, A) = T$, and $d = v_{\mathcal{I}'}(\alpha, a)$, so $\mathcal{I}' \models A[x \setminus a]$, by the Substitution Lemma.

Assume that $\mathcal{I} = (D, \iota)$ is an interpretation with domain $D = \{1, 2\}$ and $p^{\iota} = \{2\}$.

- Assume that $\mathcal{I} = (D, \iota)$ is an interpretation with domain $D = \{1, 2\}$ and $p^{\iota} = \{2\}$.
- ▶ Assume that a og b are constants and $a^{\iota} = b^{\iota} = 1$.

- Assume that $\mathcal{I} = (D, \iota)$ is an interpretation with domain $D = \{1, 2\}$ and $p^{\iota} = \{2\}$.
- ▶ Assume that *a* og *b* are constants and $a^{\iota} = b^{\iota} = 1$.
- ▶ Then $\mathcal{I} \not\models p(a)$ og $\mathcal{I} \not\models p(b)$.

- Assume that $\mathcal{I} = (D, \iota)$ is an interpretation with domain $D = \{1, 2\}$ and $p^{\iota} = \{2\}$.
- Assume that a og b are constants and $a^{\iota} = b^{\iota} = 1$.
- ▶ Then $\mathcal{I} \not\models p(a)$ og $\mathcal{I} \not\models p(b)$.

$$\frac{p(b) \implies p(a)}{\exists x \ p(x) \implies p(a)} \exists -\text{left}$$

- Assume that $\mathcal{I} = (D, \iota)$ is an interpretation with domain $D = \{1, 2\}$ and $p^{\iota} = \{2\}$.
- Assume that a og b are constants and $a^{\iota} = b^{\iota} = 1$.
- ▶ Then $\mathcal{I} \not\models p(a)$ og $\mathcal{I} \not\models p(b)$.

$$\frac{p(b) \implies p(a)}{\exists x \ p(x) \implies p(a)} \exists -\text{left}$$

If alsifies the conclusion:

- Assume that $\mathcal{I} = (D, \iota)$ is an interpretation with domain $D = \{1, 2\}$ and $p^{\iota} = \{2\}$.
- Assume that a og b are constants and $a^{\iota} = b^{\iota} = 1$.
- ▶ Then $\mathcal{I} \not\models p(a)$ og $\mathcal{I} \not\models p(b)$.

$$\frac{p(b) \implies p(a)}{\exists x \ p(x) \implies p(a)} \exists -\text{left}$$

If alsifies the conclusion:

$$\mathcal{I} \models \exists x \, p(x)$$
, since $v_{\mathcal{I}}(\alpha\{x \leftarrow 2\}, p(x)) = T$

- Assume that $\mathcal{I} = (D, \iota)$ is an interpretation with domain $D = \{1, 2\}$ and $p^{\iota} = \{2\}$.
- Assume that a og b are constants and $a^{\iota} = b^{\iota} = 1$.
- ▶ Then $\mathcal{I} \not\models p(a)$ og $\mathcal{I} \not\models p(b)$.

$$\frac{p(b) \implies p(a)}{\exists x \, p(x) \implies p(a)} \exists \text{-left}$$

I falsifies the conclusion:

$$\mathcal{I} \models \exists x \, p(x)$$
, since $v_{\mathcal{I}}(\alpha\{x \leftarrow 2\}, p(x)) = T$
 $\mathcal{I} \not\models p(a)$.

- Assume that $\mathcal{I} = (D, \iota)$ is an interpretation with domain $D = \{1, 2\}$ and $p^{\iota} = \{2\}$.
- Assume that a og b are constants and $a^{\iota} = b^{\iota} = 1$.
- ▶ Then $\mathcal{I} \not\models p(a)$ og $\mathcal{I} \not\models p(b)$.

$$\frac{p(b) \implies p(a)}{\exists x \ p(x) \implies p(a)} \exists -\text{left}$$

If alsifies the conclusion:

$$\mathcal{I} \models \exists x \, p(x)$$
, since $v_{\mathcal{I}}(\alpha\{x \leftarrow 2\}, p(x)) = T$
 $\mathcal{I} \not\models p(a)$.

▶ But \mathcal{I} does not falsify the premisse because $\mathcal{I} \not\models p(b)$.

- Assume that $\mathcal{I} = (D, \iota)$ is an interpretation with domain $D = \{1, 2\}$ and $p^{\iota} = \{2\}$.
- ▶ Assume that a og b are constants and $a^{\iota} = b^{\iota} = 1$.
- ▶ Then $\mathcal{I} \not\models p(a)$ og $\mathcal{I} \not\models p(b)$.

$$\frac{p(b) \implies p(a)}{\exists x \, p(x) \implies p(a)} \exists \text{-left}$$

I falsifies the conclusion:

$$\mathcal{I} \models \exists x \, p(x)$$
, since $v_{\mathcal{I}}(\alpha\{x \leftarrow 2\}, p(x)) = T$
 $\mathcal{I} \not\models p(a)$.

- ▶ But \mathcal{I} does not falsify the premisse because $\mathcal{I} \not\models p(b)$.
- ▶ We define a new interpretation $\mathcal{I}' = (D, \iota')$ such that $b^{\iota'} = 2$.

An Example

- Assume that $\mathcal{I} = (D, \iota)$ is an interpretation with domain $D = \{1, 2\}$ and $p^{\iota} = \{2\}$.
- Assume that a og b are constants and $a^{\iota} = b^{\iota} = 1$.
- ▶ Then $\mathcal{I} \not\models p(a)$ og $\mathcal{I} \not\models p(b)$.

$$\frac{p(b) \implies p(a)}{\exists x \ p(x) \implies p(a)} \exists -\text{left}$$

It falsifies the conclusion:

$$\mathcal{I} \models \exists x \, p(x)$$
, since $v_{\mathcal{I}}(\alpha\{x \leftarrow 2\}, p(x)) = T$
 $\mathcal{I} \not\models p(a)$.

- ▶ But \mathcal{I} does not falsify the premisse because $\mathcal{I} \not\models p(b)$.
- ▶ We define a new interpretation $\mathcal{I}' = (D, \iota')$ such that $b^{\iota'} = 2$.
- ▶ Then \mathcal{I}' falsifies the premisse.

Proof: ∃-right and ∀-right preserve satisfiability

- ▶ The proof for ∀-right is dual to that for ∃-left
- ▶ The proof for ∃-right is dual to that for ∀-left

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

Existence of a falsifiable leaf sequent

Lemma 2.2.

If the root sequent $\mathcal I$ of an an LK-derivation is falsifiable, then at least one of the leaf sequents is falsifiable.

- ► As for propositional logic, the proof is by structural induction on the LK-derivation.
- ▶ The base case (one sequent $\Gamma \implies \Delta$) is trivial since $\Gamma \implies \Delta$ is both root and leaf sequent.
- Two induction steps, for one-premisse and two-premisse rules
- ▶ Both use the lemma that falsifiability is preserved upwards.

Existence of a falsifiable leaf sequent

Lemma 2.2.

If the root sequent $\mathcal I$ of an an LK-derivation is falsifiable, then at least one of the leaf sequents is falsifiable.

- ► As for propositional logic, the proof is by structural induction on the LK-derivation.
- ▶ The base case (one sequent $\Gamma \implies \Delta$) is trivial since $\Gamma \implies \Delta$ is both root and leaf sequent.
- Two induction steps, for one-premisse and two-premisse rules
- ▶ Both use the lemma that falsifiability is preserved upwards.

Difference from propositional logic: not necessarily the same interpretation!

How to show the Soundness Theorem?

As for propositional logic, we show the following lemmas:

- 1. All LK-rules preserve falsifiability upwards.
- 2. An LK-derivation with a falsifiable root sequent has at least one falsifiable leaf sequent
- 3. All axioms are valid

Finally, we use these lemmas to show the soundness theorem.

Lemma 2.3.

All axioms are valid

Lemma 2.3.

All axioms are valid

▶ The proof is the same as for propositional logic

Lemma 2.3.

All axioms are valid

- ▶ The proof is the same as for propositional logic
- An axiom has the form

$$\Gamma, p(t_1, \ldots, t_n) \implies p(t_1, \ldots, t_n), \Delta$$

Lemma 2.3.

All axioms are valid

- ▶ The proof is the same as for propositional logic
- An axiom has the form

$$\Gamma, p(t_1, \ldots, t_n) \implies p(t_1, \ldots, t_n), \Delta$$

 \blacktriangleright Any interpretation that satisfies the antecedent satisfies $p(t_1,\ldots,t_n)$.

Lemma 2.3.

All axioms are valid

- ▶ The proof is the same as for propositional logic
- An axiom has the form

$$\Gamma, p(t_1, \ldots, t_n) \implies p(t_1, \ldots, t_n), \Delta$$

- ▶ Any interpretation that satisfies the antecedent satisfies $p(t_1, ..., t_n)$.
- ▶ Therefore, the same formula $p(t_1, ..., t_n)$ is satisfied in the succedent.

Proof of soundness.

▶ Assume that \mathcal{P} is an LK-proof for the sequent $\Gamma \implies \Delta$.

Lecture 5 :: 17th September

- ightharpoonup Assume that $\mathcal P$ is an LK-proof for the sequent $\Gamma \implies \Delta$.
 - $\triangleright \mathcal{P}$ is an LK-derivation where every leaf is an axiom.

Proof of soundness.

- ightharpoonup Assume that \mathcal{P} is an LK-proof for the sequent $\Gamma \implies \Delta$.
 - $\triangleright \mathcal{P}$ is an LK-derivation where every leaf is an axiom.
- ▶ For the sake of contradiction, assume that $\Gamma \implies \Delta$ is not valid.

Lecture 5 :: 17th September

- ightharpoonup Assume that $\mathcal P$ is an LK-proof for the sequent $\Gamma \implies \Delta$.
 - $\triangleright \mathcal{P}$ is an LK-derivation where every leaf is an axiom.
- ▶ For the sake of contradiction, assume that $\Gamma \implies \Delta$ is **not** valid.
- ▶ Then there is a countermodel \mathcal{I} that falsifies $\Gamma \implies \Delta$.

- ightharpoonup Assume that \mathcal{P} is an LK-proof for the sequent $\Gamma \implies \Delta$.
 - $ightharpoonup \mathcal{P}$ is an LK-derivation where every leaf is an axiom.
- \blacktriangleright For the sake of contradiction, assume that $\Gamma \implies \Delta$ is not valid.
- ightharpoonup Then there is a countermodel \mathcal{I} that falsifies $\Gamma \implies \Delta$.
- ▶ We know from the previous Lemma that there is an \mathcal{I}' that falsifies at least one leaf sequent of \mathcal{P} .

- ightharpoonup Assume that $\mathcal P$ is an LK-proof for the sequent $\Gamma \implies \Delta$.
 - $ightharpoonup \mathcal{P}$ is an LK-derivation where every leaf is an axiom.
- ▶ For the sake of contradiction, assume that $\Gamma \implies \Delta$ is not valid.
- ▶ Then there is a countermodel \mathcal{I} that falsifies $\Gamma \implies \Delta$.
- We know from the previous Lemma that there is an \mathcal{I}' that falsifies at least one leaf sequent of \mathcal{P} .
- ▶ Then \mathcal{P} has a leaf sequent that is not an axiom, since axioms are not falsifiable.

- lacktriangle Assume that $\mathcal P$ is an LK-proof for the sequent $\Gamma \implies \Delta$.
 - \triangleright \mathcal{P} is an LK-derivation where every leaf is an axiom.
- ▶ For the sake of contradiction, assume that $\Gamma \implies \Delta$ is not valid.
- ightharpoonup Then there is a countermodel \mathcal{I} that falsifies $\Gamma \implies \Delta$.
- We know from the previous Lemma that there is an \mathcal{I}' that falsifies at least one leaf sequent of \mathcal{P} .
- ▶ Then \mathcal{P} has a leaf sequent that is not an axiom, since axioms are not falsifiable.
- ightharpoonup So $\mathcal P$ cannot be an LK-proof.

Outline

- Preliminaries and Reminders
- Soundness Proof
- ► Completeness: Preliminaries
- ▶ Proof of Completeness
- ► Examples of Counter-model Construction

Definition 3.1 (Herbrand universe).

Definition 3.1 (Herbrand universe).

Let T be a set of terms.

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then $\mathcal{H}(T)$, the Herbrand universe of T, is the smallest set such that

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then $\mathcal{H}(T)$, the Herbrand universe of T, is the smallest set such that

 \blacktriangleright $\mathcal{H}(T)$ contains all constant symbols from T.

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then $\mathcal{H}(T)$, the Herbrand universe of T, is the smallest set such that

 \blacktriangleright $\mathcal{H}(T)$ contains all constant symbols from T. If there are no constants in T, we include some constant symbol o from \mathcal{A} (called a dummy constant) in $\mathcal{H}(T)$.

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then $\mathcal{H}(T)$, the Herbrand universe of T, is the smallest set such that

- ▶ $\mathcal{H}(T)$ contains all constant symbols from T. If there are no constants in T, we include some constant symbol o from \mathcal{A} (called a dummy constant) in $\mathcal{H}(T)$.
- ▶ If f is a function symbol in T, with arity n and $t_1, ..., t_n$ are terms in $\mathcal{H}(T)$, then $f(t_1, ..., t_n) \in \mathcal{H}(T)$.

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then $\mathcal{H}(T)$, the Herbrand universe of T, is the smallest set such that

- ▶ $\mathcal{H}(T)$ contains all constant symbols from T. If there are no constants in T, we include some constant symbol o from \mathcal{A} (called a dummy constant) in $\mathcal{H}(T)$.
- ▶ If f is a function symbol in T, with arity n and $t_1, ..., t_n$ are terms in $\mathcal{H}(T)$, then $f(t_1, ..., t_n) \in \mathcal{H}(T)$.

The Herbrand universe of a set of formulae is the Herbrand universe of the set of terms occurring in the formulae.

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then $\mathcal{H}(T)$, the Herbrand universe of T, is the smallest set such that

- ▶ $\mathcal{H}(T)$ contains all constant symbols from T. If there are no constants in T, we include some constant symbol o from \mathcal{A} (called a dummy constant) in $\mathcal{H}(T)$.
- ▶ If f is a function symbol in T, with arity n and $t_1, ..., t_n$ are terms in $\mathcal{H}(T)$, then $f(t_1, ..., t_n) \in \mathcal{H}(T)$.

The Herbrand universe of a set of formulae is the Herbrand universe of the set of terms occurring in the formulae. The Herbrand universe of a branch of a derivation is the Herbrand universe of the set of formulae occurring on that branch.

Definition 3.1 (Herbrand universe).

Let T be a set of terms. Then $\mathcal{H}(T)$, the Herbrand universe of T, is the smallest set such that

- \blacktriangleright $\mathcal{H}(T)$ contains all constant symbols from T. If there are no constants in T, we include some constant symbol o from \mathcal{A} (called a dummy constant) in $\mathcal{H}(T)$.
- ▶ If f is a function symbol in T, with arity n and $t_1, ..., t_n$ are terms in $\mathcal{H}(T)$, then $f(t_1, ..., t_n) \in \mathcal{H}(T)$.

The Herbrand universe of a set of formulae is the Herbrand universe of the set of terms occurring in the formulae. The Herbrand universe of a branch of a derivation is the Herbrand universe of the set of formulae occurring on that branch.

▶ Intuitively, the Herbrand universe of *T* is the set of all *closed* terms that can be constructed from the constant and function symbols in *T*.

Example.

Let
$$T = \{f(x)\}.$$

Example.

Let $T = \{f(x)\}$. Then the Herbrand universe of T is

Example.

Let
$$T = \{f(x)\}$$
. Then the Herbrand universe of T is the set $\{o, f(o), f(f(o)), f(f(f(o))), \ldots\}$

Example.

Let
$$T = \{f(x)\}$$
. Then the Herbrand universe of T is the set $\{o, f(o), f(f(o)), f(f(f(o))), \ldots\}$

Example.

Let
$$T = \{a, f(x)\}.$$

Example.

Let
$$T = \{f(x)\}$$
. Then the Herbrand universe of T is the set $\{o, f(o), f(f(o)), f(f(f(o))), \ldots\}$

Example.

Let $T = \{a, f(x)\}$. Then the Herbrand universe of T is

Example.

Let
$$T = \{f(x)\}$$
. Then the Herbrand universe of T is the set $\{o, f(o), f(f(o)), f(f(f(o))), \ldots\}$

Example.

Let
$$T = \{a, f(x)\}$$
. Then the Herbrand universe of T is the set $\{a, f(a), f(f(a)), f(f(f(a))), \ldots\}$

Example.

Let
$$T = \{f(x)\}$$
. Then the Herbrand universe of T is the set $\{o, f(o), f(f(o)), f(f(f(o))), \ldots\}$

Example.

Let
$$T = \{a, f(x)\}$$
. Then the Herbrand universe of T is the set $\{a, f(a), f(f(a)), f(f(f(a))), \ldots\}$

Example.

Let
$$F = \{ \forall x \, p(f(g(x))) \}$$

Example.

Let
$$T = \{f(x)\}$$
. Then the Herbrand universe of T is the set $\{o, f(o), f(f(o)), f(f(f(o))), \ldots\}$

Example.

Let
$$T = \{a, f(x)\}$$
. Then the Herbrand universe of T is the set $\{a, f(a), f(f(a)), f(f(f(a))), \ldots\}$

Example.

Let $F = \{ \forall x \, p(f(g(x))) \}$ Then the Herbrand universe of F is

Herbrand Universe: Examples

Example.

Let
$$T = \{f(x)\}$$
. Then the Herbrand universe of T is the set $\{o, f(o), f(f(o)), f(f(f(o))), \ldots\}$

Example.

Let
$$T = \{a, f(x)\}$$
. Then the Herbrand universe of T is the set $\{a, f(a), f(f(a)), f(f(f(a))), \ldots\}$

Example.

Let
$$F = \{ \forall x \, p(f(g(x))) \}$$
 Then the Herbrand universe of F is the set $\{o, f(o), g(o), f(g(o)), g(f(o)), f(f(o)), g(g(o)), \ldots \}$

▶ To guarantee that a proof is found

- ▶ To guarantee that a proof is found
 - ▶ all formulae have to be used in a rule eventually, and

- ▶ To guarantee that a proof is found
 - ▶ all formulae have to be used in a rule eventually, and
 - ▶ all ∀-left and ∃-right rules are applied with *all terms* eventually.

- ▶ To guarantee that a proof is found
 - ▶ all formulae have to be used in a rule eventually, and
 - \triangleright all \forall -left and \exists -right rules are applied with *all terms* eventually.
- ▶ If we try to guarantee this,

- To guarantee that a proof is found
 - ▶ all formulae have to be used in a rule eventually, and
 - ▶ all ∀-left and ∃-right rules are applied with *all terms* eventually.
- If we try to guarantee this,
 - 1. Either all branches can be closed, giving a proof,

- To guarantee that a proof is found
 - ▶ all formulae have to be used in a rule eventually, and
 - ▶ all ∀-left and ∃-right rules are applied with *all terms* eventually.
- If we try to guarantee this,
 - 1. Either all branches can be closed, giving a proof,
 - or there is an open branch that we can generate a counterexample from.

- To guarantee that a proof is found
 - all formulae have to be used in a rule eventually, and
 - ▶ all ∀-left and ∃-right rules are applied with *all terms* eventually.
- If we try to guarantee this,
 - 1. Either all branches can be closed, giving a proof,
 - or there is an open branch that we can generate a counterexample from.
- ► This only makes sense if we include infinite derivations, i.e. derivations with infinitely long branches.

- To guarantee that a proof is found
 - all formulae have to be used in a rule eventually, and
 - ▶ all ∀-left and ∃-right rules are applied with *all terms* eventually.
- If we try to guarantee this,
 - 1. Either all branches can be closed, giving a proof,
 - or there is an open branch that we can generate a counterexample from.
- ► This only makes sense if we include infinite derivations, i.e. derivations with infinitely long branches.
- ▶ We construct a *limit* by either continuing until no more rules can be applied, or continuing to apply rules indefinitely. We call the result of this process a *limit derivation*.

- ▶ To guarantee that a proof is found
 - all formulae have to be used in a rule eventually, and
 - ▶ all ∀-left and ∃-right rules are applied with *all terms* eventually.
- If we try to guarantee this,
 - 1. Either all branches can be closed, giving a proof,
 - or there is an open branch that we can generate a counterexample from.
- ► This only makes sense if we include infinite derivations, i.e. derivations with infinitely long branches.
- We construct a *limit* by either continuing until no more rules can be applied, or continuing to apply rules indefinitely. We call the result of this process a *limit derivation*.
- When we talk about limit derivations, we include infinite trees.

- To guarantee that a proof is found
 - all formulae have to be used in a rule eventually, and
 - ▶ all ∀-left and ∃-right rules are applied with *all terms* eventually.
- If we try to guarantee this,
 - 1. Either all branches can be closed, giving a proof,
 - or there is an open branch that we can generate a counterexample from.
- ➤ This only makes sense if we include infinite derivations, i.e. derivations with infinitely long branches.
- We construct a *limit* by either continuing until no more rules can be applied, or continuing to apply rules indefinitely. We call the result of this process a *limit derivation*.
- When we talk about limit derivations, we include infinite trees.
- We won't define these formally.

- To guarantee that a proof is found
 - all formulae have to be used in a rule eventually, and
 - \triangleright all \forall -left and \exists -right rules are applied with *all terms* eventually.
- If we try to guarantee this,
 - 1. Either all branches can be closed, giving a proof,
 - or there is an open branch that we can generate a counterexample from.
- ➤ This only makes sense if we include infinite derivations, i.e. derivations with infinitely long branches.
- We construct a *limit* by either continuing until no more rules can be applied, or continuing to apply rules indefinitely. We call the result of this process a *limit derivation*.
- When we talk about limit derivations, we include infinite trees.
- We won't define these formally.
- ▶ If all branches in a derivation can be closed, then the derivation is finite. I.e. proofs are finite.

Definition 3.2 (Fair derivations).

Definition 3.2 (Fair derivations).

Definition 3.2 (Fair derivations).

A limit derivation is fair if each open branch has the following properties:

1. There are no sequents $\Gamma, A \implies A, \Delta$ on the branch that could be closed using the axiom.

Definition 3.2 (Fair derivations).

- 1. There are no sequents $\Gamma, A \implies A, \Delta$ on the branch that could be closed using the axiom.
- 2. If a \land , \lor , \rightarrow , or \neg formula occurs, then the corresponding LK rule is applied to the formula on that branch.

Definition 3.2 (Fair derivations).

- 1. There are no sequents $\Gamma, A \implies A, \Delta$ on the branch that could be closed using the axiom.
- 2. If a \land , \lor , \rightarrow , or \neg formula occurs, then the corresponding LK rule is applied to the formula on that branch.
- 3. If a \exists formula occurs in an antecedent, or a \forall formula in a succedent, then the \exists -left, resp. \forall -right rules are applied to the formula on that branch.

Definition 3.2 (Fair derivations).

- 1. There are no sequents Γ , $A \implies A$, Δ on the branch that could be closed using the axiom.
- 2. If a \land , \lor , \rightarrow , or \neg formula occurs, then the corresponding LK rule is applied to the formula on that branch.
- 3. If a ∃ formula occurs in an antecedent, or a ∀ formula in a succedent, then the ∃-left, resp. ∀-right rules are applied to the formula on that branch.
- 4. If a \forall formula occurs in an antecedent, or a \exists formula in a succedent, then the \forall -left, resp. \exists -right rules are applied to the formula on that branch for every term t in the Herbrand universe of that branch.

Lemma 3.1 (Königs lemma).

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Proof.

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch.

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let u_0 be the root node of the tree T.

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let u_0 be the root node of the tree T. Since T is infinite and u_0 has finitely many descendants, one of u_0 's descendents must be infinite.

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let u_0 be the root node of the tree T. Since T is infinite and u_0 has finitely many descendants, one of u_0 's descendents must be infinite. (Otherwise T would be finite.)

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let u_0 be the root node of the tree T. Since T is infinite and u_0 has finitely many descendants, one of u_0 's descendents must be infinite. (Otherwise T would be finite.) Let u_1 be the root of such a sub-tree.

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let u_0 be the root node of the tree T. Since T is infinite and u_0 has finitely many descendants, one of u_0 's descendents must be infinite. (Otherwise T would be finite.) Let u_1 be the root of such a sub-tree. If the branch u_0, u_1, \ldots, u_n is defined, we find the next node u_{n+1} by the same kind of reasoning.

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let u_0 be the root node of the tree T. Since T is infinite and u_0 has finitely many descendants, one of u_0 's descendents must be infinite. (Otherwise T would be finite.) Let u_1 be the root of such a sub-tree. If the branch u_0, u_1, \ldots, u_n is defined, we find the next node u_{n+1} by the same kind of reasoning. This process defines an infinitely long branch.

Lemma 3.1 (Königs lemma).

If T is an infinite tree, but finitely branching (all nodes have finitely many descendants), then T has an infinitely long branch.

Proof.

We inductively define an infinitely long branch. Let u_0 be the root node of the tree T. Since T is infinite and u_0 has finitely many descendants, one of u_0 's descendents must be infinite. (Otherwise T would be finite.) Let u_1 be the root of such a sub-tree. If the branch u_0, u_1, \ldots, u_n is defined, we find the next node u_{n+1} by the same kind of reasoning. This process defines an infinitely long branch.

Corollary 3.1.

If T is a finitley branching tree, where all branches are finitely long, then T is finite.

Outline

- Preliminaries and Reminders
- ▶ Soundness Proof
- Completeness: Preliminaries
- ► Proof of Completeness
- Examples of Counter-model Construction

Assume $\Gamma \implies \Delta$ is not provable.

Assume $\Gamma \implies \Delta$ is not provable.

▶ Construct a fair (limit) derivation \mathcal{D} from $\Gamma \implies \Delta$. Possibly infinite.

Assume $\Gamma \implies \Delta$ is not provable.

- ▶ Construct a fair (limit) derivation \mathcal{D} from $\Gamma \implies \Delta$. Possibly infinite.
- ▶ Then there is (at least) one branch \mathcal{B} that does not end in an axiom.

Assume $\Gamma \implies \Delta$ is not provable.

- ▶ Construct a fair (limit) derivation \mathcal{D} from $\Gamma \implies \Delta$. Possibly infinite.
- ▶ Then there is (at least) one branch B that does not end in an axiom.
- ightharpoonup We construct an interpretation that falsifies $\Gamma \implies \Delta$. Let

Assume $\Gamma \implies \Delta$ is not provable.

- ▶ Construct a fair (limit) derivation \mathcal{D} from $\Gamma \implies \Delta$. Possibly infinite.
- ▶ Then there is (at least) one branch $\mathcal B$ that does not end in an axiom.
- ightharpoonup We construct an interpretation that falsifies $\Gamma \implies \Delta$. Let

 \mathcal{B}^{\top} be the set of formulae that occur in an antecedent on B, and

Proof of Completeness

Assume $\Gamma \implies \Delta$ is not provable.

- ▶ Construct a fair (limit) derivation \mathcal{D} from $\Gamma \implies \Delta$. Possibly infinite.
- ▶ Then there is (at least) one branch $\mathcal B$ that does not end in an axiom.
- ightharpoonup We construct an interpretation that falsifies $\Gamma \implies \Delta$. Let
 - $\mathcal{B}^ op$ be the set of formulae that occur in an antecedent on B, and
 - \mathcal{B}^{\perp} be the set of formulae that occur in an succedent on \mathcal{B} , and

Proof of Completeness

Assume $\Gamma \implies \Delta$ is not provable.

- ▶ Construct a fair (limit) derivation \mathcal{D} from $\Gamma \implies \Delta$. Possibly infinite.
- ▶ Then there is (at least) one branch $\mathcal B$ that does not end in an axiom.
- ightharpoonup We construct an interpretation that falsifies $\Gamma \implies \Delta$. Let
 - \mathcal{B}^{\top} be the set of formulae that occur in an antecedent on \mathcal{B} , and \mathcal{B}^{\perp} be the set of formulae that occur in an succedent on \mathcal{B} , and $\mathcal{A}t$ be the set of *atomic* formulae in \mathcal{B}^{\top} .

▶ We construct a counter-model $\mathcal{I} = (D, \iota)$ for $\Gamma \implies \Delta$.

- ▶ We construct a counter-model $\mathcal{I} = (D, \iota)$ for $\Gamma \implies \Delta$.
- ▶ Let the domain *D* be the Herbrand universe of the branch. (I.e. the set of all closed terms that can be generated from the terms on the branch).

- ▶ We construct a counter-model $\mathcal{I} = (D, \iota)$ for $\Gamma \implies \Delta$.
- ▶ Let the domain *D* be the Herbrand universe of the branch. (I.e. the set of all closed terms that can be generated from the terms on the branch).
- ▶ Let $a^{\iota} = a$ for all constant symbols $a \in \mathcal{A}$.

- ▶ We construct a counter-model $\mathcal{I} = (D, \iota)$ for $\Gamma \implies \Delta$.
- ▶ Let the domain *D* be the Herbrand universe of the branch. (I.e. the set of all closed terms that can be generated from the terms on the branch).
- ▶ Let $a^{\iota} = a$ for all constant symbols $a \in \mathcal{A}$.
- ▶ If $f \in \mathcal{F}$ is a function symbol with arity n, let $f^{\iota}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.

- ▶ We construct a counter-model $\mathcal{I} = (D, \iota)$ for $\Gamma \implies \Delta$.
- ▶ Let the domain *D* be the Herbrand universe of the branch. (I.e. the set of all closed terms that can be generated from the terms on the branch).
- ▶ Let $a^{\iota} = a$ for all constant symbols $a \in \mathcal{A}$.
- ▶ If $f \in \mathcal{F}$ is a function symbol with arity n, let $f^{\iota}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.
 - ▶ Then $v_{\mathcal{I}}(t) = t$ for all closed terms t.

- ▶ We construct a counter-model $\mathcal{I} = (D, \iota)$ for $\Gamma \implies \Delta$.
- ▶ Let the domain *D* be the Herbrand universe of the branch. (I.e. the set of all closed terms that can be generated from the terms on the branch).
- ▶ Let $a^{\iota} = a$ for all constant symbols $a \in \mathcal{A}$.
- ▶ If $f \in \mathcal{F}$ is a function symbol with arity n, let $f^{\iota}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.
 - ▶ Then $v_{\mathcal{I}}(t) = t$ for all closed terms t.
 - ► All terms are interpreted as themselves

- ▶ We construct a counter-model $\mathcal{I} = (D, \iota)$ for $\Gamma \implies \Delta$.
- ▶ Let the domain *D* be the Herbrand universe of the branch. (I.e. the set of all closed terms that can be generated from the terms on the branch).
- ▶ Let $a^{\iota} = a$ for all constant symbols $a \in \mathcal{A}$.
- ▶ If $f \in \mathcal{F}$ is a function symbol with arity n, let $f^{\iota}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.
 - ▶ Then $v_{\mathcal{I}}(t) = t$ for all closed terms t.
 - ▶ All terms are interpreted as themselves
- ▶ If p is a predicate symbol with arity n, let $\langle t_1, \ldots, t_n \rangle \in p^{\iota}$ if and only if $p(t_1, \ldots, t_n) \in At$.

- ▶ We construct a counter-model $\mathcal{I} = (D, \iota)$ for $\Gamma \implies \Delta$.
- ▶ Let the domain *D* be the Herbrand universe of the branch. (I.e. the set of all closed terms that can be generated from the terms on the branch).
- ▶ Let $a^{\iota} = a$ for all constant symbols $a \in \mathcal{A}$.
- ▶ If $f \in \mathcal{F}$ is a function symbol with arity n, let $f^{\iota}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$.
 - ▶ Then $v_{\mathcal{I}}(t) = t$ for all closed terms t.
 - ▶ All terms are interpreted as themselves
- ▶ If p is a predicate symbol with arity n, let $\langle t_1, \ldots, t_n \rangle \in p^{\iota}$ if and only if $p(t_1, \ldots, t_n) \in At$.
- Such an interpretation is often called a Herbrand model or a term model.

▶ We show by structural induction on first-order formlae that the interpretation \mathcal{I} makes *all* formlae i \mathcal{B}^{\top} true and all formulae in \mathcal{B}^{\perp} false.

- ▶ We show by structural induction on first-order formlae that the interpretation \mathcal{I} makes *all* formlae i \mathcal{B}^{\top} true and all formulae in \mathcal{B}^{\perp} false.
- ▶ We show for all first-order formulae A that:

- We show by structural induction on first-order formlae that the interpretation *I* makes all formlae i B^T true and all formulae in B[⊥] false.
- ▶ We show for all first-order formulae A that:

If
$$A \in \mathcal{B}^{\top}$$
, then $\mathcal{I} \models A$, i.e. $v_{\mathcal{I}}(A) = T$

- We show by structural induction on first-order formlae that the interpretation *I* makes all formlae i B^T true and all formulae in B[⊥] false.
- ▶ We show for all first-order formulae A that:

If
$$A \in \mathcal{B}^{\top}$$
, then $\mathcal{I} \models A$, i.e. $v_{\mathcal{I}}(A) = T$
If $A \in \mathcal{B}^{\perp}$, then $\mathcal{I} \not\models A$, i.e. $v_{\mathcal{I}}(A) = F$

- We show by structural induction on first-order formlae that the interpretation *I* makes all formlae i B^T true and all formulae in B[⊥] false.
- ▶ We show for all first-order formulae A that:

If
$$A \in \mathcal{B}^{\top}$$
, then $\mathcal{I} \models A$, i.e. $v_{\mathcal{I}}(A) = T$
If $A \in \mathcal{B}^{\perp}$, then $\mathcal{I} \not\models A$, i.e. $v_{\mathcal{I}}(A) = F$

Base case 1: A is an atomic formula $p(t_1, \ldots, t_n)$ in \mathcal{B}^{\top} .

- We show by structural induction on first-order formlae that the interpretation *I* makes all formlae i B^T true and all formulae in B[⊥] false.
- ▶ We show for all first-order formulae A that:

If
$$A \in \mathcal{B}^{\top}$$
, then $\mathcal{I} \models A$, i.e. $v_{\mathcal{I}}(A) = T$
If $A \in \mathcal{B}^{\perp}$, then $\mathcal{I} \not\models A$, i.e. $v_{\mathcal{I}}(A) = F$

Base case 1: A is an atomic formula $p(t_1, \ldots, t_n)$ in \mathcal{B}^{\top} .

▶ Then $p(t_1, ..., t_n) \in At$ og $\langle t_1, ..., t_n \rangle \in p^{\iota}$ by construction.

- ▶ We show by structural induction on first-order formlae that the interpretation \mathcal{I} makes all formlae i \mathcal{B}^{\top} true and all formulae in \mathcal{B}^{\perp} false.
- We show for all first-order formulae A that:

If
$$A \in \mathcal{B}^{\top}$$
, then $\mathcal{I} \models A$, i.e. $v_{\mathcal{I}}(A) = T$
If $A \in \mathcal{B}^{\perp}$, then $\mathcal{I} \not\models A$, i.e. $v_{\mathcal{I}}(A) = F$

Base case 1: A is an atomic formula $p(t_1, \ldots, t_n)$ in \mathcal{B}^{\top} .

- ▶ Then $p(t_1,...,t_n) \in At$ og $\langle t_1,...,t_n \rangle \in p^{\iota}$ by construction.
- ▶ Therefore $\mathcal{I} \models p(t_1, \ldots, t_n)$.

- ▶ We show by structural induction on first-order formlae that the interpretation \mathcal{I} makes all formlae i \mathcal{B}^{\top} true and all formulae in \mathcal{B}^{\perp} false.
- We show for all first-order formulae A that:

If
$$A \in \mathcal{B}^{\top}$$
, then $\mathcal{I} \models A$, i.e. $v_{\mathcal{I}}(A) = T$
If $A \in \mathcal{B}^{\perp}$, then $\mathcal{I} \not\models A$, i.e. $v_{\mathcal{I}}(A) = F$

Base case 1: A is an atomic formula $p(t_1, \ldots, t_n)$ in \mathcal{B}^{\top} .

- ▶ Then $p(t_1,...,t_n) \in At$ og $\langle t_1,...,t_n \rangle \in p^{\iota}$ by construction.
- ▶ Therefore $\mathcal{I} \models p(t_1, \ldots, t_n)$.

Base case 2: A is an atomic formula $p(t_1, \ldots, t_n)$ i \mathcal{B}^{\perp} .

- ▶ We show by structural induction on first-order formlae that the interpretation \mathcal{I} makes all formlae i \mathcal{B}^{\top} true and all formulae in \mathcal{B}^{\perp} false.
- We show for all first-order formulae A that:

If
$$A \in \mathcal{B}^{\top}$$
, then $\mathcal{I} \models A$, i.e. $v_{\mathcal{I}}(A) = T$
If $A \in \mathcal{B}^{\perp}$, then $\mathcal{I} \not\models A$, i.e. $v_{\mathcal{I}}(A) = F$

Base case 1: A is an atomic formula $p(t_1, \ldots, t_n)$ in \mathcal{B}^{\top} .

- ▶ Then $p(t_1,...,t_n) \in At$ og $\langle t_1,...,t_n \rangle \in p^{\iota}$ by construction.
- ▶ Therefore $\mathcal{I} \models p(t_1, \ldots, t_n)$.

Base case 2: A is an atomic formula $p(t_1, \ldots, t_n)$ i \mathcal{B}^{\perp} .

▶ Since \mathcal{B} does not end in an axiom, and the derivation is fair, $p(t_1, \ldots, t_n) \notin At$ and $\langle t_1, \ldots, t_n \rangle \notin p^{\iota}$.

- ▶ We show by structural induction on first-order formlae that the interpretation \mathcal{I} makes all formlae i \mathcal{B}^{\top} true and all formulae in \mathcal{B}^{\perp} false.
- We show for all first-order formulae A that:

If
$$A \in \mathcal{B}^{\top}$$
, then $\mathcal{I} \models A$, i.e. $v_{\mathcal{I}}(A) = T$
If $A \in \mathcal{B}^{\perp}$, then $\mathcal{I} \not\models A$, i.e. $v_{\mathcal{I}}(A) = F$

Base case 1: A is an atomic formula $p(t_1, ..., t_n)$ in \mathcal{B}^{\top} .

- ▶ Then $p(t_1,...,t_n) \in At$ og $\langle t_1,...,t_n \rangle \in p^{\iota}$ by construction.
- ▶ Therefore $\mathcal{I} \models p(t_1, \ldots, t_n)$.

Base case 2: A is an atomic formula $p(t_1, \ldots, t_n)$ i \mathcal{B}^{\perp} .

- ▶ Since \mathcal{B} does not end in an axiom, and the derivation is fair, $p(t_1, \ldots, t_n) \notin At$ and $\langle t_1, \ldots, t_n \rangle \notin p^{\iota}$.
- ▶ Therefore $\mathcal{I} \not\models p(t_1, \ldots, t_n)$.

Induction step: From the assumption (induction hypothesis) that our statement holds for all smaller formulae, we have to show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$.

Induction step: From the assumption (induction hypothesis) that our statement holds for all smaller formulae, we have to show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$. Most of this was done in the proof for propositional logic

Induction step: From the assumption (induction hypothesis) that our statement holds for all smaller formulae, we have to show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$.

Induction step: From the assumption (induction hypothesis) that our statement holds for all smaller formulae, we have to show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$.

Most of this was done in the proof for propositional logic E.g. assume that $A \wedge B \in \mathcal{B}^{\top}$.

▶ By fairness of the derivation, the \land -left rule has been applied to $A \land B$ on the branch \mathcal{B} .

Induction step: From the assumption (induction hypothesis) that our statement holds for all smaller formulae, we have to show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$.

- ▶ By fairness of the derivation, the \land -left rule has been applied to $A \land B$ on the branch \mathcal{B} .
- ▶ Then $A \in \mathcal{B}^{\top}$ and $B \in \mathcal{B}^{\top}$.

Induction step: From the assumption (induction hypothesis) that our statement holds for all smaller formulae, we have to show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$.

- ▶ By fairness of the derivation, the \land -left rule has been applied to $A \land B$ on the branch \mathcal{B} .
- ▶ Then $A \in \mathcal{B}^{\top}$ and $B \in \mathcal{B}^{\top}$.
- ▶ By the induction hypothesis, $\mathcal{I} \models A$ and $\mathcal{I} \models B$.

Induction step: From the assumption (induction hypothesis) that our statement holds for all smaller formulae, we have to show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$.

- ▶ By fairness of the derivation, the \land -left rule has been applied to $A \land B$ on the branch \mathcal{B} .
- ▶ Then $A \in \mathcal{B}^{\top}$ and $B \in \mathcal{B}^{\top}$.
- ▶ By the induction hypothesis, $\mathcal{I} \models A$ and $\mathcal{I} \models B$.
- ▶ By model semantics, $\mathcal{I} \models A \land B$.

Induction step: From the assumption (induction hypothesis) that our statement holds for all smaller formulae, we have to show that it holds for $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $\forall x A$, and $\exists x A$.

Most of this was done in the proof for propositional logic E.g. assume that $A \wedge B \in \mathcal{B}^{\top}$.

- ▶ By fairness of the derivation, the \land -left rule has been applied to $A \land B$ on the branch B.
- ▶ Then $A \in \mathcal{B}^{\top}$ and $B \in \mathcal{B}^{\top}$.
- ▶ By the induction hypothesis, $\mathcal{I} \models A$ and $\mathcal{I} \models B$.
- ▶ By model semantics, $\mathcal{I} \models A \land B$.

We only need to cover quantified formulae

Assume that $\exists x A \in \mathcal{B}^{\top}$.

▶ By fairness of the derivation, \exists -left was applied to $\exists x A$ on the branch.

- ▶ By fairness of the derivation, \exists -left was applied to $\exists x A$ on the branch.
- ▶ Then there is a constant a such that $A[x \setminus a] \in \mathcal{B}^{\top}$.

- ▶ By fairness of the derivation, \exists -left was applied to $\exists x A$ on the branch.
- ▶ Then there is a constant *a* such that $A[x \setminus a] \in \mathcal{B}^{\top}$.
- ▶ By the ind. hyp., $\mathcal{I} \models A[x \setminus a]$.

- ▶ By fairness of the derivation, \exists -left was applied to $\exists x A$ on the branch.
- ▶ Then there is a constant *a* such that $A[x \setminus a] \in \mathcal{B}^{\top}$.
- ▶ By the ind. hyp., $\mathcal{I} \models A[x \setminus a]$.
- ▶ I.e. $\nu_{\mathcal{I}}(\alpha, A[x \setminus a]) = T$ for any assignment α , since $A[x \setminus a]$ is closed

- ▶ By fairness of the derivation, \exists -left was applied to $\exists x A$ on the branch.
- ▶ Then there is a constant *a* such that $A[x \setminus a] \in \mathcal{B}^{\top}$.
- ▶ By the ind. hyp., $\mathcal{I} \models A[x \setminus a]$.
- ▶ I.e. $v_{\mathcal{I}}(\alpha, A[x \setminus a]) = T$ for any assignment α , since $A[x \setminus a]$ is closed
- ▶ By the substitution lemma: $v_{\mathcal{I}}(\alpha\{x\leftarrow a^{\iota}\},A)=T$.

- ▶ By fairness of the derivation, \exists -left was applied to $\exists x A$ on the branch.
- ▶ Then there is a constant *a* such that $A[x \setminus a] \in \mathcal{B}^{\top}$.
- ▶ By the ind. hyp., $\mathcal{I} \models A[x \setminus a]$.
- ▶ I.e. $v_{\mathcal{I}}(\alpha, A[x \setminus a]) = T$ for any assignment α , since $A[x \setminus a]$ is closed
- ▶ By the substitution lemma: $v_{\mathcal{I}}(\alpha\{x\leftarrow a^{\iota}\},A)=T$.
- ▶ By model semantics: $v_{\mathcal{I}}(\alpha, \exists x A) = T$

- ▶ By fairness of the derivation, \exists -left was applied to $\exists x A$ on the branch.
- ▶ Then there is a constant a such that $A[x \setminus a] \in \mathcal{B}^{\top}$.
- ▶ By the ind. hyp., $\mathcal{I} \models A[x \setminus a]$.
- ▶ I.e. $\nu_{\mathcal{I}}(\alpha, A[x \setminus a]) = T$ for any assignment α , since $A[x \setminus a]$ is closed
- ▶ By the substitution lemma: $v_{\mathcal{I}}(\alpha\{x\leftarrow a^{\iota}\},A) = T$.
- ▶ By model semantics: $v_{\mathcal{I}}(\alpha, \exists x \, A) = T$
- ▶ I.e. $\mathcal{I} \models \exists x A$.

Assume that $\exists x A \in \mathcal{B}^{\perp}$.

▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\}, A) = T$ for some term $t \in D$.

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\},A) = T$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \exists -right rule was applied on $\exists x A$ with the term t.

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_T(\alpha\{x\leftarrow t\}, A) = T$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \exists -right rule was applied on $\exists x A$ with the term t.
- ▶ It follows that:

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\},A) = T$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \exists -right rule was applied on $\exists x A$ with the term t.
- ▶ It follows that:
 - $ightharpoonup A[x \backslash t] \in \mathcal{B}^{\perp}$

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\},A) = T$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \exists -right rule was applied on $\exists x A$ with the term t.
- It follows that:
 - $ightharpoonup A[x \ t] \in \mathcal{B}^{\perp}$
 - $ightharpoonup v_{\mathcal{I}}(A[x \backslash t]) = F$ (induction hypothesis)

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\},A) = T$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \exists -right rule was applied on $\exists x A$ with the term t.
- It follows that:
 - $ightharpoonup A[x \backslash t] \in \mathcal{B}^{\perp}$
 - $ightharpoonup v_{\mathcal{I}}(A[x \backslash t]) = F$ (induction hypothesis)
 - $ightharpoonup v_{\mathcal{I}}(\alpha\{x\leftarrow v_{\mathcal{I}}(t)\},A)=F$ for any α (substitution lemma)

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\},A) = T$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \exists -right rule was applied on $\exists x A$ with the term t.
- It follows that:
 - $ightharpoonup A[x \backslash t] \in \mathcal{B}^{\perp}$
 - \triangleright $v_{\mathcal{I}}(A[x \setminus t]) = F$ (induction hypothesis)
 - \triangleright $v_{\mathcal{I}}(\alpha\{x\leftarrow v_{\mathcal{I}}(t)\},A)=F$ for any α (substitution lemma)
 - \triangleright $v_{\mathcal{I}}(\alpha\{x\leftarrow t\}, A) = F \text{ (since } v_{\mathcal{I}}(t) = t)$

- ▶ We have to show that $\mathcal{I} \not\models \exists x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \models \exists x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\}, A) = T$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \exists -right rule was applied on $\exists x A$ with the term t.
- It follows that:
 - $ightharpoonup A[x \setminus t] \in \mathcal{B}^{\perp}$
 - \triangleright $v_{\mathcal{I}}(A[x \setminus t]) = F$ (induction hypothesis)
 - \triangleright $v_{\mathcal{I}}(\alpha\{x\leftarrow v_{\mathcal{I}}(t)\},A)=F$ for any α (substitution lemma)
 - $\triangleright v_{\mathcal{I}}(\alpha\{x\leftarrow t\},A) = F \text{ (since } v_{\mathcal{I}}(t) = t)$
- Contradiction!

Assume that $\forall x A \in \mathcal{B}^{\perp}$.

▶ By fairness of the derivation, \forall -right was applied to $\exists x \ A$ on the branch.

- ▶ By fairness of the derivation, \forall -right was applied to $\exists x \ A$ on the branch.
- ▶ Then there is a constant a such that $A[x \setminus a] \in \mathcal{B}^{\perp}$.

- ▶ By fairness of the derivation, \forall -right was applied to $\exists x \ A$ on the branch.
- ▶ Then there is a constant a such that $A[x \setminus a] \in \mathcal{B}^{\perp}$.
- ▶ By the ind. hyp., $\mathcal{I} \not\models A[x \setminus a]$.

- ▶ By fairness of the derivation, \forall -right was applied to $\exists x A$ on the branch.
- ▶ Then there is a constant a such that $A[x \setminus a] \in \mathcal{B}^{\perp}$.
- ▶ By the ind. hyp., $\mathcal{I} \not\models A[x \setminus a]$.
- ▶ I.e. $\nu_{\mathcal{I}}(\alpha, A[x \setminus a]) = F$ for any assignment α , since $A[x \setminus a]$ is closed

- ▶ By fairness of the derivation, \forall -right was applied to $\exists x A$ on the branch.
- ▶ Then there is a constant a such that $A[x \setminus a] \in \mathcal{B}^{\perp}$.
- ▶ By the ind. hyp., $\mathcal{I} \not\models A[x \setminus a]$.
- ▶ I.e. $\nu_{\mathcal{I}}(\alpha, A[x \setminus a]) = F$ for any assignment α , since $A[x \setminus a]$ is closed
- ▶ By the substitution lemma: $v_{\mathcal{I}}(\alpha\{x\leftarrow a^{\iota}\},A)=F$.

- ▶ By fairness of the derivation, \forall -right was applied to $\exists x \ A$ on the branch.
- ▶ Then there is a constant a such that $A[x \setminus a] \in \mathcal{B}^{\perp}$.
- ▶ By the ind. hyp., $\mathcal{I} \not\models A[x \setminus a]$.
- ▶ I.e. $\nu_{\mathcal{I}}(\alpha, A[x \setminus a]) = F$ for any assignment α , since $A[x \setminus a]$ is closed
- ▶ By the substitution lemma: $v_{\mathcal{I}}(\alpha\{x\leftarrow a^{\iota}\},A)=F$.
- ▶ By model semantics: $v_{\mathcal{I}}(\alpha, \forall x A) = F$

- ▶ By fairness of the derivation, \forall -right was applied to $\exists x A$ on the branch.
- ▶ Then there is a constant a such that $A[x \setminus a] \in \mathcal{B}^{\perp}$.
- ▶ By the ind. hyp., $\mathcal{I} \not\models A[x \setminus a]$.
- ▶ I.e. $\nu_{\mathcal{I}}(\alpha, A[x \setminus a]) = F$ for any assignment α , since $A[x \setminus a]$ is closed
- ▶ By the substitution lemma: $v_{\mathcal{I}}(\alpha\{x\leftarrow a^{\iota}\},A)=F$.
- ▶ By model semantics: $v_{\mathcal{I}}(\alpha, \forall x A) = F$
- ▶ I.e. $\mathcal{I} \not\models \forall x A$.

Assume that $\forall x A \in \mathcal{B}^{\top}$.

▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.

- ▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \not\models \forall x A$

- ▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \not\models \forall x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms

- ▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \not\models \forall x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\},A) = F$ for some term $t \in D$.

- ▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \not\models \forall x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\}, A) = F$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \forall -left rule was applied on $\forall x A$ with the term t.

- ▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \not\models \forall x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\}, A) = F$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \forall -left rule was applied on $\forall x A$ with the term t.
- ▶ It follows that:

- ▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \not\models \forall x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\}, A) = F$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \forall -left rule was applied on $\forall x A$ with the term t.
- It follows that:
 - $ightharpoonup A[x \backslash t] \in \mathcal{B}^{\top}$

- ▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \not\models \forall x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\}, A) = F$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \forall -left rule was applied on $\forall x A$ with the term t.
- It follows that:
 - $ightharpoonup A[x \ t] \in \mathcal{B}^{\top}$
 - $ightharpoonup v_{\mathcal{I}}(A[x \backslash t]) = T$ (induction hypothesis)

- ▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \not\models \forall x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\}, A) = F$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \forall -left rule was applied on $\forall x A$ with the term t.
- It follows that:
 - $ightharpoonup A[x \backslash t] \in \mathcal{B}^{\top}$
 - \triangleright $v_{\mathcal{I}}(A[x \setminus t]) = T$ (induction hypothesis)
 - $ightharpoonup v_{\mathcal{I}}(\alpha\{x\leftarrow v_{\mathcal{I}}(t)\},A)=T$ for any α (substitution lemma)

- ▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \not\models \forall x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\}, A) = F$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \forall -left rule was applied on $\forall x A$ with the term t.
- It follows that:
 - $ightharpoonup A[x \backslash t] \in \mathcal{B}^{\top}$
 - \triangleright $v_{\mathcal{I}}(A[x \setminus t]) = T$ (induction hypothesis)
 - \triangleright $v_{\mathcal{I}}(\alpha\{x\leftarrow v_{\mathcal{I}}(t)\},A)=T$ for any α (substitution lemma)
 - \triangleright $v_{\mathcal{I}}(\alpha\{x\leftarrow t\},A) = T \text{ (since } v_{\mathcal{I}}(t) = t)$

- ▶ We have to show that $\mathcal{I} \models \forall x A$. Assume that this does not hold.
- ▶ I.e. $\mathcal{I} \not\models \forall x A$
- ▶ Remember that the domain D of $\mathcal{I} = (D, \iota)$ consists of terms
- ▶ Then $v_{\mathcal{I}}(\alpha\{x\leftarrow t\}, A) = F$ for some term $t \in D$.
- ▶ By fairness of the derivation, the \forall -left rule was applied on $\forall x \ A$ with the term t.
- ▶ It follows that:
 - $ightharpoonup A[x \backslash t] \in \mathcal{B}^{\top}$
 - \triangleright $v_{\mathcal{I}}(A[x \setminus t]) = T$ (induction hypothesis)
 - \triangleright $v_{\mathcal{I}}(\alpha\{x\leftarrow v_{\mathcal{I}}(t)\},A)=T$ for any α (substitution lemma)
 - $\triangleright v_{\mathcal{I}}(\alpha\{x\leftarrow t\},A) = T \text{ (since } v_{\mathcal{I}}(t) = t)$
- Contradiction!

▶ We can see the construction of a limit derivation as approximating a counter-model for $\Gamma \implies \Delta$.

- We can see the construction of a limit derivation as approximating a counter-model for $\Gamma \Longrightarrow \Delta$.
- ► The more often we apply the \forall -left and \exists -right rules, the 'closer' we get to a possible counter-model

- We can see the construction of a limit derivation as approximating a counter-model for $\Gamma \Longrightarrow \Delta$.
- ► The more often we apply the \forall -left and \exists -right rules, the 'closer' we get to a possible counter-model
- ▶ But constructing a counter-model in this way may require using all rules infinitely often.

- ▶ We can see the construction of a limit derivation as approximating a counter-model for $\Gamma \implies \Delta$.
- ▶ The more often we apply the ∀-left and ∃-right rules, the 'closer' we get to a possible counter-model
- ▶ But constructing a counter-model in this way may require using all rules infinitely often.
- ▶ So this is not an algorithm for finding counter-models!

- We can see the construction of a limit derivation as approximating a counter-model for $\Gamma \Longrightarrow \Delta$.
- ► The more often we apply the \forall -left and \exists -right rules, the 'closer' we get to a possible counter-model
- But constructing a counter-model in this way may require using all rules infinitely often.
- So this is not an algorithm for finding counter-models!
- It will find a proof if one exists, but may not terminate otherwise.

Some comments

- ▶ We can see the construction of a limit derivation as approximating a counter-model for $\Gamma \implies \Delta$.
- ► The more often we apply the \forall -left and \exists -right rules, the 'closer' we get to a possible counter-model
- But constructing a counter-model in this way may require using all rules infinitely often.
- So this is not an algorithm for finding counter-models!
- ▶ It will find a proof if one exists, but may not terminate otherwise.
- ► There may be finite counter-models even when this method does not terminate. Finding finite counter-models is a topic of active research.

Some comments

- ▶ We can see the construction of a limit derivation as approximating a counter-model for $\Gamma \implies \Delta$.
- ► The more often we apply the \forall -left and \exists -right rules, the 'closer' we get to a possible counter-model
- But constructing a counter-model in this way may require using all rules infinitely often.
- So this is not an algorithm for finding counter-models!
- ▶ It will find a proof if one exists, but may not terminate otherwise.
- ► There may be finite counter-models even when this method does not terminate. Finding finite counter-models is a topic of active research.
- ► The idea of the completeness proof is important: we construct an interpretation from something purely syntactic.

Outline

- Preliminaries and Reminders
- ▶ Soundness Proof
- ▶ Completeness: Preliminaries
- ▶ Proof of Completeness
- ► Examples of Counter-model Construction

$$\underbrace{\forall x \left(px \to qx \right)}_{A}, pa \Rightarrow \forall x \ qx$$

$$\underbrace{\forall x (px \to qx)}_{A}, pa \Rightarrow \forall x qx$$

$$\underbrace{\frac{A, pa \to qa, pa \Rightarrow \forall x \, qx}{\forall x \, (px \to qx)}, pa \Rightarrow \forall x \, qx}_{A}$$

$$\underbrace{\frac{A, pa \to qa, pa \Rightarrow \forall x \, qx}{\forall x \, (px \to qx)}, pa \Rightarrow \forall x \, qx}_{A}$$

$$\frac{A, pa \Rightarrow \forall x \ qx, pa}{\underbrace{A, pa \rightarrow qa, pa \Rightarrow \forall x \ qx}_{A} \underbrace{(px \rightarrow qx)}_{A}, pa \Rightarrow \forall x \ qx}$$

$$\frac{A, pa \Rightarrow \forall x \ qx, pa}{A, pa \Rightarrow \forall x \ qx}$$

$$\frac{A, pa \rightarrow qa, pa \Rightarrow \forall x \ qx}{\forall x \ (px \rightarrow qx)}, pa \Rightarrow \forall x \ qx}$$

$$\frac{\forall x \ (px \rightarrow qx)}{A}$$

$$\begin{array}{c}
A, pa \Rightarrow \forall x \ qx, pa \\
\hline
A, pa \rightarrow qa, pa \Rightarrow \forall x \ qx \\
\hline
A, pa \rightarrow qa, pa \Rightarrow \forall x \ qx \\
\hline
\forall x \ (px \rightarrow qx), pa \Rightarrow \forall x \ qx
\end{array}$$

$$\begin{array}{c}
A, pa \Rightarrow \forall x \ qx, pa & qa, A, pa \Rightarrow \forall x \ qx \\
A, pa \rightarrow qa, pa \Rightarrow \forall x \ qx \\
& \underbrace{\forall x \ (px \rightarrow qx)}_{A}, pa \Rightarrow \forall x \ qx
\end{array}$$

$$\frac{A, pa \Rightarrow \forall x \ qx, pa}{A, pa \Rightarrow \forall x \ qx, pa} \frac{qa, A, pa \Rightarrow qb}{qa, A, pa \Rightarrow \forall x \ qx}$$

$$\underbrace{A, pa \Rightarrow \forall x \ qx}_{A, pa \Rightarrow \forall x \ qx}$$

$$\underbrace{\forall x \ (px \rightarrow qx)}_{A}, pa \Rightarrow \forall x \ qx}_{A}$$

$$\frac{qa, A, pb \to qb, pa \Rightarrow qb}{qa, A, pa \Rightarrow qb}$$

$$\frac{A, pa \Rightarrow \forall x \ qx, pa}{qa, A, pa \Rightarrow \forall x \ qx}$$

$$\frac{A, pa \to qa, pa \Rightarrow \forall x \ qx}{\forall x \ (px \to qx)}, pa \Rightarrow \forall x \ qx}$$

$$\frac{qa, A, pb \to qb, pa \Rightarrow qb}{qa, A, pa \Rightarrow qb}$$

$$A, pa \Rightarrow \forall x \ qx, pa$$

$$\frac{A, pa \to qa, pa \Rightarrow \forall x \ qx}{\forall x \ (px \to qx)}, pa \Rightarrow \forall x \ qx}$$

$$\frac{A, pa \to qa, pa \Rightarrow \forall x \ qx}{\forall x \ (px \to qx)}, pa \Rightarrow \forall x \ qx}$$

$$\frac{qa, A, pa \Rightarrow qb, pb \qquad qb, qa, A, pa \Rightarrow qb}{\underline{qa, A, pb \rightarrow qb, pa \Rightarrow qb}}$$

$$\underline{A, pa \Rightarrow \forall x \ qx, pa}$$

$$\frac{A, pa \rightarrow qa, pa \Rightarrow \forall x \ qx}{\underline{\forall x \ (px \rightarrow qx)}, pa \Rightarrow \forall x \ qx}$$

$$\begin{array}{c}
\mathcal{B} \\
qa, A, pa \Rightarrow qb, pb & qb, qa, A, pa \Rightarrow qb \\
\underline{qa, A, pb \rightarrow qb, pa \Rightarrow qb} \\
qa, A, pa \Rightarrow qb \\
\underline{qa, A, pa \Rightarrow qb} \\
qa, A, pa \Rightarrow qx \\
\underline{A, pa \rightarrow qa, pa \Rightarrow \forall x \ qx} \\
\underline{A, pa \rightarrow qa, pa \Rightarrow \forall x \ qx} \\
\underline{\forall x \ (px \rightarrow qx), pa \Rightarrow \forall x \ qx}
\end{array}$$

$$\frac{qa, A, pa \Rightarrow qb, pb}{qa, A, pa \Rightarrow qb} \frac{qa, A, pa \Rightarrow qb}{qb, qa, A, pa \Rightarrow qb}$$

$$\frac{qa, A, pb \rightarrow qb, pa \Rightarrow qb}{qa, A, pa \Rightarrow qb}$$

$$\frac{qa, A, pa \Rightarrow qb}{qa, A, pa \Rightarrow qx}$$

$$\frac{A, pa \rightarrow qa, pa \Rightarrow \forall x qx}{\forall x (px \rightarrow qx), pa \Rightarrow \forall x qx}$$

- Abbreviate px for p(x), qb for q(b), etc.
- ▶ The Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.

$$\frac{qa, A, pa \Rightarrow qb, pb}{qa, A, pa \Rightarrow qb} \frac{qb, qa, A, pa \Rightarrow qb}{qb, qa, A, pa \Rightarrow qb}$$

$$\frac{qa, A, pb \rightarrow qb, pa \Rightarrow qb}{qa, A, pa \Rightarrow qb}$$

$$\frac{A, pa \Rightarrow \forall x \ qx, pa}{qa, A, pa \Rightarrow \forall x \ qx}$$

$$\frac{A, pa \rightarrow qa, pa \Rightarrow \forall x \ qx}{\forall x \ (px \rightarrow qx), pa \Rightarrow \forall x \ qx}$$

- Abbreviate px for p(x), qb for q(b), etc.
- ▶ The Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pa \in \mathcal{B}^{\top}$, define $a \in p^{\iota}$, so $\mathcal{I} \models pa$.

- Abbreviate px for p(x), qb for q(b), etc.
- ▶ The Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pa \in \mathcal{B}^{\top}$, define $a \in p^{\iota}$, so $\mathcal{I} \models pa$.
- ▶ Since $qa \in \mathcal{B}^{\top}$, define $a \in q^{\iota}$, so $\mathcal{I} \models qa$ and thus $\mathcal{I} \models pa \rightarrow qa$.

- Abbreviate px for p(x), qb for q(b), etc.
- ▶ The Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pa \in \mathcal{B}^{\top}$, define $a \in p^{\iota}$, so $\mathcal{I} \models pa$.
- ▶ Since $qa \in \mathcal{B}^{\top}$, define $a \in q^{\iota}$, so $\mathcal{I} \models qa$ and thus $\mathcal{I} \models pa \rightarrow qa$.
- ▶ Since $qb \in \mathcal{B}^{\perp}$, define $b \notin q^{\iota}$, so $\mathcal{I} \not\models qb$ and thus $\mathcal{I} \not\models \forall x \ qx$.

- ▶ Abbreviate px for p(x), qb for q(b), etc.
- ▶ The Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pa \in \mathcal{B}^{\top}$, define $a \in p^{\iota}$, so $\mathcal{I} \models pa$.
- ▶ Since $qa \in \mathcal{B}^{\top}$, define $a \in q^{\iota}$, so $\mathcal{I} \models qa$ and thus $\mathcal{I} \models pa \rightarrow qa$.
- ▶ Since $qb \in \mathcal{B}^{\perp}$, define $b \notin q^{\iota}$, so $\mathcal{I} \not\models qb$ and thus $\mathcal{I} \not\models \forall x \ qx$.
- ▶ Since $pb \in \mathcal{B}^{\perp}$, define $b \notin p^{\iota}$, so $\mathcal{I} \not\models pb$ and thus $\mathcal{I} \models pb \rightarrow qb$.

$$\frac{qa, A, pa \Rightarrow qb, pb}{qa, A, pa \Rightarrow qb} \frac{qa, A, pa \Rightarrow qb}{qb, qa, A, pa \Rightarrow qb}$$

$$\frac{qa, A, pb \rightarrow qb, pa \Rightarrow qb}{qa, A, pa \Rightarrow qb}$$

$$\frac{A, pa \Rightarrow \forall x \ qx, pa}{qa, A, pa \Rightarrow \forall x \ qx}$$

$$\frac{A, pa \rightarrow qa, pa \Rightarrow \forall x \ qx}{\forall x \ (px \rightarrow qx), pa \Rightarrow \forall x \ qx}$$

- ▶ Abbreviate px for p(x), qb for q(b), etc.
- ▶ The Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pa \in \mathcal{B}^{\top}$, define $a \in p^{\iota}$, so $\mathcal{I} \models pa$.
- ▶ Since $qa \in \mathcal{B}^{\top}$, define $a \in q^{\iota}$, so $\mathcal{I} \models qa$ and thus $\mathcal{I} \models pa \rightarrow qa$.
- ▶ Since $qb \in \mathcal{B}^{\perp}$, define $b \notin q^{\iota}$, so $\mathcal{I} \not\models qb$ and thus $\mathcal{I} \not\models \forall x \ qx$.
- ▶ Since $pb \in \mathcal{B}^{\perp}$, define $b \notin p^{\iota}$, so $\mathcal{I} \not\models pb$ and thus $\mathcal{I} \models pb \rightarrow qb$.
- ▶ Therefore also $\mathcal{I} \models \forall x (px \rightarrow qx)$.

$$\frac{qa, A, pa \Rightarrow qb, pb}{qa, A, pa \Rightarrow qb} \frac{qa, A, pa \Rightarrow qb}{qb, qa, A, pa \Rightarrow qb}$$

$$\frac{qa, A, pb \rightarrow qb, pa \Rightarrow qb}{qa, A, pa \Rightarrow qb}$$

$$\frac{qa, A, pa \Rightarrow qb}{qa, A, pa \Rightarrow qx}$$

$$\frac{A, pa \rightarrow qa, pa \Rightarrow \forall x qx}{\forall x (px \rightarrow qx), pa \Rightarrow \forall x qx}$$

- ▶ Abbreviate px for p(x), qb for q(b), etc.
- ▶ The Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pa \in \mathcal{B}^{\top}$, define $a \in p^{\iota}$, so $\mathcal{I} \models pa$.
- ▶ Since $qa \in \mathcal{B}^{\top}$, define $a \in q^{\iota}$, so $\mathcal{I} \models qa$ and thus $\mathcal{I} \models pa \rightarrow qa$.
- ▶ Since $qb \in \mathcal{B}^{\perp}$, define $b \notin q^{\iota}$, so $\mathcal{I} \not\models qb$ and thus $\mathcal{I} \not\models \forall x \ qx$.
- ▶ Since $pb \in \mathcal{B}^{\perp}$, define $b \notin p^{\iota}$, so $\mathcal{I} \not\models pb$ and thus $\mathcal{I} \models pb \rightarrow qb$.
- ▶ Therefore also $\mathcal{I} \models \forall x (px \rightarrow qx)$.
- ▶ \mathcal{I} makes all of \mathcal{B}^{\top} true and all of \mathcal{B}^{\perp} false.

$$\underbrace{\forall x \, \big(pxa \to pxb \big)}_{A}, paa \vee pba \Rightarrow pab$$

$$\underbrace{\forall x \, \big(pxa \to pxb \big)}_{A}, paa \vee pba \Rightarrow pab$$

▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.

$$\underbrace{\forall x \, \big(pxa \to pxb \big)}_{A}, paa \vee pba \Rightarrow pab$$

▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.

$$\underbrace{orall x \left(pxa
ightarrow pxb
ight)}_{A}, paa \lor pba \Rightarrow pab$$

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.

$$\underbrace{\forall x \, (\textit{pxa} \rightarrow \textit{pxb})}_{\textit{A}}, \, \textit{paa} \, \lor \, \textit{pba} \Rightarrow \textit{pab}$$

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.

$$\underbrace{A, paa \Rightarrow pab}_{A} \underbrace{\forall x (pxa \rightarrow pxb)}_{A}, paa \lor pba \Rightarrow pab}_{A}$$

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.

$$\underbrace{ \begin{array}{c} \textbf{A}, paa \Rightarrow pab \\ \hline \\ \textbf{\forall} x \text{ (}pxa \rightarrow pxb \text{)}, paa \lor pba \Rightarrow pab \end{array} }_{\textbf{A}}$$

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.

(Both branches closeable)

$$A, paa
ightarrow pab, paa
ightarrow pab$$

$$A$$
, $paa \Rightarrow pab$

$$A, pba \Rightarrow pab$$

$$\underbrace{orall x (\mathit{pxa} o \mathit{pxb})}_{A}, \mathit{paa} \lor \mathit{pba} \Rightarrow \mathit{pab}$$

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a,b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.

(Both branches closeable)

$$A$$
, paa \rightarrow pab, paa \Rightarrow pab
 A , paa \Rightarrow pab

$$A$$
, $pba \Rightarrow pab$

$$\underbrace{orall x (pxa o pxb)}_{A}, paa \lor pba \Rightarrow pab$$

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a,b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a,b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b,a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b,a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.
- ▶ Since $pbb \in \mathcal{B}^{\top}$ vil $\langle b, b \rangle \in p^{\iota}$, so $\mathcal{I} \models pbb$ and $\mathcal{I} \models pba \rightarrow pbb$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.
- ▶ Since $pbb \in \mathcal{B}^{\top}$ vil $\langle b, b \rangle \in p^{\iota}$, so $\mathcal{I} \models pbb$ and $\mathcal{I} \models pba \rightarrow pbb$.
- ▶ We thus have $\mathcal{I} \models \forall x (pxa \rightarrow pxb)$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b, a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.
- ▶ Since $pbb \in \mathcal{B}^{\top}$ vil $\langle b, b \rangle \in p^{\iota}$, so $\mathcal{I} \models pbb$ and $\mathcal{I} \models pba \rightarrow pbb$.
- ▶ We thus have $\mathcal{I} \models \forall x (pxa \rightarrow pxb)$.

- ▶ Herbrand universe of branch \mathcal{B} , and domain of \mathcal{I} , is $\{a, b\}$.
- ▶ Since $pab \in \mathcal{B}^{\perp}$, define $\langle a, b \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models pab$.
- ▶ Since $pba \in \mathcal{B}^{\top}$ vil $\langle b,a \rangle \in p^{\iota}$, so $\mathcal{I} \models pba$ and $\mathcal{I} \models paa \lor pba$.
- ▶ Since $paa \in \mathcal{B}^{\perp}$ vil $\langle a, a \rangle \notin p^{\iota}$, so $\mathcal{I} \not\models paa$ and $\mathcal{I} \models paa \rightarrow pab$.
- ▶ Since $pbb \in \mathcal{B}^{\top}$ vil $\langle b, b \rangle \in p^{\iota}$, so $\mathcal{I} \models pbb$ and $\mathcal{I} \models pba \rightarrow pbb$.
- ▶ We thus have $\mathcal{I} \models \forall x (pxa \rightarrow pxb)$.
- lacksquare $\mathcal I$ makes all of $\mathcal B^ op$ true and all of $\mathcal B^\perp$ false.

 \blacktriangleright We can show things for ∞ many interpretations using finite proofs!

- lackbox We can show things for ∞ many interpretations using finite proofs!
- OMG! Amazing!

- lackbox We can show things for ∞ many interpretations using finite proofs!
- OMG! Amazing!
- ▶ Uncloseable branches give counter-models

- lacktriangle We can show things for ∞ many interpretations using finite proofs!
- OMG! Amazing!
- Uncloseable branches give counter-models
- ▶ Might be infinite: if there is no proof, we might search for ever

- lacktriangle We can show things for ∞ many interpretations using finite proofs!
- OMG! Amazing!
- Uncloseable branches give counter-models
- Might be infinite: if there is no proof, we might search for ever
- ► First-order validity is undecidable

- lackbox We can show things for ∞ many interpretations using finite proofs!
- OMG! Amazing!
- Uncloseable branches give counter-models
- Might be infinite: if there is no proof, we might search for ever
- First-order validity is undecidable
- Can this be automated?

- lackbox We can show things for ∞ many interpretations using finite proofs!
- OMG! Amazing!
- ▶ Uncloseable branches give counter-models
- Might be infinite: if there is no proof, we might search for ever
- First-order validity is undecidable
- Can this be automated?
- Sure! But...

- lacktriangle We can show things for ∞ many interpretations using finite proofs!
- OMG! Amazing!
- Uncloseable branches give counter-models
- Might be infinite: if there is no proof, we might search for ever
- ► First-order validity is undecidable
- Can this be automated?
- Sure! But...
- Instantiating quantifiers with every possible term is wasteful

- lacktriangle We can show things for ∞ many interpretations using finite proofs!
- OMG! Amazing!
- Uncloseable branches give counter-models
- Might be infinite: if there is no proof, we might search for ever
- ► First-order validity is undecidable
- Can this be automated?
- Sure! But...
- Instantiating quantifiers with every possible term is wasteful
- ▶ More goal-oriented ways of doing this?

- lacktriangle We can show things for ∞ many interpretations using finite proofs!
- OMG! Amazing!
- ▶ Uncloseable branches give counter-models
- Might be infinite: if there is no proof, we might search for ever
- ► First-order validity is undecidable
- Can this be automated?
- Sure! But...
- Instantiating quantifiers with every possible term is wasteful
- More goal-oriented ways of doing this?
- Coming up...