
IN3070/4070 – Logic – Autumn 2020
Lecture 6: Unification, Normal Forms

Martin Giese

24th September 2020

Department of
Informatics

University of
Oslo

Today’s Plan

I Unifcation

I Normal Forms

I Negation Normal Form

I Conjunctive Normal Form

I Clausal Form

I Prenex Normal Forms

I Skolemization

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 2 / 47

Unifcation

Outline

I Unifcation

I Normal Forms

I Negation Normal Form

I Conjunctive Normal Form

I Clausal Form

I Prenex Normal Forms

I Skolemization

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 3 / 47

Unifcation

Unification

I Motivation: try proving the following

∀x p(x , b) =⇒ ∃y p(a, y)

I Have to “guess” the right instantiations for x and y

I “make both sides equal”

I Equation solving with terms!

Unification problem

Let s and t be terms. Find all
substitutions that make s and t
syntactically equal, i.e. all σ with
σ(s) = σ(t).

I A substitution that makes s
and t syntactically equal is
called a unifier for s and t.

I To terms are unifiable if they
have a unifier.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 4 / 47



Unifcation

Examples

Are f (x) and f (a) unifiable?

Yes. We see that σ = {x\a} is a unifier: σ(f (x)) = f (a)

Are f (x , b) and f (a, y) unifiable?

Easier to see if we write terms as trees:

f f

x b a y

I The root symbols are the same.

I The left children are different, but can be unified with {x\a}.
I The right children are different, but can be unified with {y\b}.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 5 / 47

Unifcation

Are f (a, b) and g(a, b) unifiable?

f g

a b a b

I The root symbols are different, and can not be unified!

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 6 / 47

Unifcation

Are f (x , x) and f (a, b) unifiable?

f f

x x a b

I The root symbols are equal.

I The left children are different, but can be unified with {x\a}.
I We must apply {x\a} to x in both branches.

I The right children are now different, and can not be unified!

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 7 / 47

Unifcation

Are x and f (x) unifiable?

x f

x

I The root symbols are different, but can be unified by {x\f (x)}.
I We also have to apply {x\f (x)} on x in the right tree.

I The symbols x and f are different.

I If we unify with {f (x)/x}, we have to replace x in the right tree
again.

I This continues indefinitely

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 8 / 47



Unifcation

Unification

Generally:

I Two distinct constant or function symbols are not unifiable.

I A variable x is not unifiable with a term that contains x .

I We will define a unification algorithm, that finds all unifiers for two
terms.

I Problem: Two terms can potentially have infinitely many unifiers. We
can’t compute all of them!

I Solution: Find a represetative σ for the set of unifiers, such that all
other unifiers can be constructed from σ.

I Such a unifier is known as a most general unifier.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 9 / 47

Unifcation

Composition of Substitutions

I Let σ and τ be substitutions.

I Assume we apply first σ and then τ to a term t : τ(σ(t)).

I The effect of this is also a substitution.

Definition 1.1 (Composition of Substitutions).

Let σ and τ be substitutions. The composition of σ and τ is a substitution
written τσ, such that (τσ)(x) = τ(σ(x)) for all variables x.

I Exercise: show that (τσ)(A) = τ(σ(A)) for all formlae A and all
substitutions σ and τ .

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 10 / 47

Unifcation

Composition of Substitutions with finite support

Proposition 1.1.

Let σ = {x1\s1, . . . , xn\sn} and τ = {y1\t1, . . . , yk\tk}. Then

τσ = {x1\τ(s1), . . . , xn\τ(sn), z1\τ(z1), . . . , zm\τ(zm)}

where z1, . . . , zm are the variables amongst y1, . . . , yk that are not
amongst x1, . . . , xn.

Let σ = {x\z , y\a} and τ = {y\b, z\a}.

Then τσ = {x\τ(z), y\τ(a), z\τ(z)} = {x\a, y\a, z\a}.

Let σ = {x\y} and τ = {y\x}.

Then τσ = {x\τ(y), y\τ(y)} = {x\x , y\x} = {y\x}.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 11 / 47

Unifcation

More General Substitution

Definition 1.2 (More General Substitution).

Let σ1 and σ2 be substitutions. We say that σ2 is more general than σ1 if
there exists a subsitution τ such that σ1 = τσ2.

Is {x\f (y)} more general than {x\f (a), y\a}?

Yes, since {x\f (a), y\a} = {y\a}{x\f (y)}.

Is {x\f (a)} more general than {x\f (y)}?

No, because there is no substitution τ such that {x\f (y)} = τ{x\f (a)}.

Is {x\f (y)} more general than {x\f (y)}

Yes, since {x\f (y)} = {}{x\f (y)}, where {} is the identity substitution.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 12 / 47



Unifcation

Most General Unifiers

Definition 1.3 (Unifier, Most General Unifier).

Let s and t be terms. A substitution σ is

I a unifier for s and t if σ(s) = σ(t).

I a most general unifier (mgu) for s and t if

I it is a unifier for s and t, and
I it is more general than any other unifiers for s and t.

We say that s and t are unifiable if they have a unifier.

Let s = f (x) and t = f (y).

I σ1 = {x\a, y\a} is a unifier for s and t

I σ2 = {x\y} and σ3 = {y\x} are also unifiers for s and t

I σ2 and σ3 are the most general unifiers for s and t

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 13 / 47

Unifcation

Variable Renaming

I The previous example shows that two terms can have several most
general unifiers.

I But these mgus are always equal up to variable renaming.

Definition 1.4 (Variable Renaming).

A subsitution η is a variable renaming if

1. η(x) is a variable for all x ∈ V, and

2. η(x) 6= η(y) for all x , y ∈ V with x 6= y.

Are these substitutions variable renamings?

I σ1 = {x\z , y\x , z\y} Yes.

I σ2 = {x\z , z\y} No, because σ2(y) = σ2(z).

I σ3 = {x\z , y\x , z\y , u\a} No, because σ3(u) is not a variable.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 14 / 47

Unifcation

Uniqueness “up to variable renaming”

Proposition 1.2.

If σ1 and σ2 are most general unifiers for two terms s and t, then there is
a variable renaming η such that ησ1 = σ2.

I We leave out the proof.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 15 / 47

Unifcation

Subterms

Definition 1.5.

The set of subterms of a term t is the smallest set T such that

I t ∈ T, and

I if f (t1, . . . , tn) ∈ T, then all ti ∈ T.

All terms in T except t are called strict subterms of t.

Let s = gx .

I Subterms: x , gx

I Strict subterms: x

Let t = f (x , a).

I Subterms: x , a, f (x , a)

I Strict subterms: x , a

I So every term is a subterm of itself, but not a strict subterm.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 16 / 47



Unifcation

Numbered Term Trees

I We have seen that terms can be represented by trees.

I For the unification algorithm, it is convenient to number the children
of nodes:

f

g

a x

h

c

f , 0

g , 1

a, 1 x , 2

h, 2

c , 1

I We call such trees numbered term trees.

I We write the root of the numbered term tree of t as root(t).

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 17 / 47

Unifcation

Critical Pair

I When we unify terms t1 and t2, we want to find subtrees that are
different.

I We also want to find differeing subtrees as close to the root as
possible.

Definition 1.6 (Critical Pairs).

A crtical pair for two terms t1 and t2 is a pair 〈k1, k2〉 such that

I k1 is a subterm of t1

I k2 is a subterm of t2
I when terms are considered as numbered trees,

I root(k1) is different from root(k2)
I The path from root(t1) to root(k1) is equal to the path from root(t2)

to root(k2)

I Paths can be empty, i.e. terms differ at the root.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 18 / 47

Unifcation

Example.

Let s = f (x , gb) and t = f (a, hc). This gives the following numbered term
trees:

f , 0

x , 1 g , 2

b, 1

f , 0

a, 1 h, 2

c , 1

I Is 〈b, c〉 a critical pair for s and t?

I No, the path from root(s) to root(b) differs from the path from root(t)
to root(c).

I Is 〈x , a〉 a critical pair for s and t? Yes.

I Is 〈gb, hc〉 a critical pair for s and t? Yes.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 19 / 47

Unifcation

Unification Algorithm

Algoritm: unify(t1, t2)

σ := ε;
while (σ(t1) 6= σ(t2)) do

choose a critical pair 〈k1, k2〉 for σ(t1), σ(t2);
if (neither k1 nor k2 are variables) then

return “not unifiable”;
end if
x := the one of k1, k2 that is a variable (if both are, choose one)
t := the one of k1, k2 that is not x ;
if (x occurs in t) then

return “not unifiable”;
end if
σ := {x\t}σ;

end while
return σ;

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 20 / 47



Unifcation

Properties of the Unification Algorithm

I If the terms t1 and t2 are unifiable, the algorithm returns a most
general unifier for t1 and t2.

I The mgu is representative for all other unifiers of t1 and t2.

I If t1 and t2 are not unifiable, the algorithm returns “not unifiable”.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 21 / 47

Normal Forms

Outline

I Unifcation

I Normal Forms

I Negation Normal Form

I Conjunctive Normal Form

I Clausal Form

I Prenex Normal Forms

I Skolemization

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 22 / 47

Normal Forms

What are Normal Forms?

I Given some set A of formulas, grammars, programs, etc.
I And a subset N ⊆ A that is ‘nice’

I Easy to read off certain properties
I Easy to compute with
I Easy to write programs for
I . . .

I Given an equivalence relation ≈ on A
I formulas are logically equivalent
I grammars describe the same language
I programs compute the same function
I . . .

I Now assume that for every a ∈ A there is a n ∈ N with n ≈ a.

I Instead of the ‘ugly’ a, we can work with the ‘nice’ n.

I In computer science: computable function f : A→ N with f (a) ≈ a

I Members of N are “in N-normal form”

I For every a, we can compute the (or a) N-normal form f (a).

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 23 / 47

Normal Forms

Example: Normal Form for Rational Numbers

I Let Q be the set of pairs 〈m, n〉, where we think of m
n

I ‘nice’ fractions are reduced, i.e. no common divisors in m and n

I E.g. 3
4 is reduced but 6

8 is not.

I Let 〈m, n〉 ≈ 〈m′, n′〉 iff m · n′ = m′ · n, e.g. 3
4 ≈

6
8 .

I Reduced fractions are nice to check whether two are ≈: If 〈m, n〉 and
〈m′, n′〉 are both reduced, then

〈m, n〉 ≈ 〈m′, n′〉 ⇔ 〈m, n〉 = 〈m′, n′〉

I Algorithm: Given 〈m, n〉, compute k = gcd(m, n), return 〈m/k , n/k〉.
I Then 〈m/k , n/k〉 is reduced and 〈m/k , n/k〉 ≈ 〈m, n〉
I So 〈m/k, n/k〉 is the “reduced normal form” of 〈m, n〉

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 24 / 47



Negation Normal Form

Outline

I Unifcation

I Normal Forms

I Negation Normal Form

I Conjunctive Normal Form

I Clausal Form

I Prenex Normal Forms

I Skolemization

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 25 / 47

Negation Normal Form

Negation Normal Form

Definition 3.1 (Negation Normal Form).

A formula is in negation normal form (NNF) if it contains no implications,
and all negations are in front of literals.

Example.

I p → q is not in NNF

I ¬p ∨ q is in NNF

I ¬(p ∨ ∀x ¬q(x)) is not in NNF

I ¬p ∧ ∃x q(x) is in NNF

Theorem 3.1.

Every formula in first-order logic can be transformed into an equivalent
formula in NNF.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 26 / 47

Negation Normal Form

Proof.

To convert an arbitrary formula to a formula in NNF, remove implications,
and push negations inwards, preserving equivalence, using the following:

A→ B ≡ ¬A ∨ B

¬(A ∧ B) ≡ ¬A ∨ ¬B
¬(A ∨ B) ≡ ¬A ∧ ¬B
¬(∀x A) ≡ ∃x ¬A
¬(∃x A) ≡ ∀x ¬A
¬(¬A) ≡ A

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 27 / 47

Negation Normal Form

Advantage of Negation Normal Form

I Tableau or single-sided sequent calculi need 50% fewer rules

I No need to handle negation outside of axioms

I Sound and complete calculus for propositional logic:

Γ,A,B =⇒
∧-left

Γ,A ∧ B =⇒
Γ,A =⇒ Γ,B =⇒

∨-left
Γ,A ∨ B =⇒

ax
Γ,A,¬A =⇒

I Soundness and completeness proofs also have fewer cases.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 28 / 47



Conjunctive Normal Form

Outline

I Unifcation

I Normal Forms

I Negation Normal Form

I Conjunctive Normal Form

I Clausal Form

I Prenex Normal Forms

I Skolemization

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 29 / 47

Conjunctive Normal Form

Conjunctive Normal Form

Definition 4.1 (Conjunctive Normal Form).

A formula is in conjunctive normal form (CNF) if it is a conjunction of
disjunctions of literals.

Example.

(p ∨ ¬q) ∧ (¬p ∨ q) is in CNF.

(p ∨ ¬q) ∧ (¬p ∨ (q ∧ q)) is not in CNF.

What about just p or (p ∨ q)? Yes, if we consider a literal to be both a

conjunction and a disjunction.

Theorem 4.1.

Every formula in propositional logic can be transformed into an equivalent
formula in CNF.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 30 / 47

Conjunctive Normal Form

Proof.

To convert an arbitrary propositional formula to a formula in CNF perform
the following steps, each of which preserves logical equivalence:

(1) Convert to negation normal form.

(2) Use the distributive laws to move conjunctions inside disjunctions to
the outside

A ∨ (B ∧ C ) ≡ (A ∨ B) ∧ (A ∨ C )

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 31 / 47

Clausal Form

Outline

I Unifcation

I Normal Forms

I Negation Normal Form

I Conjunctive Normal Form

I Clausal Form

I Prenex Normal Forms

I Skolemization

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 32 / 47



Clausal Form

Clausal Form

Definition 5.1 (Clausal Form).

A clause is a set of literals. A clause is considered to be an implicit
disjunction of its literals. A unit clause is a clause consisting of exactly one
literal. The empty set of literals is the empty clause, denoted by 2. A
formula in clausal form is a set of clauses. A formula is considered to be
an implicit conjunction of its clauses. The formula that is the empty set of
clauses is denoted by ∅.

The only significant difference between clausal form and the standard
syntax is that clausal form is defined in terms of sets.

(p ∨ ¬q) ∧ (¬p ∨ q) in clausal form: {{p,¬q}, {¬p, q}}

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 33 / 47

Clausal Form

Transformation to Clausal Form

Corollary 5.1.

Every formula φ in propositional logic can be transformed into an logically
equivalent formula in clausal form.

Proof.

This follows from the previous theorem, where we transformed a formula
to CNF. Each disjunction is then transformed to a clause (of literals), and
the clausal form is the set of these clauses.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 34 / 47

Clausal Form

Empty Clause and Empty Set of Clauses

Lemma 5.1.

2, the empty clause, is unsatisfiable.

∅, the empty set of clauses, is valid.

Proof.

A clause is satisfiable iff there is some interpretation under which at least
one literal in the clause is true. Let I be an arbitrary interpretation. Since
there are no literals in 2, there are no literals whose value is true under I.
But I was an arbitrary interpretation, so 2 is unsatisfiable.

A set of clauses is valid iff every clause in the set is true in every
interpretation. But there are no clauses in ∅ that need be true, so ∅ is
valid.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 35 / 47

Clausal Form

Short Hand Notation for Clauses

Notation

I {pr , q̄p̄q, pp̄q} means (p ∨ r) ∧ (¬q ∨ ¬p ∨ q) ∧ (p ∨ ¬p ∨ q).

I S usually denotes a formula in clausal form.

I C usually denotes a clause.

I l usually denotes a literal.

I lc then represents its complement.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 36 / 47



Prenex Normal Forms

Outline

I Unifcation

I Normal Forms

I Negation Normal Form

I Conjunctive Normal Form

I Clausal Form

I Prenex Normal Forms

I Skolemization

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 37 / 47

Prenex Normal Forms

Prenex Conjunctive Normal Form

Definition 6.1 (Prenex Conjunctive Normal Form).

A formula is in prenex conjunctive normal form (PCNF) iff it is of the form:

Q1x1 · · ·QnxnM

where the Qi are quantifiers (∀/∃) and M is a quantifier-free formula in
CNF. The sequence Q1x1 · · ·Qnxn is the prefix and M is the matrix.

Example.

∀x∀y((p(x , y) ∨ ¬p(y , x)) ∧ (q(x , y) ∨ ¬q(y , x))) is in PCNF.

∀x(¬p(x) ∨ ∃yq(y)) is not in PCNF.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 38 / 47

Prenex Normal Forms

Clausal Form for First-order Formulae

Definition 6.2 (Clausal Form).

Let A be a closed formula in PCNF whose prefix consists only of universal
quantifiers. The clausal form of A consists of the matrix of A written as a
set of clauses.

Example.

∀x∀y((p(x , y) ∨ ¬p(y , x)) ∧ (q(x , y) ∨ ¬q(y , x)))

can be written in clausal form as

{{p(x , y),¬p(y , x)}, {q(x , y),¬q(y , x)}}

Note: The universal quantifiers are implicit.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 39 / 47

Skolemization

Outline

I Unifcation

I Normal Forms

I Negation Normal Form

I Conjunctive Normal Form

I Clausal Form

I Prenex Normal Forms

I Skolemization

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 40 / 47



Skolemization

Skolem’s Theorem

Theorem 7.1 (Skolem).

There is an algorithm that for any closed formula A computes a formula A′

in clausal form such that A ≈ A′.

The notation A ≈ A′ means that A is satisfiable if and only if A′ is
satisfiable. This is not the same as logical equivalence. We call it
equisatisfiability.

Named after the Norwegian mathematician and logician Thoralf Albert
Skolem (1887–1963).

“Satisfiability is more interesting than validity. Always true or always false
are extremes.”

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 41 / 47

Skolemization

Skolem’s Algorithm

Algorithm for obtaining A′:

I Rename bound variables so that no variable appears in two quantifiers.

I Transform to negation normal form

I Extract quantifiers from the matrix until all quantifiers appear in the
prefix and the matrix is quantifier-free.

A ∧ ∀x B ≡ ∀x(A ∧ B) if x not free in A

A ∧ ∃x B ≡ ∃x(A ∧ B) if x not free in A

A ∨ ∀x B ≡ ∀x(A ∨ B) if x not free in A

A ∨ ∃x B ≡ ∃x(A ∨ B) if x not free in A

I Use the distributive laws to transform the matrix into CNF.

I The formula is now in PCNF.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 42 / 47

Skolemization

Skolem’s Algorithm (cont.)

Algorithm for obtaining A′ (continued):

I For every existential quantifier ∃x in the prefix, let y1, . . . , yn be the
universally quantified variables preceding ∃x and let f be a new n-ary
function symbol.

I Delete ∃x and replace every occurrence of x by f (y1, . . . , yn).

I If there are no universal quantifiers preceding ∃x , replace x by a new
constant (0-ary function).

I These new function symbols are Skolem functions and the process of
replacing existential quantifiers by functions is Skolemization.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 43 / 47

Skolemization

Skolemization Example

Example.

I Look at the formulas ∀x∃yp(x , y) and ∀xp(x , f (x)).

I Are they equivalent? No!

I Are they equisatisfiable? Yes!

I The Skolemization of ∀x∃yp(x , y) is ∀xp(x , f (x)), and if one of them
has a model, so does the other.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 44 / 47



Skolemization

Proof of Skolem’s Theorem

I The first transformations of the algorithm (into PCNF) preserve
equivalence.

I We need to consider the replacement of an existential quantifier by a
Skolem function.

I Suppose that I |= ∀y1 · · · ∀yn∃x A for I = (D, ι).

I We must show that there is an interpretation I ′ such that
I ′ |= ∀y1 · · · ∀yn A[x\f (y1, . . . , yn)]).

I Let I ′ = (D, ι′) such that ι′ extends ι with the interpretation of f .

I Remember that f does not occur in A, so f ι does not matter

I For any choice of elements d1, . . . , dn from D, there is an element
dn+1 in D such that

vI(α{y1←d1} · · · {yn←dn}{x←dn+1},A) = T

I Let f ι
′
(d1, . . . , dn) = dn+1. This ensures that the claim holds.

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 45 / 47

Skolemization

Example

I Clause form of ¬∃x (p(x)→ ∀y p(y))

I First, transform to (equivalent) Prenex Normal Form

¬∃x (p(x)→ ∀y p(y))
≡ ∀x ¬(p(x)→ ∀y p(y))
≡ ∀x (p(x) ∧ ¬∀y p(y))
≡ ∀x (p(x) ∧ ∃y ¬p(y))
≡ ∀x ∃y (p(x) ∧ ¬p(y))

I Then skolemise (preserving satisfiability)

∀x (p(x) ∧ ¬p(f (x)))

I In clause form, two clauses:

{{p(x)}, {¬p(f (x)}}

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 46 / 47

Skolemization

Outlook

I We have seen the LK calculus for propositional and first-order logic

I Sound and complete, but not machine-oriented

I Machine-oriented calculi use:

I Unification to find the right instantiations
I Normal forms to simplify reasoning steps

I Free variable calculi

I Similar to LK, but with unification
I Often used with NNF or clause form
I Not this year

I Resolution

I Basis of many theorem provers, uses unification
I Almost always on clause form

IN3070/4070 :: Autumn 2020 Lecture 6 :: 24th September 47 / 47


	Unifcation
	Normal Forms
	Negation Normal Form
	Conjunctive Normal Form
	Clausal Form
	Prenex Normal Forms
	Skolemization

