# IN3070/4070 - Logic - Autumn 2020 <br> Lecture 7: Resolution 

## Martin Giese

## 1st October 2019

ifj
Department of Informatics

University of
Oslo

## Today's Plan

- Introduction
- Repetition: Negation Normal Form
- Conjunctive Normal Form
- Clausal Form
- Resolution
- Soundness of Resolution
- Completeness of Resolution


## Outline

- Introduction
- Repetition: Negation Normal Form
- Conjunctive Normal Form
- Clausal Form
- Resolution
- Soundness of Resolution
- Completeness of Resolution


## Proof Search Calculi

efficiency
$\times$ PRLL $\times$ Cosolution $\times$ Connection Calculus
readability

## Robinson's Resolution Calculus

"A formulation of first-order logic which is specifically designed for use as the basis theoretical instrument of a computer theorem-proving program.'

## Robinson's Resolution Calculus

"A formulation of first-order logic which is specifically designed for use as the basis theoretical instrument of a computer theorem-proving program."

- the resolution calculus was published by Alan Robinson in 1965



## Robinson's Resolution Calculus

"A formulation of first-order logic which is specifically designed for use as the basis theoretical instrument of a computer theorem-proving program."

- the resolution calculus was published by Alan Robinson in 1965

- works for first-order formulae in clausal form
(e.g. conjunctive or disjunctive normal form)
- consists of one (two for first-order) inference rules and one axiom


## Robinson's Resolution Calculus

"A formulation of first-order logic which is specifically designed for use as the basis theoretical instrument of a computer theorem-proving program."

- the resolution calculus was published by Alan Robinson in 1965

- works for first-order formulae in clausal form
(e.g. conjunctive or disjunctive normal form)
- consists of one (two for first-order) inference rules and one axiom
- is one of the most popular proof search calculi
- has been implemented in many automated theorem provers


## Outline

## - Introduction

- Repetition: Negation Normal Form
- Conjunctive Normal Form
- Clausal Form
- Resolution
- Soundness of Resolution
- Completeness of Resolution


## Negation Normal Form

Definition 2.1 (Negation Normal Form).

## Negation Normal Form

## Definition 2.1 (Negation Normal Form).

A formula is in negation normal form (NNF) if it contains no implications, and all negations are in front of literals.

## Negation Normal Form

## Definition 2.1 (Negation Normal Form).

A formula is in negation normal form (NNF) if it contains no implications, and all negations are in front of literals.

## Example.

## Negation Normal Form

## Definition 2.1 (Negation Normal Form).

A formula is in negation normal form (NNF) if it contains no implications, and all negations are in front of literals.

## Example.

- $p \rightarrow q$ is not in NNF


## Negation Normal Form

## Definition 2.1 (Negation Normal Form).

A formula is in negation normal form (NNF) if it contains no implications, and all negations are in front of literals.

## Example.

- $p \rightarrow q$ is not in NNF
- $\neg p \vee q$ is in NNF


## Negation Normal Form

## Definition 2.1 (Negation Normal Form).

A formula is in negation normal form (NNF) if it contains no implications, and all negations are in front of literals.

## Example.

- $p \rightarrow q$ is not in NNF
- $\neg p \vee q$ is in NNF
- $\neg(p \vee \forall x \neg q(x))$ is not in NNF


## Negation Normal Form

## Definition 2.1 (Negation Normal Form).

A formula is in negation normal form (NNF) if it contains no implications, and all negations are in front of literals.

## Example.

- $p \rightarrow q$ is not in NNF
- $\neg p \vee q$ is in NNF
- $\neg(p \vee \forall x \neg q(x))$ is not in NNF
- $\neg p \wedge \exists x q(x)$ is in NNF


## Negation Normal Form

## Definition 2.1 (Negation Normal Form).

A formula is in negation normal form (NNF) if it contains no implications, and all negations are in front of literals.

## Example.

- $p \rightarrow q$ is not in NNF
- $\neg p \vee q$ is in NNF
- $\neg(p \vee \forall x \neg q(x))$ is not in NNF
- $\neg p \wedge \exists x q(x)$ is in NNF


## Theorem 2.1.

Every formula in first-order logic can be transformed into an equivalent formula in NNF.

## Proof.

To convert an arbitrary formula to a formula in NNF, remove implications, and push negations inwards, preserving equivalence, using the following:

$$
\begin{aligned}
A \rightarrow B & \equiv \neg A \vee B \\
\neg(A \wedge B) & \equiv \neg A \vee \neg B \\
\neg(A \vee B) & \equiv \neg A \wedge \neg B \\
\neg(\forall x A) & \equiv \exists x \neg A \\
\neg(\exists x A) & \equiv \forall x \neg A \\
\neg(\neg A) & \equiv A
\end{aligned}
$$

## Outline

## - Introduction

- Repetition: Negation Normal Form
- Conjunctive Normal Form
- Clausal Form
- Resolution
- Soundness of Resolution
- Completeness of Resolution


## Conjunctive Normal Form

## Definition 3.1 (Conjunctive Normal Form).

## Conjunctive Normal Form

## Definition 3.1 (Conjunctive Normal Form).

A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals.

## Conjunctive Normal Form

## Definition 3.1 (Conjunctive Normal Form).

A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals.

## Example.

## Conjunctive Normal Form

## Definition 3.1 (Conjunctive Normal Form).

A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals.

## Example.

$$
(p \vee \neg q) \wedge(\neg p \vee q) \text { is in CNF. }
$$

## Conjunctive Normal Form

## Definition 3.1 (Conjunctive Normal Form).

A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals.

## Example.

$(p \vee \neg q) \wedge(\neg p \vee q)$ is in CNF.
$(p \vee \neg q) \wedge(\neg p \vee(q \wedge q))$ is not in CNF.

## Conjunctive Normal Form

## Definition 3.1 (Conjunctive Normal Form).

A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals.

## Example.

$(p \vee \neg q) \wedge(\neg p \vee q)$ is in CNF.
$(p \vee \neg q) \wedge(\neg p \vee(q \wedge q))$ is not in CNF.
What about just $p$ or $(p \vee q)$ ?

## Conjunctive Normal Form

## Definition 3.1 (Conjunctive Normal Form).

A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals.

## Example.

$(p \vee \neg q) \wedge(\neg p \vee q)$ is in CNF.
$(p \vee \neg q) \wedge(\neg p \vee(q \wedge q))$ is not in CNF.
What about just $p$ or $(p \vee q)$ ? Yes, if we consider a literal to be both a conjunction and a disjunction.

## Conjunctive Normal Form

## Definition 3.1 (Conjunctive Normal Form).

A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals.

## Example.

$(p \vee \neg q) \wedge(\neg p \vee q)$ is in CNF.
$(p \vee \neg q) \wedge(\neg p \vee(q \wedge q))$ is not in CNF.
What about just $p$ or $(p \vee q)$ ? Yes, if we consider a literal to be both a conjunction and a disjunction.

Theorem 3.1.
Every formula in propositional logic can be transformed into an equivalent formula in CNF.

## Proof.

## Proof.

To convert an arbitrary propositional formula to a formula in CNF perform the following steps, each of which preserves logical equivalence:

## Proof.

To convert an arbitrary propositional formula to a formula in CNF perform the following steps, each of which preserves logical equivalence:
(1) Convert to negation normal form.

## Proof.

To convert an arbitrary propositional formula to a formula in CNF perform the following steps, each of which preserves logical equivalence:
(1) Convert to negation normal form.
(2) Use the distributive laws to move conjunctions inside disjunctions to the outside

$$
A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C)
$$

## Outline

## - Introduction

- Repetition: Negation Normal Form
- Conjunctive Normal Form
- Clausal Form
- Resolution
- Soundness of Resolution
- Completeness of Resolution


## Clausal Form

## Definition 4.1 (Clausal Form).

## Clausal Form

Definition 4.1 (Clausal Form).
A clause is a set of literals.

## Clausal Form

## Definition 4.1 (Clausal Form).

A clause is a set of literals. A clause is considered to be an implicit disjunction of its literals.

## Clausal Form

## Definition 4.1 (Clausal Form).

A clause is a set of literals. A clause is considered to be an implicit disjunction of its literals. A unit clause is a clause consisting of exactly one literal.

## Clausal Form

## Definition 4.1 (Clausal Form).

A clause is a set of literals. A clause is considered to be an implicit disjunction of its literals. A unit clause is a clause consisting of exactly one literal. The empty set of literals is the empty clause, denoted by $\square$.

## Clausal Form

## Definition 4.1 (Clausal Form).

A clause is a set of literals. A clause is considered to be an implicit disjunction of its literals. A unit clause is a clause consisting of exactly one literal. The empty set of literals is the empty clause, denoted by $\square$. A formula in clausal form is a set of clauses.

## Clausal Form

## Definition 4.1 (Clausal Form).

A clause is a set of literals. A clause is considered to be an implicit disjunction of its literals. A unit clause is a clause consisting of exactly one literal. The empty set of literals is the empty clause, denoted by $\square$. A formula in clausal form is a set of clauses. A formula is considered to be an implicit conjunction of its clauses.

## Clausal Form

## Definition 4.1 (Clausal Form).

A clause is a set of literals. A clause is considered to be an implicit disjunction of its literals. A unit clause is a clause consisting of exactly one literal. The empty set of literals is the empty clause, denoted by $\square$. A formula in clausal form is a set of clauses. A formula is considered to be an implicit conjunction of its clauses. The formula that is the empty set of clauses is denoted by $\emptyset$.

## Clausal Form

## Definition 4.1 (Clausal Form).

A clause is a set of literals. A clause is considered to be an implicit disjunction of its literals. A unit clause is a clause consisting of exactly one literal. The empty set of literals is the empty clause, denoted by $\square$. A formula in clausal form is a set of clauses. A formula is considered to be an implicit conjunction of its clauses. The formula that is the empty set of clauses is denoted by $\emptyset$.

The only significant difference between clausal form and the standard syntax is that clausal form is defined in terms of sets.

## Clausal Form

## Definition 4.1 (Clausal Form).

A clause is a set of literals. A clause is considered to be an implicit disjunction of its literals. A unit clause is a clause consisting of exactly one literal. The empty set of literals is the empty clause, denoted by $\square$. A formula in clausal form is a set of clauses. A formula is considered to be an implicit conjunction of its clauses. The formula that is the empty set of clauses is denoted by $\emptyset$.

The only significant difference between clausal form and the standard syntax is that clausal form is defined in terms of sets.
$(p \vee \neg q) \wedge(\neg p \vee q)$ in clausal form: $\{\{p, \neg q\},\{\neg p, q\}\}$

## Transformation to Clausal Form

## Corollary 4.1.

Every formula $\phi$ in propositional logic can be transformed into an logically equivalent formula in clausal form.

## Transformation to Clausal Form

## Corollary 4.1.

Every formula $\phi$ in propositional logic can be transformed into an logically equivalent formula in clausal form.

## Proof.

## Transformation to Clausal Form

## Corollary 4.1.

Every formula $\phi$ in propositional logic can be transformed into an logically equivalent formula in clausal form.

## Proof.

This follows from the previous theorem, where we transformed a formula to CNF.

## Transformation to Clausal Form

## Corollary 4.1.

Every formula $\phi$ in propositional logic can be transformed into an logically equivalent formula in clausal form.

## Proof.

This follows from the previous theorem, where we transformed a formula to CNF. Each disjunction is then transformed to a clause (of literals), and the clausal form is the set of these clauses.

## Empty Clause and Empty Set of Clauses

Lemma 4.1.

## Empty Clause and Empty Set of Clauses

## Lemma 4.1.

$\square$, the empty clause, is unsatisfiable.

## Empty Clause and Empty Set of Clauses

## Lemma 4.1.

$\square$, the empty clause, is unsatisfiable.
$\emptyset$, the empty set of clauses, is valid.

## Empty Clause and Empty Set of Clauses

## Lemma 4.1.

$\square$, the empty clause, is unsatisfiable.
$\emptyset$, the empty set of clauses, is valid.

## Proof.

## Empty Clause and Empty Set of Clauses

## Lemma 4.1.

$\square$, the empty clause, is unsatisfiable.
$\emptyset$, the empty set of clauses, is valid.

## Proof.

A clause is satisfiable iff there is some interpretation under which at least one literal in the clause is true.

## Empty Clause and Empty Set of Clauses

## Lemma 4.1.

$\square$, the empty clause, is unsatisfiable.
$\emptyset$, the empty set of clauses, is valid.

## Proof.

A clause is satisfiable iff there is some interpretation under which at least one literal in the clause is true. Let $\mathcal{I}$ be an arbitrary interpretation.

## Empty Clause and Empty Set of Clauses

## Lemma 4.1.

$\square$, the empty clause, is unsatisfiable.
$\emptyset$, the empty set of clauses, is valid.

## Proof.

A clause is satisfiable iff there is some interpretation under which at least one literal in the clause is true. Let $\mathcal{I}$ be an arbitrary interpretation. Since there are no literals in $\square$, there are no literals whose value is true under $\mathcal{I}$.

## Empty Clause and Empty Set of Clauses

## Lemma 4.1.

$\square$, the empty clause, is unsatisfiable.
$\emptyset$, the empty set of clauses, is valid.

## Proof.

A clause is satisfiable iff there is some interpretation under which at least one literal in the clause is true. Let $\mathcal{I}$ be an arbitrary interpretation. Since there are no literals in $\square$, there are no literals whose value is true under $\mathcal{I}$. But $\mathcal{I}$ was an arbitrary interpretation, so $\square$ is unsatisfiable.

## Empty Clause and Empty Set of Clauses

## Lemma 4.1.

$\square$, the empty clause, is unsatisfiable.
$\emptyset$, the empty set of clauses, is valid.

## Proof.

A clause is satisfiable iff there is some interpretation under which at least one literal in the clause is true. Let $\mathcal{I}$ be an arbitrary interpretation. Since there are no literals in $\square$, there are no literals whose value is true under $\mathcal{I}$. But $\mathcal{I}$ was an arbitrary interpretation, so $\square$ is unsatisfiable.

A set of clauses is valid iff every clause in the set is true in every interpretation.

## Empty Clause and Empty Set of Clauses

## Lemma 4.1.

$\square$, the empty clause, is unsatisfiable.
$\emptyset$, the empty set of clauses, is valid.

## Proof.

A clause is satisfiable iff there is some interpretation under which at least one literal in the clause is true. Let $\mathcal{I}$ be an arbitrary interpretation. Since there are no literals in $\square$, there are no literals whose value is true under $\mathcal{I}$. But $\mathcal{I}$ was an arbitrary interpretation, so $\square$ is unsatisfiable.

A set of clauses is valid iff every clause in the set is true in every interpretation. But there are no clauses in $\emptyset$ that need be true, so $\emptyset$ is valid.

## Outline

## - Introduction

- Repetition: Negation Normal Form
- Conjunctive Normal Form
- Clausal Form
- Resolution
- Soundness of Resolution
- Completeness of Resolution


## The Resolution Rule

The resolution calculus is a refutation procedure.

- in order to determine whether a formula $F$ (in clausal form) is valid, we check whether $\neg F$ is unsatisfiable


## The Resolution Rule

The resolution calculus is a refutation procedure.

- in order to determine whether a formula $F$ (in clausal form) is valid, we check whether $\neg F$ is unsatisfiable


## Definition 5.1 (Complementary Literal).

The complementary literal $\bar{L}$ of a literal $L$ is $A$ if $L$ is of the form $\neg A$, otherwise it is $\neg$ L.

## The Resolution Rule

The resolution calculus is a refutation procedure.

- in order to determine whether a formula $F$ (in clausal form) is valid, we check whether $\neg F$ is unsatisfiable


## Definition 5.1 (Complementary Literal).

The complementary literal $\bar{L}$ of a literal $L$ is $A$ if $L$ is of the form $\neg A$, otherwise it is $\neg$ L.

## Definition 5.2 (Resolution Rule).

Let $C_{1}, C_{2}$ be clauses with $L \in C_{1}$ and $\bar{L} \in C_{2}$. The resolvent $C^{\prime}$ of $C_{1}$ and $C_{2}$ is $\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right) . C_{1}$ and $C_{2}$ are the parents of $C^{\prime}$.

## The Resolution Rule

The resolution calculus is a refutation procedure.

- in order to determine whether a formula $F$ (in clausal form) is valid, we check whether $\neg F$ is unsatisfiable


## Definition 5.1 (Complementary Literal).

The complementary literal $\bar{L}$ of a literal $L$ is $A$ if $L$ is of the form $\neg A$, otherwise it is $\neg L$.

## Definition 5.2 (Resolution Rule).

Let $C_{1}, C_{2}$ be clauses with $L \in C_{1}$ and $\bar{L} \in C_{2}$. The resolvent $C^{\prime}$ of $C_{1}$ and $C_{2}$ is $\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right) . C_{1}$ and $C_{2}$ are the parents of $C^{\prime}$.

- the resolution rule maintains satisfiability: If $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$ then $\mathcal{I} \models C^{\prime}$


## The Resolution Rule

The resolution calculus is a refutation procedure.

- in order to determine whether a formula $F$ (in clausal form) is valid, we check whether $\neg F$ is unsatisfiable


## Definition 5.1 (Complementary Literal).

The complementary literal $\bar{L}$ of a literal $L$ is $A$ if $L$ is of the form $\neg A$, otherwise it is $\neg L$.

## Definition 5.2 (Resolution Rule).

Let $C_{1}, C_{2}$ be clauses with $L \in C_{1}$ and $\bar{L} \in C_{2}$. The resolvent $C^{\prime}$ of $C_{1}$ and $C_{2}$ is $\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right) . C_{1}$ and $C_{2}$ are the parents of $C^{\prime}$.

- the resolution rule maintains satisfiability: If $\mathcal{I} \models C_{1}$ and $\mathcal{I} \vDash C_{2}$ then $\mathcal{I} \models C^{\prime}$
- if a set of clauses $S$ is satisfiable and $C_{1}, C_{2} \in S$, then $S \cup\left\{C^{\prime}\right\}$ is satisfiable.


## The Resolution Rule - Example

Example: Let $C_{1}=\{a, b, \neg c\}$ and $C_{2}=\{b, c, \neg e\}$.

## The Resolution Rule - Example

Example: Let $C_{1}=\{a, b, \neg c\}$ and $C_{2}=\{b, c, \neg e\}$.

$$
\{a, b, \neg c\} \quad\{b, c, \neg e\}
$$

## The Resolution Rule - Example

Example: Let $C_{1}=\{a, b, \neg c\}$ and $C_{2}=\{b, c, \neg e\}$.

$$
\{a, b, \neg c\} \underset{\substack{\text { a } \\\{a, b, \neg e\}}}{\{b, c, \neg e\}}
$$

The resolvent of $C_{1}$ and $C_{2}$ is $\{a, b, \neg e\}$.

## The Resolution Rule - Example

Example: Let $C_{1}=\{a, b, \neg c\}$ and $C_{2}=\{b, c, \neg e\}$.

$$
\begin{aligned}
& \{a, b, \neg c\} \quad\{b, c, \neg e\} \\
& \{a, b, \neg e\}
\end{aligned}
$$

The resolvent of $C_{1}$ and $C_{2}$ is $\{a, b, \neg e\}$.
Observations:

- if $\{a, b, \neg c\}$ and $\{b, c, \neg e\} \equiv(a \vee b \vee \neg c) \wedge(b \vee c \vee \neg e)$ are true in $\mathcal{I}$, then $(a \vee b)$ is true (if $c$ is true) or ( $b \vee \neg e$ ) is true (if $c$ is false); hence $(a \vee b \vee \neg e)$ is true


## The Resolution Rule - Example

Example: Let $C_{1}=\{a, b, \neg c\}$ and $C_{2}=\{b, c, \neg e\}$.

$$
\begin{aligned}
& \{a, b, \neg c\} \quad\{b, c, \neg e\} \\
& \{a, b, \neg e\}
\end{aligned}
$$

The resolvent of $C_{1}$ and $C_{2}$ is $\{a, b, \neg e\}$.
Observations:

- if $\{a, b, \neg c\}$ and $\{b, c, \neg e\} \equiv(a \vee b \vee \neg c) \wedge(b \vee c \vee \neg e)$ are true in $\mathcal{I}$, then $(a \vee b)$ is true (if $c$ is true) or ( $b \vee \neg e$ ) is true (if $c$ is false); hence $(a \vee b \vee \neg e)$ is true
- if resolvent is unsatisfiable, then conj. of parents is unsatisfiable
- the empty clause $\square$ is unsatisfiable


## The Resolution Rule - Example

Example: Let $C_{1}=\{a, b, \neg c\}$ and $C_{2}=\{b, c, \neg e\}$.

$$
\begin{aligned}
& \{a, b, \neg c\} \quad\{b, c, \neg e\} \\
& \{a, b, \neg e\}
\end{aligned}
$$

The resolvent of $C_{1}$ and $C_{2}$ is $\{a, b, \neg e\}$.
Observations:

- if $\{a, b, \neg c\}$ and $\{b, c, \neg e\} \equiv(a \vee b \vee \neg c) \wedge(b \vee c \vee \neg e)$ are true in $\mathcal{I}$, then $(a \vee b)$ is true (if $c$ is true) or ( $b \vee \neg e$ ) is true (if $c$ is false); hence $(a \vee b \vee \neg e)$ is true
- if resolvent is unsatisfiable, then conj. of parents is unsatisfiable
- the empty clause $\square$ is unsatisfiable
- goal: derive empty clause $\square$


## The Resolution Calculus

- a set of clauses is unsatisfiable iff the empty clause can be derived
- a clause $C$ is true iff at least one of its literals is true; if there is no literal in $C$, then $C$ is false and every set of clauses (in CNF) that contains $C$ is false, i.e.unsatisfiable


## The Resolution Calculus

a set of clauses is unsatisfiable iff the empty clause can be derived

- a clause $C$ is true iff at least one of its literals is true; if there is no literal in $C$, then $C$ is false and every set of clauses (in CNF) that contains $C$ is false, i.e.unsatisfiable


## Definition 5.3 (Resolution Procedure).

Given a set of clauses $S$.

1. apply the resolution rule to a pair of clauses $\left\{C_{1}, C_{2}\right\} \subseteq S$ that has not been chosen before; let $C^{\prime}$ be the resolvent

## The Resolution Calculus

a set of clauses is unsatisfiable iff the empty clause can be derived

- a clause $C$ is true iff at least one of its literals is true; if there is no literal in $C$, then $C$ is false and every set of clauses (in CNF) that contains $C$ is false, i.e.unsatisfiable


## Definition 5.3 (Resolution Procedure).

Given a set of clauses S.

1. apply the resolution rule to a pair of clauses $\left\{C_{1}, C_{2}\right\} \subseteq S$ that has not been chosen before; let $C^{\prime}$ be the resolvent
2. $S^{\prime}:=S \cup\left\{C^{\prime}\right\}, S:=S^{\prime}$

## The Resolution Calculus

a set of clauses is unsatisfiable iff the empty clause can be derived

- a clause $C$ is true iff at least one of its literals is true; if there is no literal in $C$, then $C$ is false and every set of clauses (in CNF) that contains $C$ is false, i.e.unsatisfiable


## Definition 5.3 (Resolution Procedure).

Given a set of clauses S.

1. apply the resolution rule to a pair of clauses $\left\{C_{1}, C_{2}\right\} \subseteq S$ that has not been chosen before; let $C^{\prime}$ be the resolvent
2. $S^{\prime}:=S \cup\left\{C^{\prime}\right\}, S:=S^{\prime}$
3. if $C^{\prime}=\square$, then output "unsatisfiable";

## The Resolution Calculus

- a set of clauses is unsatisfiable iff the empty clause can be derived
- a clause $C$ is true iff at least one of its literals is true; if there is no literal in $C$, then $C$ is false and every set of clauses (in CNF) that contains $C$ is false, i.e.unsatisfiable


## Definition 5.3 (Resolution Procedure).

Given a set of clauses $S$.

1. apply the resolution rule to a pair of clauses $\left\{C_{1}, C_{2}\right\} \subseteq S$ that has not been chosen before; let $C^{\prime}$ be the resolvent
2. $S^{\prime}:=S \cup\left\{C^{\prime}\right\}, S:=S^{\prime}$
3. if $C^{\prime}=\square$, then output "unsatisfiable";
if all possible resolvents have been considered, then output "satisfiable"; otherwise continue with 1.

## Resolution Calculus - Example 1

- Prove validity of: $(p \wedge q) \rightarrow p$


## Resolution Calculus - Example 1

- Prove validity of: $(p \wedge q) \rightarrow p$
- Show unsatisfiability of: $\neg((p \wedge q) \rightarrow p)$


## Resolution Calculus - Example 1

- Prove validity of: $(p \wedge q) \rightarrow p$
- Show unsatisfiability of: $\neg((p \wedge q) \rightarrow p)$
- CNF: $p \wedge q \wedge \neg p$


## Resolution Calculus - Example 1

- Prove validity of: $(p \wedge q) \rightarrow p$
- Show unsatisfiability of: $\neg((p \wedge q) \rightarrow p)$
- CNF: $p \wedge q \wedge \neg p$
- Clause set: $\{\{p\},\{q\},\{\neg p\}\}$


## Resolution Calculus - Example 1

- Prove validity of: $(p \wedge q) \rightarrow p$
- Show unsatisfiability of: $\neg((p \wedge q) \rightarrow p)$
- CNF: $p \wedge q \wedge \neg p$
- Clause set: $\{\{p\},\{q\},\{\neg p\}\}$
- Resolve $\{p\}$ with $\{\neg p\}$


## Resolution Calculus - Example 1

- Prove validity of: $(p \wedge q) \rightarrow p$
- Show unsatisfiability of: $\neg((p \wedge q) \rightarrow p)$
- CNF: $p \wedge q \wedge \neg p$
- Clause set: $\{\{p\},\{q\},\{\neg p\}\}$
- Resolve $\{p\}$ with $\{\neg p\}$
- Resolvent: $\square$


## Resolution Calculus - Example 2

- Prove validity of: $p \wedge(p \rightarrow q) \rightarrow q$


## Resolution Calculus - Example 2

- Prove validity of: $p \wedge(p \rightarrow q) \rightarrow q$
- Show unsatisfiability of: $\neg(p \wedge(p \rightarrow q) \rightarrow q)$


## Resolution Calculus - Example 2

- Prove validity of: $p \wedge(p \rightarrow q) \rightarrow q$
- Show unsatisfiability of: $\neg(p \wedge(p \rightarrow q) \rightarrow q)$
- Equivalent to: $p \wedge(p \rightarrow q) \wedge \neg q$


## Resolution Calculus - Example 2

- Prove validity of: $p \wedge(p \rightarrow q) \rightarrow q$
- Show unsatisfiability of: $\neg(p \wedge(p \rightarrow q) \rightarrow q)$
- Equivalent to: $p \wedge(p \rightarrow q) \wedge \neg q$
- CNF: $p \wedge(\neg p \vee q) \wedge \neg q$


## Resolution Calculus - Example 2

- Prove validity of: $p \wedge(p \rightarrow q) \rightarrow q$
- Show unsatisfiability of: $\neg(p \wedge(p \rightarrow q) \rightarrow q)$
- Equivalent to: $p \wedge(p \rightarrow q) \wedge \neg q$
- CNF: $p \wedge(\neg p \vee q) \wedge \neg q$
- Clause set: $\{\{p\},\{\neg p, q\},\{\neg q\}\}$


## Resolution Calculus - Example 2

- Prove validity of: $p \wedge(p \rightarrow q) \rightarrow q$
- Show unsatisfiability of: $\neg(p \wedge(p \rightarrow q) \rightarrow q)$
- Equivalent to: $p \wedge(p \rightarrow q) \wedge \neg q$
- CNF: $p \wedge(\neg p \vee q) \wedge \neg q$
- Clause set: $\{\{p\},\{\neg p, q\},\{\neg q\}\}$
- Resolution step 1: between $\{p\}$ and $\{\neg p, q\}$


## Resolution Calculus - Example 2

- Prove validity of: $p \wedge(p \rightarrow q) \rightarrow q$
- Show unsatisfiability of: $\neg(p \wedge(p \rightarrow q) \rightarrow q)$
- Equivalent to: $p \wedge(p \rightarrow q) \wedge \neg q$
- CNF: $p \wedge(\neg p \vee q) \wedge \neg q$
- Clause set: $\{\{p\},\{\neg p, q\},\{\neg q\}\}$
- Resolution step 1: between $\{p\}$ and $\{\neg p, q\}$
- Resolvent: $\{q\}$


## Resolution Calculus - Example 2

- Prove validity of: $p \wedge(p \rightarrow q) \rightarrow q$
- Show unsatisfiability of: $\neg(p \wedge(p \rightarrow q) \rightarrow q)$
- Equivalent to: $p \wedge(p \rightarrow q) \wedge \neg q$
- CNF: $p \wedge(\neg p \vee q) \wedge \neg q$
- Clause set: $\{\{p\},\{\neg p, q\},\{\neg q\}\}$
- Resolution step 1: between $\{p\}$ and $\{\neg p, q\}$
- Resolvent: $\{q\}$
- New clause set: $\{\{p\},\{\neg p, q\},\{\neg q\},\{q\}\}$


## Resolution Calculus - Example 2

- Prove validity of: $p \wedge(p \rightarrow q) \rightarrow q$
- Show unsatisfiability of: $\neg(p \wedge(p \rightarrow q) \rightarrow q)$
- Equivalent to: $p \wedge(p \rightarrow q) \wedge \neg q$
- CNF: $p \wedge(\neg p \vee q) \wedge \neg q$
- Clause set: $\{\{p\},\{\neg p, q\},\{\neg q\}\}$
- Resolution step 1: between $\{p\}$ and $\{\neg p, q\}$
- Resolvent: $\{q\}$
- New clause set: $\{\{p\},\{\neg p, q\},\{\neg q\},\{q\}\}$
- Resolution step 2: between $\{\neg q\}$ and $\{q\}$


## Resolution Calculus - Example 2

- Prove validity of: $p \wedge(p \rightarrow q) \rightarrow q$
- Show unsatisfiability of: $\neg(p \wedge(p \rightarrow q) \rightarrow q)$
- Equivalent to: $p \wedge(p \rightarrow q) \wedge \neg q$
- CNF: $p \wedge(\neg p \vee q) \wedge \neg q$
- Clause set: $\{\{p\},\{\neg p, q\},\{\neg q\}\}$
- Resolution step 1: between $\{p\}$ and $\{\neg p, q\}$
- Resolvent: $\{q\}$
- New clause set: $\{\{p\},\{\neg p, q\},\{\neg q\},\{q\}\}$
- Resolution step 2: between $\{\neg q\}$ and $\{q\}$
- Resolvent: $\square$


## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$


## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
- Show unsatisfiability of: $\neg((p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r))$


## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
- Show unsatisfiability of: $\neg((p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r))$
- Equivalent to $(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q) \wedge \neg r$


## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
- Show unsatisfiability of: $\neg((p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r))$
- Equivalent to $(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q) \wedge \neg r$
- Clauses:


## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
- Show unsatisfiability of: $\neg((p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r))$
- Equivalent to $(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q) \wedge \neg r$
- Clauses:

1. $\{\neg p, \neg q, r\}$

## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
- Show unsatisfiability of: $\neg((p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r))$
- Equivalent to $(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q) \wedge \neg r$
- Clauses:

1. $\{\neg p, \neg q, r\}$
2. $\{p\}$

## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
- Show unsatisfiability of: $\neg((p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r))$
- Equivalent to $(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q) \wedge \neg r$
- Clauses:

1. $\{\neg p, \neg q, r\}$
2. $\{p\}$
3. $\{q\}$

## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
- Show unsatisfiability of: $\neg((p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r))$
- Equivalent to $(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q) \wedge \neg r$
- Clauses:

1. $\{\neg p, \neg q, r\}$
2. $\{p\}$
3. $\{q\}$
4. $\{\neg r\}$

## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
- Show unsatisfiability of: $\neg((p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r))$
- Equivalent to $(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q) \wedge \neg r$
- Clauses:

1. $\{\neg p, \neg q, r\}$
2. $\{p\}$
3. $\{q\}$
4. $\{\neg r\}$
5. $\{\neg q, r\}$ - resolvent of 1 . and 2 .

## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
- Show unsatisfiability of: $\neg((p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r))$
- Equivalent to $(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q) \wedge \neg r$
- Clauses:

1. $\{\neg p, \neg q, r\}$
2. $\{p\}$
3. $\{q\}$
4. $\{\neg r\}$
5. $\{\neg q, r\}$ - resolvent of 1 . and 2 .
6. $\{r\}$ - resolvent of 3 . and 5 .

## Resolution Calculus - Example 3

- Prove validity of: $(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
- Show unsatisfiability of: $\neg((p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r))$
- Equivalent to $(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q) \wedge \neg r$
- Clauses:

1. $\{\neg p, \neg q, r\}$
2. $\{p\}$
3. $\{q\}$
4. $\{\neg r\}$
5. $\{\neg q, r\}$ - resolvent of 1 . and 2 .
6. $\{r\}$ - resolvent of 3 . and 5 .
7. $\square$ - resolvent of 4. and 6 .

## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$


## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:


## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:

1. $\{\neg p, q\}$

## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:

1. $\{\neg p, q\}$
2. $\{\neg p, r\}$

## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:

1. $\{\neg p, q\}$
2. $\{\neg p, r\}$
3. $\{p\}$

## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:

1. $\{\neg p, q\}$
2. $\{\neg p, r\}$
3. $\{p\}$
4. $\{\neg q, \neg r\}$

## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:

1. $\{\neg p, q\}$
2. $\{\neg p, r\}$
3. $\{p\}$
4. $\{\neg q, \neg r\}$
5. $\{q\}$ - resolvent of 1 . and 3 .

## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:

1. $\{\neg p, q\}$
2. $\{\neg p, r\}$
3. $\{p\}$
4. $\{\neg q, \neg r\}$
5. $\{q\}$ - resolvent of 1 . and 3 .
6. $\{r\}$ - resolvent of 2 . and 3 .

## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:

1. $\{\neg p, q\}$
2. $\{\neg p, r\}$
3. $\{p\}$
4. $\{\neg q, \neg r\}$
5. $\{q\}$ - resolvent of 1 . and 3 .
6. $\{r\}$ - resolvent of 2 . and 3 .
7. $\{\neg r\}$ - resolvent of 4. and 5 .

## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:

1. $\{\neg p, q\}$
2. $\{\neg p, r\}$
3. $\{p\}$
4. $\{\neg q, \neg r\}$
5. $\{q\}$ - resolvent of 1 . and 3 .
6. $\{r\}$ - resolvent of 2 . and 3 .
7. $\{\neg r\}$ - resolvent of 4. and 5 .
8. $\square$ - resolvent of 6 . and 7 .

## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:

1. $\{\neg p, q\}$
2. $\{\neg p, r\}$
3. $\{p\}$
4. $\{\neg q, \neg r\}$
5. $\{q\}$ - resolvent of 1 . and 3 .
6. $\{r\}$ - resolvent of 2 . and 3 .
7. $\{\neg r\}$ - resolvent of 4. and 5 .
8. $\square$ - resolvent of 6 . and 7 .

- May have to use same clause several times


## Resolution Calculus - Example 4

- Prove validity of: $(p \rightarrow q) \rightarrow((p \rightarrow r) \rightarrow(p \rightarrow(q \wedge r)))$
- Clauses:

1. $\{\neg p, q\}$
2. $\{\neg p, r\}$
3. $\{p\}$
4. $\{\neg q, \neg r\}$
5. $\{q\}$ - resolvent of 1 . and 3 .
6. $\{r\}$ - resolvent of 2 . and 3 .
7. $\{\neg r\}$ - resolvent of 4. and 5 .
8. $\square$ - resolvent of 6 . and 7 .

- May have to use same clause several times
- Order of resolution steps does not matter for completeness


## The Formal Resolution Calculus

## Definition 5.4 (Resolution Calculus).

The resolution calculus has one axiom and one (inference) rule.

## The Formal Resolution Calculus

## Definition 5.4 (Resolution Calculus).

The resolution calculus has one axiom and one (inference) rule.
$\overline{C_{1}, \ldots, \square, \ldots C_{n}}$ axiom

## The Formal Resolution Calculus

## Definition 5.4 (Resolution Calculus).

The resolution calculus has one axiom and one (inference) rule.

$$
\begin{aligned}
& C_{1}, \ldots, \square, \ldots C_{n} \text { axiom } \\
& \frac{C_{1}, \ldots, C_{i} \cup\{L\}, \ldots, C_{j} \cup\{\bar{L}\}, \ldots, C_{n}, C_{i} \cup C_{j}}{C_{1}, \ldots, C_{i} \cup\{L\}, \ldots, C_{j} \cup\{\bar{L}\}, \ldots, C_{n}}
\end{aligned}
$$

## The Formal Resolution Calculus

## Definition 5.4 (Resolution Calculus).

The resolution calculus has one axiom and one (inference) rule.
$C_{1}, \ldots, \square, \ldots C_{n}$ axiom

$$
\frac{C_{1}, \ldots, C_{i} \cup\{L\}, \ldots, C_{j} \cup\{\bar{L}\}, \ldots, C_{n}, C_{i} \cup C_{j}}{C_{1}, \ldots, C_{i} \cup\{L\}, \ldots, C_{j} \cup\{\bar{L}\}, \ldots, C_{n}}
$$

A resolution proof of a set of clauses $S$ is a derivation of $S$ in the resolution calculus.

## The Formal Resolution Calculus

## Definition 5.4 (Resolution Calculus).

The resolution calculus has one axiom and one (inference) rule.
$C_{1}, \ldots, \square, \ldots C_{n}$ axiom
$C_{1}, \ldots, C_{i} \cup\{L\}, \ldots, C_{j} \cup\{\bar{L}\}, \ldots, C_{n}, C_{i} \cup C_{j}$
$C_{1}, \ldots, C_{i} \cup\{L\}, \ldots, C_{j} \cup\{\bar{L}\}, \ldots, C_{n}$
A resolution proof of a set of clauses $S$ is a derivation of $S$ in the resolution calculus.

- in contrast to natural deduction or the sequent calculus, the resolution calculus has no rule with more than one premise


## The Formal Resolution Calculus

## Definition 5.4 (Resolution Calculus).

The resolution calculus has one axiom and one (inference) rule.

$$
\begin{aligned}
& C_{1}, \ldots, \square, \ldots C_{n} \text { axiom } \\
& \frac{C_{1}, \ldots, C_{i} \cup\{L\}, \ldots, C_{j} \cup\{\bar{L}\}, \ldots, C_{n}, C_{i} \cup C_{j}}{C_{1}, \ldots, C_{i} \cup\{L\}, \ldots, C_{j} \cup\{\bar{L}\}, \ldots, C_{n}}
\end{aligned}
$$

A resolution proof of a set of clauses $S$ is a derivation of $S$ in the resolution calculus.

- in contrast to natural deduction or the sequent calculus, the resolution calculus has no rule with more than one premise
- hence, a derivation in the resolution calculus has only one branch


## The Formal Resolution Calculus

## Definition 5.4 (Resolution Calculus).

The resolution calculus has one axiom and one (inference) rule.

$$
\begin{aligned}
& C_{1}, \ldots, \square, \ldots C_{n} \text { axiom } \\
& \frac{C_{1}, \ldots, C_{i} \cup\{L\}, \ldots, C_{j} \cup\{\bar{L}\}, \ldots, C_{n}, C_{i} \cup C_{j}}{C_{1}, \ldots, C_{i} \cup\{L\}, \ldots, C_{j} \cup\{\bar{L}\}, \ldots, C_{n}}
\end{aligned}
$$

A resolution proof of a set of clauses $S$ is a derivation of $S$ in the resolution calculus.

- in contrast to natural deduction or the sequent calculus, the resolution calculus has no rule with more than one premise
- hence, a derivation in the resolution calculus has only one branch
- terminates, if all clauses $C_{i} \cup\{L\}, C_{j} \cup\{\bar{L}\}$ have been considered


## Outline

## - Introduction

- Repetition: Negation Normal Form
- Conjunctive Normal Form
- Clausal Form
- Resolution
- Soundness of Resolution
- Completeness of Resolution


## Soundness of Resolution

- Recall: to prove $A$, we 'refute' $\neg A$


## Soundness of Resolution

- Recall: to prove $A$, we 'refute' $\neg A$
- l.e. we derive a 'contradiction' (the empty clause) from $\neg A .$.


## Soundness of Resolution

- Recall: to prove $A$, we 'refute' $\neg A$
- I.e. we derive a 'contradiction' (the empty clause) from $\neg A$...
$-\ldots$ meaning that $\neg A$ was unsatisfiable, and therefore $A$ valid.


## Soundness of Resolution

- Recall: to prove $A$, we 'refute' $\neg A$
- l.e. we derive a 'contradiction' (the empty clause) from $\neg A$...
$-\ldots$ meaning that $\neg A$ was unsatisfiable, and therefore $A$ valid.
We need to prove the following statements:


## Soundness of Resolution

- Recall: to prove $A$, we 'refute' $\neg A$
- I.e. we derive a 'contradiction' (the empty clause) from $\neg A$...
- ... meaning that $\neg A$ was unsatisfiable, and therefore $A$ valid.

We need to prove the following statements:

1. If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Soundness of Resolution

- Recall: to prove $A$, we 'refute' $\neg A$
- I.e. we derive a 'contradiction' (the empty clause) from $\neg A$...
- ... meaning that $\neg A$ was unsatisfiable, and therefore $A$ valid.

We need to prove the following statements:

1. If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.
2. A set of clauses containing the empty clause is unsatisfiable

## Resolution Preserves Satisfiability

Lemma 6.1.
If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$.

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$.
Now either $\mathcal{I} \models L$ or $\mathcal{I} \models \bar{L}$ :

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$.
Now either $\mathcal{I} \models L$ or $\mathcal{I} \models \bar{L}$ :
$\mathcal{I} \models L \mathcal{I} \models C_{2}$, and clauses are disjunctions of their literals,

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$. Now either $\mathcal{I} \models L$ or $\mathcal{I} \models \bar{L}$ :
$\mathcal{I} \models L \mathcal{I} \models C_{2}$, and clauses are disjunctions of their literals, so $\mathcal{I}$ satisfies one of the literals in $C_{2}$,

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$. Now either $\mathcal{I} \models L$ or $\mathcal{I} \models \bar{L}$ :
$\mathcal{I} \models L \mathcal{I} \models C_{2}$, and clauses are disjunctions of their literals, so $\mathcal{I}$ satisfies one of the literals in $C_{2}$, but not $\bar{L}$.

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$.
Now either $\mathcal{I} \models L$ or $\mathcal{I} \models \bar{L}$ :
$\mathcal{I} \models L \mathcal{I} \models C_{2}$, and clauses are disjunctions of their literals, so $\mathcal{I}$ satisfies one of the literals in $C_{2}$, but not $\bar{L}$. So: $\mathcal{I} \models C_{2} \backslash\{\bar{L}\}$.

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$.
Now either $\mathcal{I} \models L$ or $\mathcal{I} \models \bar{L}$ :
$\mathcal{I} \models L \mathcal{I} \models C_{2}$, and clauses are disjunctions of their literals, so $\mathcal{I}$ satisfies one of the literals in $C_{2}$, but not $\bar{L}$. So: $\mathcal{I} \models C_{2} \backslash\{L\}$. $\mathcal{I} \models \bar{L}$ By the same reasoning $\mathcal{I} \models C_{1} \backslash\{L\}$.

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$.
Now either $\mathcal{I} \models L$ or $\mathcal{I} \models \bar{L}$ :
$\mathcal{I} \models L \mathcal{I} \models C_{2}$, and clauses are disjunctions of their literals, so $\mathcal{I}$ satisfies one of the literals in $C_{2}$, but not $\bar{L}$. So: $\mathcal{I} \models C_{2} \backslash\{\bar{L}\}$. $\mathcal{I} \models \bar{L}$ By the same reasoning $\mathcal{I} \models C_{1} \backslash\{L\}$.

So $\mathcal{I}$ satisfies at least one literal in either $C_{1} \backslash\{L\}$ or $C_{2} \backslash\{L\}$.

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$.
Now either $\mathcal{I} \models L$ or $\mathcal{I} \models \bar{L}$ :
$\mathcal{I} \models L \mathcal{I} \models C_{2}$, and clauses are disjunctions of their literals, so $\mathcal{I}$ satisfies one of the literals in $C_{2}$, but not $\bar{L}$. So: $\mathcal{I} \models C_{2} \backslash\{\bar{L}\}$. $\mathcal{I} \models \bar{L}$ By the same reasoning $\mathcal{I} \models C_{1} \backslash\{L\}$.

So $\mathcal{I}$ satisfies at least one literal in either $C_{1} \backslash\{L\}$ or $C_{2} \backslash\{\bar{L}\}$. I.e. $\mathcal{I} \models\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right)$

## Resolution Preserves Satisfiability

## Lemma 6.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Let $S$ be a set of clauses, and $C_{1}, C_{2} \in S$ with $L \in C_{1}$ and $\bar{L} \in C_{2}$. Let $\mathcal{I}$ be an interpretation with $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$.
Now either $\mathcal{I} \models L$ or $\mathcal{I} \models \bar{L}$ :
$\mathcal{I} \models L \mathcal{I} \models C_{2}$, and clauses are disjunctions of their literals, so $\mathcal{I}$ satisfies one of the literals in $C_{2}$, but not $\bar{L}$. So: $\mathcal{I} \models C_{2} \backslash\{\bar{L}\}$. $\mathcal{I} \vDash \bar{L}$ By the same reasoning $\mathcal{I} \vDash C_{1} \backslash\{L\}$.

So $\mathcal{I}$ satisfies at least one literal in either $C_{1} \backslash\{L\}$ or $C_{2} \backslash\{\bar{L}\}$. I.e. $\mathcal{I} \models\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right)$, the resolvent of $C_{1}$ and $C_{2}$.

## The Empty Clause is unsatisfiable

Lemma 6.2.
A set of clauses containing the empty clause is unsatisfiable.

## The Empty Clause is unsatisfiable

Lemma 6.2.
A set of clauses containing the empty clause is unsatisfiable.

Proof.
Let $S$ be a set of clauses and $\square \in S$.

## The Empty Clause is unsatisfiable

Lemma 6.2.
A set of clauses containing the empty clause is unsatisfiable.

## Proof.

Let $S$ be a set of clauses and $\square \in S$.
Assume for the sake of contradiction that $\mathcal{I} \models S$.

## The Empty Clause is unsatisfiable

Lemma 6.2.
A set of clauses containing the empty clause is unsatisfiable.

## Proof.

Let $S$ be a set of clauses and $\square \in S$.
Assume for the sake of contradiction that $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so in particular $\mathcal{I} \models \square$.

## The Empty Clause is unsatisfiable

Lemma 6.2.
A set of clauses containing the empty clause is unsatisfiable.

## Proof.

Let $S$ be a set of clauses and $\square \in S$.
Assume for the sake of contradiction that $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so in particular $\mathcal{I} \models \square$.
Since clauses are disjunctions, to satisfy a clause $C$, an interpretation has to satisfy at least one of its literals $L \in C$.

## The Empty Clause is unsatisfiable

Lemma 6.2.
A set of clauses containing the empty clause is unsatisfiable.

## Proof.

Let $S$ be a set of clauses and $\square \in S$.
Assume for the sake of contradiction that $\mathcal{I} \models S$.
A clause set is a conjunction of its clauses, so in particular $\mathcal{I} \models \square$.
Since clauses are disjunctions, to satisfy a clause $C$, an interpretation has to satisfy at least one of its literals $L \in C$.
But the empty clause $\mathcal{I}$ contains no literals, so that is a contradiction.

## Outline

## - Introduction

- Repetition: Negation Normal Form
- Conjunctive Normal Form
- Clausal Form
- Resolution
- Soundness of Resolution
- Completeness of Resolution


## Prove Completeness like for LK?

- Plan:


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{S^{\prime}}$ based on the "smallest" clauses (literals)


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{s^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{s^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$
- So in particular the ones in $S$.


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{S^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$
- So in particular the ones in $S$.
- Nice plan, but unfortunately...


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{S^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$
- So in particular the ones in $S$.
- Nice plan, but unfortunately...
- Resolution does not make clauses smaller (resolvent can be larger!)


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{S^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$
- So in particular the ones in $S$.
- Nice plan, but unfortunately...
- Resolution does not make clauses smaller (resolvent can be larger!)
- So we don't always get lots of one-literal clauses in $\mathcal{I}_{S}$


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{S^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$
- So in particular the ones in $S$.
- Nice plan, but unfortunately...
- Resolution does not make clauses smaller (resolvent can be larger!)
- So we don't always get lots of one-literal clauses in $\mathcal{I}_{S}$
- And we can't use structural induction either


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{S^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$
- So in particular the ones in $S$.
- Nice plan, but unfortunately...
- Resolution does not make clauses smaller (resolvent can be larger!)
- So we don't always get lots of one-literal clauses in $\mathcal{I}_{S}$
- And we can't use structural induction either
- This can be fixed


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{S^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$
- So in particular the ones in $S$.
- Nice plan, but unfortunately...
- Resolution does not make clauses smaller (resolvent can be larger!)
- So we don't always get lots of one-literal clauses in $\mathcal{I}_{S}$
- And we can't use structural induction either
- This can be fixed
- $\mathcal{I}_{S^{\prime}}$ is not defined on only the one-literal clauses


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{S^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$
- So in particular the ones in $S$.
- Nice plan, but unfortunately...
- Resolution does not make clauses smaller (resolvent can be larger!)
- So we don't always get lots of one-literal clauses in $\mathcal{I}_{S}$
- And we can't use structural induction either
- This can be fixed
- $\mathcal{I}_{S^{\prime}}$ is not defined on only the one-literal clauses
- Argument doesn't use structural induction on clauses


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{S^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$
- So in particular the ones in $S$.
- Nice plan, but unfortunately...
- Resolution does not make clauses smaller (resolvent can be larger!)
- So we don't always get lots of one-literal clauses in $\mathcal{I}_{S}$
- And we can't use structural induction either
- This can be fixed
- $\mathcal{I}_{S^{\prime}}$ is not defined on only the one-literal clauses
- Argument doesn't use structural induction on clauses
- The proof is rather advanced!


## Prove Completeness like for LK?

- Plan:
- Starting from a set of clauses S...
- ... build a fair limit derivation where all resolutions are applied. . .
- ... giving a set of clauses $S^{\prime}$ with $\square \notin S^{\prime}$.
- Define an interpretation $\mathcal{I}_{S^{\prime}}$ based on the "smallest" clauses (literals)
- Show by structural induction that $\mathcal{I}_{S^{\prime}}$ satsifies all clauses in $S^{\prime}$
- So in particular the ones in $S$.
- Nice plan, but unfortunately...
- Resolution does not make clauses smaller (resolvent can be larger!)
- So we don't always get lots of one-literal clauses in $\mathcal{I}_{S}$
- And we can't use structural induction either
- This can be fixed
- $\mathcal{I}_{S^{\prime}}$ is not defined on only the one-literal clauses
- Argument doesn't use structural induction on clauses
- The proof is rather advanced!
- We will go through Robinson's original proof


## Semantic Trees

The completeness proof uses the following concept:

## Definition 7.1 (Semantic Trees).

A semantic tree is a binary tree where:

- The root is labelled by the symbol $\perp$,
- Every node has either no children or two children,
- For every node that has children, there is some atom $A$ such that one child is labeled with $A$ and the other with $\neg A$
- There are not two complementary literals $A$ and $\neg A$ on any path starting at the root.


## Semantic Trees

The completeness proof uses the following concept:

## Definition 7.1 (Semantic Trees).

A semantic tree is a binary tree where:

- The root is labelled by the symbol $\perp$,
- Every node has either no children or two children,
- For every node that has children, there is some atom $A$ such that one child is labeled with $A$ and the other with $\neg A$
- There are not two complementary literals $A$ and $\neg A$ on any path starting at the root.

Not a data structure, just needed for the completeness proof

## Semantic Trees - Example



## Semantic Trees - Example



- Root labelled with $\perp$


## Semantic Trees - Example



- Root labelled with $\perp$
- Either two children,


## Semantic Trees - Example



- Root labelled with $\perp$
- Either two children, or no children


## Semantic Trees - Example



- Root labelled with $\perp$
- Either two children, or no children
- Complementary siblings


## Semantic Trees - Example



- Root labelled with $\perp$
- Either two children, or no children
- Complementary siblings
- No complementary pairs on a path


## Partial Interpretations

The path to every node $n$ in a semantic tree gives a 'partial interpretation' $\mathcal{I}_{n}$ :


## Partial Interpretations

The path to every node $n$ in a semantic tree gives a 'partial interpretation' $\mathcal{I}_{n}$ :

$\mathcal{I}_{n} \models p, \mathcal{I}_{n} \models \neg q, \mathcal{I}_{n} \models \neg r$

## Partial Interpretations

The path to every node $n$ in a semantic tree gives a 'partial interpretation' $\mathcal{I}_{n}$ :

$\mathcal{I}_{n} \models p, \mathcal{I}_{n} \models q$

## Failure Nodes - Motivation

Sometimes, such a 'partial interpretation' is enough to falsify a clause:


## Failure Nodes - Motivation

Sometimes, such a 'partial interpretation' is enough to falsify a clause:


- At the marked node, the clause $\neg p \vee q \vee r$ is false


## Failure Nodes - Motivation

Sometimes, such a 'partial interpretation' is enough to falsify a clause:


- At the marked node, the clause $\neg p \vee q \vee r$ is false
- At the marked node, the clause $\neg p \vee r$ is false


## Failure Nodes - Motivation

Sometimes, such a 'partial interpretation' is enough to falsify a clause:


- At the marked node, the clause $\neg p \vee q \vee r$ is false
- At the marked node, the clause $\neg p \vee r$ is false
- At the marked node, the clause $\neg p \vee q$ is false


## Failure Nodes - Motivation

Sometimes, such a 'partial interpretation' is enough to falsify a clause:


- At the marked node, the clause $\neg p \vee q \vee r$ is false
- At the marked node, the clause $\neg p \vee r$ is false
- At the marked node, the clause $\neg p \vee q$ is false
- The clause $\neg p \vee q$ is already false at the parent node!


## Failure Nodes - Motivation

Sometimes, such a 'partial interpretation' is enough to falsify a clause:


- At the marked node, the clause $\neg p \vee q \vee r$ is false
- At the marked node, the clause $\neg p \vee r$ is false
- At the marked node, the clause $\neg p \vee q$ is false
- The clause $\neg p \vee q$ is already false at the parent node!
- It remains false further down.


## Failure Nodes - Definition

## Definition 7.2.

A node $n$ in a semantic tree is a falsifies a clause $C$ if for every literal $L \in C$, the complement $\bar{L}$ is on the branch leading to $n$.

## Failure Nodes - Definition

## Definition 7.2.

A node $n$ in a semantic tree is a falsifies a clause $C$ if for every literal $L \in C$, the complement $\bar{L}$ is on the branch leading to $n$.

## Definition 7.3.

A node $n$ in a semantic tree is a failure node for a clause set $S$ if it falsifies some clause $C \in S$, but the parent of $n$ does not.

## Failure Nodes - Definition

## Definition 7.2.

A node $n$ in a semantic tree is a falsifies a clause $C$ if for every literal $L \in C$, the complement $\bar{L}$ is on the branch leading to $n$.

## Definition 7.3.

A node $n$ in a semantic tree is a failure node for a clause set $S$ if it falsifies some clause $C \in S$, but the parent of $n$ does not.

Failure nodes have just enough information to make sure some clause is falsified.

## Failure Nodes - Definition

## Definition 7.2.

A node $n$ in a semantic tree is a falsifies a clause $C$ if for every literal $L \in C$, the complement $\bar{L}$ is on the branch leading to $n$.

## Definition 7.3.

A node $n$ in a semantic tree is a failure node for a clause set $S$ if it falsifies some clause $C \in S$, but the parent of $n$ does not.

Failure nodes have just enough information to make sure some clause is falsified.

Note: $A$ has the root as a failure node iff $\square \in S$.

## Failure Nodes - Example

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$
5. $p \vee \neg r$


## Failure Nodes - Example

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$
5. $p \vee \neg r$


## Failure Nodes - Example

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$
5. $p \vee \neg r$


## Failure Nodes - Example

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$
5. $p \vee \neg r$


## Failure Nodes - Example

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$
5. $p \vee \neg r$


## Failure Nodes - Example

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$
5. $p \vee \neg r$


Not a failure node: parent node falsifies clause 4.

## Failure Nodes - Example



The empty clause is falsified by the root node

## Closed Semantic Trees

## Definition 7.4.

Given a semantic tree and a clause set $S$, a branch of the tree is closed if it contains a failure node.

## Closed Semantic Trees

## Definition 7.4.

Given a semantic tree and a clause set $S$, a branch of the tree is closed if it contains a failure node.
The semantic tree is closed if all branches contain failure nodes.

## Closed Semantic Tree - Example

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$
5. $p \vee \neg r$


The semantic tree is closed for these 5 clauses.

## Closed Semantic Tree - Example

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p \vee \neg r$


Without $p$, it is not closed.

## Complete Semantic Trees

## Definition 7.5.

A semantic tree is complete if for every atomic formula $A$ and every branch (from root to leaf) either $A$ or $\neg A$ occurs

## Example: Complete Semantic Tree



## Example: Complete Semantic Tree



Not complete, since neither $q$ nor $\neg q$ on branch

## Example: Complete Semantic Tree



Complete for vocabulary $\{p, q, r\}$

## Complete Semantic Trees

## Definition 7.5.

A semantic tree is complete if for every atomic formula $A$ and every branch (from root to leaf) either $A$ or $\neg A$ occurs

## Complete Semantic Trees

## Definition 7.5.

A semantic tree is complete if for every atomic formula $A$ and every branch (from root to leaf) either $A$ or $\neg A$ occurs

Every branch $\mathcal{B}$ in a complete semantic tree corresponds to an interpretation $\mathcal{I}_{\mathcal{B}}$ with $\mathcal{I} \models A$ iff $A$ is on the branch.

## Complete Semantic Trees

## Definition 7.5.

A semantic tree is complete if for every atomic formula $A$ and every branch (from root to leaf) either $A$ or $\neg A$ occurs

Every branch $\mathcal{B}$ in a complete semantic tree corresponds to an interpretation $\mathcal{I}_{\mathcal{B}}$ with $\mathcal{I} \models A$ iff $A$ is on the branch.

## Lemma 7.1.

For every interpretation $\mathcal{I}$ there is a branch $\mathcal{B}$ in a complete semantic tree with $\mathcal{I}=\mathcal{I}_{\mathcal{B}}$.

## Complete Semantic Trees

## Definition 7.5.

A semantic tree is complete if for every atomic formula $A$ and every branch (from root to leaf) either $A$ or $\neg A$ occurs

Every branch $\mathcal{B}$ in a complete semantic tree corresponds to an interpretation $\mathcal{I}_{\mathcal{B}}$ with $\mathcal{I} \models A$ iff $A$ is on the branch.

## Lemma 7.1.

For every interpretation $\mathcal{I}$ there is a branch $\mathcal{B}$ in a complete semantic tree with $\mathcal{I}=\mathcal{I}_{\mathcal{B}}$.

A complete semantic tree 'enumerates' all possible interpretations.

## Unsatisfiable Clause Sets close Semantic Trees

Theorem 7.1.
A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set.

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree.

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \notin S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$,

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$.

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$. The falsifying nodes highest up on each branch are failure nodes.

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$. The falsifying nodes highest up on each branch are failure nodes. So the semantic tree is closed.

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$. The falsifying nodes highest up on each branch are failure nodes. So the semantic tree is closed.
$\Leftarrow$ Let $S$ be a clause set and let a closed semantic tree be given.

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$.
The falsifying nodes highest up on each branch are failure nodes. So the semantic tree is closed.
$\Leftarrow$ Let $S$ be a clause set and let a closed semantic tree be given. For any interpretation $\mathcal{I}$,

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$.
The falsifying nodes highest up on each branch are failure nodes. So the semantic tree is closed.
$\Leftarrow$ Let $S$ be a clause set and let a closed semantic tree be given. For any interpretation $\mathcal{I}$, there is a branch in the tree such that $\mathcal{I} \models L$ for all literals $L$ on that branch.

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$.
The falsifying nodes highest up on each branch are failure nodes. So the semantic tree is closed.
$\Leftarrow$ Let $S$ be a clause set and let a closed semantic tree be given. For any interpretation $\mathcal{I}$, there is a branch in the tree such that $\mathcal{I} \models L$ for all literals $L$ on that branch. Since there is a failure node for some clause $C \in S$ on that branch,

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$.
The falsifying nodes highest up on each branch are failure nodes. So the semantic tree is closed.
$\Leftarrow$ Let $S$ be a clause set and let a closed semantic tree be given. For any interpretation $\mathcal{I}$, there is a branch in the tree such that $\mathcal{I} \models L$ for all literals $L$ on that branch. Since there is a failure node for some clause $C \in S$ on that branch, the atoms on the branch entail $\neg C$,

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$.
The falsifying nodes highest up on each branch are failure nodes. So the semantic tree is closed.
$\Leftarrow$ Let $S$ be a clause set and let a closed semantic tree be given. For any interpretation $\mathcal{I}$, there is a branch in the tree such that $\mathcal{I} \models L$ for all literals $L$ on that branch. Since there is a failure node for some clause $C \in S$ on that branch, the atoms on the branch entail $\neg C$, so $\mathcal{I} \not \vDash C$,

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \vDash S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$.
The falsifying nodes highest up on each branch are failure nodes. So the semantic tree is closed.
$\Leftarrow$ Let $S$ be a clause set and let a closed semantic tree be given. For any interpretation $\mathcal{I}$, there is a branch in the tree such that $\mathcal{I} \models L$ for all literals $L$ on that branch. Since there is a failure node for some clause $C \in S$ on that branch, the atoms on the branch entail $\neg C$, so $\mathcal{I} \not \vDash C$, and thus $\mathcal{I} \not \vDash S$.

## Unsatisfiable Clause Sets close Semantic Trees

## Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

## Proof.

$\Rightarrow$ Let $S$ be an unsatisfiable clause set. Construct a complete semantic tree. For each branch $\mathcal{B}, \mathcal{I}_{\mathcal{B}} \not \equiv S$, so $\mathcal{I}_{\mathcal{B}} \not \vDash C$ for some clause $C \in S$, so there is a node on the branch that falsifies $C$.
The falsifying nodes highest up on each branch are failure nodes. So the semantic tree is closed.
$\Leftarrow$ Let $S$ be a clause set and let a closed semantic tree be given. For any interpretation $\mathcal{I}$, there is a branch in the tree such that $\mathcal{I} \models L$ for all literals $L$ on that branch. Since there is a failure node for some clause $C \in S$ on that branch, the atoms on the branch entail $\neg C$, so $\mathcal{I} \not \vDash C$, and thus $\mathcal{I} \not \vDash S$.
This holds for arbitrary interpretations $\mathcal{I}$, so $S$ is unsatisfiable.

## Resolution Steps from Closed Semantic Trees

Lemma 7.2.
Let $S$ be an unsatisfiable clause set, with a closed semantic tree

## Resolution Steps from Closed Semantic Trees

Lemma 7.2.
Let $S$ be an unsatisfiable clause set, with a closed semantic tree, and $\square \notin S$.

## Resolution Steps from Closed Semantic Trees

## Lemma 7.2.

Let $S$ be an unsatisfiable clause set, with a closed semantic tree, and $\square \notin S$. Then

- a resolution step is possible from $S$,


## Resolution Steps from Closed Semantic Trees

## Lemma 7.2.

Let $S$ be an unsatisfiable clause set, with a closed semantic tree, and $\square \notin S$. Then

- a resolution step is possible from $S$,
- and the resulting clause set $S^{\prime}$ has a smaller closed semantic tree


## Idea of proof



## Idea of proof

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$


- There are two sibling failure nodes


## Idea of proof

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$


- There are two sibling failure nodes
- They falsify two clauses


## Idea of proof

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$


- There are two sibling failure nodes
- They falsify two clauses with complementary literals


## Idea of proof

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$
5. $\neg p \vee \neg q$



- There are two sibling failure nodes
- They falsify two clauses with complementary literals
- They can be resolved to a new clause $\neg p \vee \neg q$


## Idea of proof

1. $\neg p \vee \neg q \vee \neg r$
2. $\neg q \vee r$
3. $\neg p \vee q$
4. $p$
5. $\neg p \vee \neg q$



- There are two sibling failure nodes
- They falsify two clauses with complementary literals
- They can be resolved to a new clause $\neg p \vee \neg q$
- Which is falsified by the parent node


## There are two sibling failure nodes

- Let $n_{0}$ be the root.


## There are two sibling failure nodes

- Let $n_{0}$ be the root.
- Since $\square \notin S, n_{0}$ is not a failure node.


## There are two sibling failure nodes

- Let $n_{0}$ be the root.
- Since $\square \notin S, n_{0}$ is not a failure node.
- $n_{0}$ has two children.


## There are two sibling failure nodes

- Let $n_{0}$ be the root.
- Since $\square \notin S, n_{0}$ is not a failure node.
- $n_{0}$ has two children.
- If both are failure nodes, we are done.


## There are two sibling failure nodes

- Let $n_{0}$ be the root.
- Since $\square \notin S, n_{0}$ is not a failure node.
- $n_{0}$ has two children.
- If both are failure nodes, we are done.
- Otherwise, let $n_{1}$ be one of the siblings that is not a failure node.


## There are two sibling failure nodes

- Let $n_{0}$ be the root.
- Since $\square \notin S, n_{0}$ is not a failure node.
- $n_{0}$ has two children.
- If both are failure nodes, we are done.
- Otherwise, let $n_{1}$ be one of the siblings that is not a failure node.
- $n_{1}$ has two children.


## There are two sibling failure nodes

- Let $n_{0}$ be the root.
- Since $\square \notin S, n_{0}$ is not a failure node.
- $n_{0}$ has two children.
- If both are failure nodes, we are done.
- Otherwise, let $n_{1}$ be one of the siblings that is not a failure node.
- $n_{1}$ has two children.
- If both are failure nodes, we are done.


## There are two sibling failure nodes

- Let $n_{0}$ be the root.
- Since $\square \notin S, n_{0}$ is not a failure node.
- $n_{0}$ has two children.
- If both are failure nodes, we are done.
- Otherwise, let $n_{1}$ be one of the siblings that is not a failure node.
- $n_{1}$ has two children.
- If both are failure nodes, we are done.


## There are two sibling failure nodes

- Let $n_{0}$ be the root.
- Since $\square \notin S, n_{0}$ is not a failure node.
- $n_{0}$ has two children.
- If both are failure nodes, we are done.
- Otherwise, let $n_{1}$ be one of the siblings that is not a failure node.
- $n_{1}$ has two children.
- If both are failure nodes, we are done.
- This either finds sibling failure nodes...


## There are two sibling failure nodes

- Let $n_{0}$ be the root.
- Since $\square \notin S, n_{0}$ is not a failure node.
- $n_{0}$ has two children.
- If both are failure nodes, we are done.
- Otherwise, let $n_{1}$ be one of the siblings that is not a failure node.
- $n_{1}$ has two children.
- If both are failure nodes, we are done.
- This either finds sibling failure nodes...
- or it constructs a path in the tree without a failure node, but that is not possible.


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.
- The parent node $n$ of $n_{1}$ and $n_{2}$ does not falsify $C_{1}$ and $C_{2}$.


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.
- The parent node $n$ of $n_{1}$ and $n_{2}$ does not falsify $C_{1}$ and $C_{2}$.
- Let $N$ be the set of literals on the nodes up to and including $n$.


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.
- The parent node $n$ of $n_{1}$ and $n_{2}$ does not falsify $C_{1}$ and $C_{2}$.
- Let $N$ be the set of literals on the nodes up to and including $n$.
- Every literal in $C_{1}$ has its negation in $N \cup\{A\}$


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.
- The parent node $n$ of $n_{1}$ and $n_{2}$ does not falsify $C_{1}$ and $C_{2}$.
- Let $N$ be the set of literals on the nodes up to and including $n$.
- Every literal in $C_{1}$ has its negation in $N \cup\{A\}$
- But not every literal in $C_{1}$ has its negation in $N$


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.
- The parent node $n$ of $n_{1}$ and $n_{2}$ does not falsify $C_{1}$ and $C_{2}$.
- Let $N$ be the set of literals on the nodes up to and including $n$.
- Every literal in $C_{1}$ has its negation in $N \cup\{A\}$
- But not every literal in $C_{1}$ has its negation in $N$
- Therefore $\neg A \in C_{1}$


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.
- The parent node $n$ of $n_{1}$ and $n_{2}$ does not falsify $C_{1}$ and $C_{2}$.
- Let $N$ be the set of literals on the nodes up to and including $n$.
- Every literal in $C_{1}$ has its negation in $N \cup\{A\}$
- But not every literal in $C_{1}$ has its negation in $N$
- Therefore $\neg A \in C_{1}$
- Similarly $A \in C_{2}$


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.
- The parent node $n$ of $n_{1}$ and $n_{2}$ does not falsify $C_{1}$ and $C_{2}$.
- Let $N$ be the set of literals on the nodes up to and including $n$.
- Every literal in $C_{1}$ has its negation in $N \cup\{A\}$
- But not every literal in $C_{1}$ has its negation in $N$
- Therefore $\neg A \in C_{1}$
- Similarly $A \in C_{2}$
- $C_{1}$ and $C_{2}$ can be resolved to $C:=\left(C_{1} \backslash\{\neg A\}\right) \cup\left(C_{2} \backslash\{A\}\right)$


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.
- The parent node $n$ of $n_{1}$ and $n_{2}$ does not falsify $C_{1}$ and $C_{2}$.
- Let $N$ be the set of literals on the nodes up to and including $n$.
- Every literal in $C_{1}$ has its negation in $N \cup\{A\}$
- But not every literal in $C_{1}$ has its negation in $N$
- Therefore $\neg A \in C_{1}$
- Similarly $A \in C_{2}$
- $C_{1}$ and $C_{2}$ can be resolved to $C:=\left(C_{1} \backslash\{\neg A\}\right) \cup\left(C_{2} \backslash\{A\}\right)$
- Every literal in $C$ has its negation in $N$


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.
- The parent node $n$ of $n_{1}$ and $n_{2}$ does not falsify $C_{1}$ and $C_{2}$.
- Let $N$ be the set of literals on the nodes up to and including $n$.
- Every literal in $C_{1}$ has its negation in $N \cup\{A\}$
- But not every literal in $C_{1}$ has its negation in $N$
- Therefore $\neg A \in C_{1}$
- Similarly $A \in C_{2}$
- $C_{1}$ and $C_{2}$ can be resolved to $C:=\left(C_{1} \backslash\{\neg A\}\right) \cup\left(C_{2} \backslash\{A\}\right)$
- Every literal in $C$ has its negation in $N$
- Adding $C$ to the clause set will make $n$ into a failure node.


## Sibling Failure Nodes give Resolution Opportunities

- Let $n_{1}$ and $n_{2}$ be sibling failure nodes
- falsifying $C_{1}$ and $C_{2}$,
- labeled $A$ and $\neg A$.
- The parent node $n$ of $n_{1}$ and $n_{2}$ does not falsify $C_{1}$ and $C_{2}$.
- Let $N$ be the set of literals on the nodes up to and including $n$.
- Every literal in $C_{1}$ has its negation in $N \cup\{A\}$
- But not every literal in $C_{1}$ has its negation in $N$
- Therefore $\neg A \in C_{1}$
- Similarly $A \in C_{2}$
- $C_{1}$ and $C_{2}$ can be resolved to $C:=\left(C_{1} \backslash\{\neg A\}\right) \cup\left(C_{2} \backslash\{A\}\right)$
- Every literal in $C$ has its negation in $N$
- Adding $C$ to the clause set will make $n$ into a failure node.
- This gives a closed semantic tree with two nodes less than before.


## Completeness of Resolution

## Theorem 7.2.

If $S$ is an unsatisfiable clause set, then there is a resolution derivation of the empty clause from $S$.

## Completeness of Resolution

Theorem 7.2.
If $S$ is an unsatisfiable clause set, then there is a resolution derivation of the empty clause from $S$.

## Proof.

- There exists a closed semantic tree for $S$


## Completeness of Resolution

## Theorem 7.2.

If $S$ is an unsatisfiable clause set, then there is a resolution derivation of the empty clause from $S$.

## Proof.

- There exists a closed semantic tree for $S$
- As long as $S$ does not contain the empty clause,


## Completeness of Resolution

## Theorem 7.2.

If $S$ is an unsatisfiable clause set, then there is a resolution derivation of the empty clause from $S$.

## Proof.

- There exists a closed semantic tree for $S$
- As long as $S$ does not contain the empty clause,
- It is possible to apply a resolution step to $S$


## Completeness of Resolution

## Theorem 7.2.

If $S$ is an unsatisfiable clause set, then there is a resolution derivation of the empty clause from $S$.

## Proof.

- There exists a closed semantic tree for $S$
- As long as $S$ does not contain the empty clause,
- It is possible to apply a resolution step to $S$
- Leading to a clause set with a smaller closed semantic tree


## Completeness of Resolution

## Theorem 7.2.

If $S$ is an unsatisfiable clause set, then there is a resolution derivation of the empty clause from $S$.

## Proof.

- There exists a closed semantic tree for $S$
- As long as $S$ does not contain the empty clause,
- It is possible to apply a resolution step to $S$
- Leading to a clause set with a smaller closed semantic tree
- Since the tree is finite, this cannot go on forever.


## Completeness of Resolution

## Theorem 7.2.

If $S$ is an unsatisfiable clause set, then there is a resolution derivation of the empty clause from $S$.

## Proof.

- There exists a closed semantic tree for $S$
- As long as $S$ does not contain the empty clause,
- It is possible to apply a resolution step to $S$
- Leading to a clause set with a smaller closed semantic tree
- Since the tree is finite, this cannot go on forever.
- Therefore, eventually the semantic tree must consist of only the root. . .


## Completeness of Resolution

## Theorem 7.2.

If $S$ is an unsatisfiable clause set, then there is a resolution derivation of the empty clause from $S$.

## Proof.

- There exists a closed semantic tree for $S$
- As long as $S$ does not contain the empty clause,
- It is possible to apply a resolution step to $S$
- Leading to a clause set with a smaller closed semantic tree
- Since the tree is finite, this cannot go on forever.
- Therefore, eventually the semantic tree must consist of only the root. . .
- ... and $S$ contain the empty clause $\square$.

