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Introduction

Robinson’s Resolution Calculus

“A formulation of first-order logic
which is specifically designed for use
as the basis theoretical instrument of a
computer theorem-proving program.”

I the resolution calculus was
published by Alan Robinson in 1965

I works for first-order formulae in clausal form
(e.g. conjunctive or disjunctive normal form)

I consists of one (two for first-order) inference rules and one axiom

I is one of the most popular proof search calculi

I has been implemented in many automated theorem provers
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Repetition: Negation Normal Form

Negation Normal Form

Definition 2.1 (Negation Normal Form).

A formula is in negation normal form (NNF) if it contains no implications,
and all negations are in front of literals.

Example.

I p → q is not in NNF

I ¬p ∨ q is in NNF

I ¬(p ∨ ∀x ¬q(x)) is not in NNF

I ¬p ∧ ∃x q(x) is in NNF

Theorem 2.1.

Every formula in first-order logic can be transformed into an equivalent
formula in NNF.
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Repetition: Negation Normal Form

Proof.

To convert an arbitrary formula to a formula in NNF, remove implications,
and push negations inwards, preserving equivalence, using the following:

A→ B ≡ ¬A ∨ B

¬(A ∧ B) ≡ ¬A ∨ ¬B
¬(A ∨ B) ≡ ¬A ∧ ¬B
¬(∀x A) ≡ ∃x ¬A
¬(∃x A) ≡ ∀x ¬A
¬(¬A) ≡ A
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Conjunctive Normal Form

Conjunctive Normal Form

Definition 3.1 (Conjunctive Normal Form).

A formula is in conjunctive normal form (CNF) if it is a conjunction of
disjunctions of literals.

Example.

(p ∨ ¬q) ∧ (¬p ∨ q) is in CNF.

(p ∨ ¬q) ∧ (¬p ∨ (q ∧ q)) is not in CNF.

What about just p or (p ∨ q)?

Yes, if we consider a literal to be both a

conjunction and a disjunction.

Theorem 3.1.

Every formula in propositional logic can be transformed into an equivalent
formula in CNF.
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Conjunctive Normal Form

Proof.

To convert an arbitrary propositional formula to a formula in CNF perform
the following steps, each of which preserves logical equivalence:

(1) Convert to negation normal form.

(2) Use the distributive laws to move conjunctions inside disjunctions to
the outside

A ∨ (B ∧ C ) ≡ (A ∨ B) ∧ (A ∨ C )
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Clausal Form

Clausal Form

Definition 4.1 (Clausal Form).

A clause is a set of literals. A clause is considered to be an implicit
disjunction of its literals. A unit clause is a clause consisting of exactly one
literal. The empty set of literals is the empty clause, denoted by 2. A
formula in clausal form is a set of clauses. A formula is considered to be
an implicit conjunction of its clauses. The formula that is the empty set of
clauses is denoted by ∅.

The only significant difference between clausal form and the standard
syntax is that clausal form is defined in terms of sets.

(p ∨ ¬q) ∧ (¬p ∨ q) in clausal form: {{p,¬q}, {¬p, q}}
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Clausal Form

Transformation to Clausal Form

Corollary 4.1.

Every formula φ in propositional logic can be transformed into an logically
equivalent formula in clausal form.

Proof.

This follows from the previous theorem, where we transformed a formula
to CNF. Each disjunction is then transformed to a clause (of literals), and
the clausal form is the set of these clauses.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 14 / 47



Clausal Form

Transformation to Clausal Form

Corollary 4.1.

Every formula φ in propositional logic can be transformed into an logically
equivalent formula in clausal form.

Proof.

This follows from the previous theorem, where we transformed a formula
to CNF. Each disjunction is then transformed to a clause (of literals), and
the clausal form is the set of these clauses.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 14 / 47



Clausal Form

Transformation to Clausal Form

Corollary 4.1.

Every formula φ in propositional logic can be transformed into an logically
equivalent formula in clausal form.

Proof.

This follows from the previous theorem, where we transformed a formula
to CNF.

Each disjunction is then transformed to a clause (of literals), and
the clausal form is the set of these clauses.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 14 / 47



Clausal Form

Transformation to Clausal Form

Corollary 4.1.

Every formula φ in propositional logic can be transformed into an logically
equivalent formula in clausal form.

Proof.

This follows from the previous theorem, where we transformed a formula
to CNF. Each disjunction is then transformed to a clause (of literals), and
the clausal form is the set of these clauses.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 14 / 47



Clausal Form

Empty Clause and Empty Set of Clauses

Lemma 4.1.

2, the empty clause, is unsatisfiable.

∅, the empty set of clauses, is valid.

Proof.

A clause is satisfiable iff there is some interpretation under which at least
one literal in the clause is true. Let I be an arbitrary interpretation. Since
there are no literals in 2, there are no literals whose value is true under I.
But I was an arbitrary interpretation, so 2 is unsatisfiable.

A set of clauses is valid iff every clause in the set is true in every
interpretation. But there are no clauses in ∅ that need be true, so ∅ is
valid.
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Resolution

The Resolution Rule

The resolution calculus is a refutation procedure.

I in order to determine whether a formula F (in clausal form) is valid, we
check whether ¬F is unsatisfiable

Definition 5.1 (Complementary Literal).

The complementary literal L of a literal L is A if L is of the form ¬A,
otherwise it is ¬L.

Definition 5.2 (Resolution Rule).

Let C1,C2 be clauses with L∈C1 and L∈C2. The resolvent C ′ of C1 and
C2 is (C1\{L}) ∪ (C2\{L}). C1 and C2 are the parents of C ′.

I the resolution rule maintains satisfiability: If I |= C1 and I |= C2 then
I |= C ′

I if a set of clauses S is satisfiable and C1,C2 ∈ S , then S ∪ {C ′} is
satisfiable.
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Resolution

The Resolution Rule – Example

Example: Let C1 = {a, b,¬c} and C2 = {b, c ,¬e}.

{a, b,¬c} {b, c ,¬e}
↘ ↙
{a, b,¬e}

The resolvent of C1 and C2 is {a, b,¬e}.

Observations:

I if {a, b,¬c} and {b, c ,¬e} ≡ (a∨b∨¬c) ∧ (b∨c∨¬e) are true in I,
then (a∨b) is true (if c is true) or (b∨¬e) is true (if c is false); hence
(a∨b∨¬e) is true

I if resolvent is unsatisfiable, then conj. of parents is unsatisfiable

I the empty clause 2 is unsatisfiable

I goal: derive empty clause 2
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Resolution

The Resolution Calculus

I a set of clauses is unsatisfiable iff the empty clause can be derived

I a clause C is true iff at least one of its literals is true; if there is no
literal in C , then C is false and every set of clauses (in CNF) that
contains C is false, i.e.unsatisfiable

Definition 5.3 (Resolution Procedure).

Given a set of clauses S.

1. apply the resolution rule to a pair of clauses {C1,C2} ⊆ S that has not
been chosen before; let C ′ be the resolvent

2. S ′ := S ∪ {C ′} , S := S ′

3. if C ′ = 2, then output “unsatisfiable”;
if all possible resolvents have been considered, then output
“satisfiable”; otherwise continue with 1.
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Resolution

Resolution Calculus – Example 1

I Prove validity of: (p ∧ q)→ p

I Show unsatisfiability of: ¬((p ∧ q)→ p)

I CNF: p ∧ q ∧ ¬p
I Clause set: {{p}, {q}, {¬p}}
I Resolve {p} with {¬p}
I Resolvent: 2
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Resolution

Resolution Calculus – Example 2

I Prove validity of: p ∧ (p → q)→ q

I Show unsatisfiability of: ¬(p ∧ (p → q)→ q)

I Equivalent to: p ∧ (p → q) ∧ ¬q
I CNF: p ∧ (¬p ∨ q) ∧ ¬q
I Clause set: {{p}, {¬p, q}, {¬q}}
I Resolution step 1: between {p} and {¬p, q}
I Resolvent: {q}
I New clause set: {{p}, {¬p, q}, {¬q}, {q}}
I Resolution step 2: between {¬q} and {q}
I Resolvent: 2

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 21 / 47



Resolution

Resolution Calculus – Example 2

I Prove validity of: p ∧ (p → q)→ q

I Show unsatisfiability of: ¬(p ∧ (p → q)→ q)

I Equivalent to: p ∧ (p → q) ∧ ¬q
I CNF: p ∧ (¬p ∨ q) ∧ ¬q
I Clause set: {{p}, {¬p, q}, {¬q}}
I Resolution step 1: between {p} and {¬p, q}
I Resolvent: {q}
I New clause set: {{p}, {¬p, q}, {¬q}, {q}}
I Resolution step 2: between {¬q} and {q}
I Resolvent: 2

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 21 / 47



Resolution

Resolution Calculus – Example 2

I Prove validity of: p ∧ (p → q)→ q

I Show unsatisfiability of: ¬(p ∧ (p → q)→ q)

I Equivalent to: p ∧ (p → q) ∧ ¬q

I CNF: p ∧ (¬p ∨ q) ∧ ¬q
I Clause set: {{p}, {¬p, q}, {¬q}}
I Resolution step 1: between {p} and {¬p, q}
I Resolvent: {q}
I New clause set: {{p}, {¬p, q}, {¬q}, {q}}
I Resolution step 2: between {¬q} and {q}
I Resolvent: 2

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 21 / 47



Resolution

Resolution Calculus – Example 2

I Prove validity of: p ∧ (p → q)→ q

I Show unsatisfiability of: ¬(p ∧ (p → q)→ q)

I Equivalent to: p ∧ (p → q) ∧ ¬q
I CNF: p ∧ (¬p ∨ q) ∧ ¬q

I Clause set: {{p}, {¬p, q}, {¬q}}
I Resolution step 1: between {p} and {¬p, q}
I Resolvent: {q}
I New clause set: {{p}, {¬p, q}, {¬q}, {q}}
I Resolution step 2: between {¬q} and {q}
I Resolvent: 2

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 21 / 47



Resolution

Resolution Calculus – Example 2

I Prove validity of: p ∧ (p → q)→ q

I Show unsatisfiability of: ¬(p ∧ (p → q)→ q)

I Equivalent to: p ∧ (p → q) ∧ ¬q
I CNF: p ∧ (¬p ∨ q) ∧ ¬q
I Clause set: {{p}, {¬p, q}, {¬q}}

I Resolution step 1: between {p} and {¬p, q}
I Resolvent: {q}
I New clause set: {{p}, {¬p, q}, {¬q}, {q}}
I Resolution step 2: between {¬q} and {q}
I Resolvent: 2

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 21 / 47



Resolution

Resolution Calculus – Example 2

I Prove validity of: p ∧ (p → q)→ q

I Show unsatisfiability of: ¬(p ∧ (p → q)→ q)

I Equivalent to: p ∧ (p → q) ∧ ¬q
I CNF: p ∧ (¬p ∨ q) ∧ ¬q
I Clause set: {{p}, {¬p, q}, {¬q}}
I Resolution step 1: between {p} and {¬p, q}

I Resolvent: {q}
I New clause set: {{p}, {¬p, q}, {¬q}, {q}}
I Resolution step 2: between {¬q} and {q}
I Resolvent: 2

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 21 / 47



Resolution

Resolution Calculus – Example 2

I Prove validity of: p ∧ (p → q)→ q

I Show unsatisfiability of: ¬(p ∧ (p → q)→ q)

I Equivalent to: p ∧ (p → q) ∧ ¬q
I CNF: p ∧ (¬p ∨ q) ∧ ¬q
I Clause set: {{p}, {¬p, q}, {¬q}}
I Resolution step 1: between {p} and {¬p, q}
I Resolvent: {q}

I New clause set: {{p}, {¬p, q}, {¬q}, {q}}
I Resolution step 2: between {¬q} and {q}
I Resolvent: 2

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 21 / 47



Resolution

Resolution Calculus – Example 2

I Prove validity of: p ∧ (p → q)→ q

I Show unsatisfiability of: ¬(p ∧ (p → q)→ q)

I Equivalent to: p ∧ (p → q) ∧ ¬q
I CNF: p ∧ (¬p ∨ q) ∧ ¬q
I Clause set: {{p}, {¬p, q}, {¬q}}
I Resolution step 1: between {p} and {¬p, q}
I Resolvent: {q}
I New clause set: {{p}, {¬p, q}, {¬q}, {q}}

I Resolution step 2: between {¬q} and {q}
I Resolvent: 2

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 21 / 47



Resolution

Resolution Calculus – Example 2

I Prove validity of: p ∧ (p → q)→ q

I Show unsatisfiability of: ¬(p ∧ (p → q)→ q)

I Equivalent to: p ∧ (p → q) ∧ ¬q
I CNF: p ∧ (¬p ∨ q) ∧ ¬q
I Clause set: {{p}, {¬p, q}, {¬q}}
I Resolution step 1: between {p} and {¬p, q}
I Resolvent: {q}
I New clause set: {{p}, {¬p, q}, {¬q}, {q}}
I Resolution step 2: between {¬q} and {q}

I Resolvent: 2

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 21 / 47



Resolution

Resolution Calculus – Example 2

I Prove validity of: p ∧ (p → q)→ q

I Show unsatisfiability of: ¬(p ∧ (p → q)→ q)

I Equivalent to: p ∧ (p → q) ∧ ¬q
I CNF: p ∧ (¬p ∨ q) ∧ ¬q
I Clause set: {{p}, {¬p, q}, {¬q}}
I Resolution step 1: between {p} and {¬p, q}
I Resolvent: {q}
I New clause set: {{p}, {¬p, q}, {¬q}, {q}}
I Resolution step 2: between {¬q} and {q}
I Resolvent: 2

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 21 / 47



Resolution

Resolution Calculus – Example 3

I Prove validity of: (p → (q → r))→ (p ∧ q → r)

I Show unsatisfiability of: ¬((p → (q → r))→ (p ∧ q → r))

I Equivalent to (p → (q → r)) ∧ (p ∧ q) ∧ ¬r
I Clauses:

1. {¬p,¬q, r}
2. {p}
3. {q}
4. {¬r}
5. {¬q, r} — resolvent of 1. and 2.

6. {r} — resolvent of 3. and 5.

7. 2 — resolvent of 4. and 6.
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Resolution

Resolution Calculus – Example 4

I Prove validity of: (p → q)→ ((p → r)→ (p → (q ∧ r)))

I Clauses:

1. {¬p, q}
2. {¬p, r}
3. {p}
4. {¬q,¬r}
5. {q} — resolvent of 1. and 3.

6. {r} — resolvent of 2. and 3.

7. {¬r} — resolvent of 4. and 5.

8. 2 — resolvent of 6. and 7.

I May have to use same clause several times

I Order of resolution steps does not matter for completeness
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Resolution

The Formal Resolution Calculus

Definition 5.4 (Resolution Calculus).

The resolution calculus has one axiom and one (inference) rule.

axiom
C1, ...,2, ...Cn

C1, ...,Ci ∪ {L}, ...,Cj ∪ {L}, ...,Cn,Ci ∪ Cj
resolution

C1, ...,Ci ∪ {L}, ...,Cj ∪ {L}, ...,Cn

A resolution proof of a set of clauses S is a derivation of S in the
resolution calculus.

I in contrast to natural deduction or the sequent calculus, the resolution
calculus has no rule with more than one premise

I hence, a derivation in the resolution calculus has only one branch

I terminates, if all clauses Ci ∪ {L},Cj ∪ {L} have been considered
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Soundness of Resolution

Outline

I Introduction

I Repetition: Negation Normal Form

I Conjunctive Normal Form

I Clausal Form

I Resolution

I Soundness of Resolution

I Completeness of Resolution
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Soundness of Resolution

Soundness of Resolution

I Recall: to prove A, we ‘refute’ ¬A

I I.e. we derive a ‘contradiction’ (the empty clause) from ¬A. . .

I . . . meaning that ¬A was unsatisfiable, and therefore A valid.

We need to prove the following statements:

1. If a set of clauses S is satisfiable, then the result of adding the
resolvent of two clauses C1,C2 ∈ A to S is also satisfiable.

2. A set of clauses containing the empty clause is unsatisfiable
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Soundness of Resolution

Resolution Preserves Satisfiability

Lemma 6.1.

If a set of clauses S is satisfiable, then the result of adding the resolvent of
two clauses C1,C2 ∈ A to S is also satisfiable.

Proof.

Let S be a set of clauses, and C1,C2 ∈ S with L ∈ C1 and L ∈ C2. Let I
be an interpretation with I |= S .
A clause set is a conjunction of its clauses, so I |= C1 and I |= C2.
Now either I |= L or I |= L:

I |= L I |= C2, and clauses are disjunctions of their literals, so I
satisfies one of the literals in C2, but not L. So: I |= C2 \ {L}.

I |= L By the same reasoning I |= C1 \ {L}.

So I satisfies at least one literal in either C1 \ {L} or C2 \ {L}.
I.e. I |= (C1 \ {L}) ∪ (C2 \ {L}), the resolvent of C1 and C2.
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Soundness of Resolution

The Empty Clause is unsatisfiable

Lemma 6.2.

A set of clauses containing the empty clause is unsatisfiable.

Proof.

Let S be a set of clauses and 2 ∈ S .
Assume for the sake of contradiction that I |= S .
A clause set is a conjunction of its clauses, so in particular I |= 2.
Since clauses are disjunctions, to satisfy a clause C , an interpretation has
to satisfy at least one of its literals L ∈ C .
But the empty clause I contains no literals, so that is a contradiction.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 28 / 47



Soundness of Resolution

The Empty Clause is unsatisfiable

Lemma 6.2.

A set of clauses containing the empty clause is unsatisfiable.

Proof.

Let S be a set of clauses and 2 ∈ S .

Assume for the sake of contradiction that I |= S .
A clause set is a conjunction of its clauses, so in particular I |= 2.
Since clauses are disjunctions, to satisfy a clause C , an interpretation has
to satisfy at least one of its literals L ∈ C .
But the empty clause I contains no literals, so that is a contradiction.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 28 / 47



Soundness of Resolution

The Empty Clause is unsatisfiable

Lemma 6.2.

A set of clauses containing the empty clause is unsatisfiable.

Proof.

Let S be a set of clauses and 2 ∈ S .
Assume for the sake of contradiction that I |= S .

A clause set is a conjunction of its clauses, so in particular I |= 2.
Since clauses are disjunctions, to satisfy a clause C , an interpretation has
to satisfy at least one of its literals L ∈ C .
But the empty clause I contains no literals, so that is a contradiction.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 28 / 47



Soundness of Resolution

The Empty Clause is unsatisfiable

Lemma 6.2.

A set of clauses containing the empty clause is unsatisfiable.

Proof.

Let S be a set of clauses and 2 ∈ S .
Assume for the sake of contradiction that I |= S .
A clause set is a conjunction of its clauses, so in particular I |= 2.

Since clauses are disjunctions, to satisfy a clause C , an interpretation has
to satisfy at least one of its literals L ∈ C .
But the empty clause I contains no literals, so that is a contradiction.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 28 / 47



Soundness of Resolution

The Empty Clause is unsatisfiable

Lemma 6.2.

A set of clauses containing the empty clause is unsatisfiable.

Proof.

Let S be a set of clauses and 2 ∈ S .
Assume for the sake of contradiction that I |= S .
A clause set is a conjunction of its clauses, so in particular I |= 2.
Since clauses are disjunctions, to satisfy a clause C , an interpretation has
to satisfy at least one of its literals L ∈ C .

But the empty clause I contains no literals, so that is a contradiction.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 28 / 47



Soundness of Resolution

The Empty Clause is unsatisfiable

Lemma 6.2.

A set of clauses containing the empty clause is unsatisfiable.

Proof.

Let S be a set of clauses and 2 ∈ S .
Assume for the sake of contradiction that I |= S .
A clause set is a conjunction of its clauses, so in particular I |= 2.
Since clauses are disjunctions, to satisfy a clause C , an interpretation has
to satisfy at least one of its literals L ∈ C .
But the empty clause I contains no literals, so that is a contradiction.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 28 / 47



Completeness of Resolution

Outline
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I Repetition: Negation Normal Form
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I Soundness of Resolution
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Completeness of Resolution

Prove Completeness like for LK?

I Plan:

I Starting from a set of clauses S . . .
I . . . build a fair limit derivation where all resolutions are applied. . .
I . . . giving a set of clauses S ′ with 2 /∈ S ′.
I Define an interpretation IS′ based on the “smallest” clauses (literals)
I Show by structural induction that IS′ satsifies all clauses in S ′

I So in particular the ones in S .

I Nice plan, but unfortunately. . .

I Resolution does not make clauses smaller (resolvent can be larger!)
I So we don’t always get lots of one-literal clauses in IS
I And we can’t use structural induction either

I This can be fixed

I IS′ is not defined on only the one-literal clauses
I Argument doesn’t use structural induction on clauses
I The proof is rather advanced!

I We will go through Robinson’s original proof
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Completeness of Resolution

Semantic Trees

The completeness proof uses the following concept:

Definition 7.1 (Semantic Trees).

A semantic tree is a binary tree where:

I The root is labelled by the symbol ⊥,

I Every node has either no children or two children,

I For every node that has children, there is some atom A such that one
child is labeled with A and the other with ¬A

I There are not two complementary literals A and ¬A on any path
starting at the root.

Not a data structure, just needed for the completeness proof
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starting at the root.

Not a data structure, just needed for the completeness proof
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Completeness of Resolution

Semantic Trees — Example

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r

I Root labelled with ⊥
I Either two children, or no children

I Complementary siblings

I No complementary pairs on a path
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Completeness of Resolution

Partial Interpretations

The path to every node n in a semantic tree gives a ‘partial interpretation’
In:

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r
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The path to every node n in a semantic tree gives a ‘partial interpretation’
In:

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r

In |= p, In |= ¬q, In |= ¬r

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 33 / 47



Completeness of Resolution

Partial Interpretations

The path to every node n in a semantic tree gives a ‘partial interpretation’
In:

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r

In |= p, In |= q
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Completeness of Resolution

Failure Nodes – Motivation

Sometimes, such a ‘partial interpretation’ is enough to falsify a clause:

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r

I At the marked node, the clause ¬p ∨ q ∨ r is false

I At the marked node, the clause ¬p ∨ r is false

I At the marked node, the clause ¬p ∨ q is false

I The clause ¬p ∨ q is already false at the parent node!

I It remains false further down.
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Completeness of Resolution

Failure Nodes – Definition

Definition 7.2.

A node n in a semantic tree is a falsifies a clause C if for every literal
L ∈ C, the complement L is on the branch leading to n.

Definition 7.3.

A node n in a semantic tree is a failure node for a clause set S if it falsifies
some clause C ∈ S, but the parent of n does not.

Failure nodes have just enough information to make sure some clause is
falsified.

Note: A has the root as a failure node iff 2 ∈ S .
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Completeness of Resolution

Failure Nodes – Example

1. ¬p ∨ ¬q ∨ ¬r
2. ¬q ∨ r

3. ¬p ∨ q

4. p

5. p ∨ ¬r

6. 2

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r
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Completeness of Resolution

Failure Nodes – Example

1. ¬p ∨ ¬q ∨ ¬r
2. ¬q ∨ r

3. ¬p ∨ q

4. p

5. p ∨ ¬r

6. 2

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r

Not a failure node: parent node falsifies clause 4.
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Completeness of Resolution

Failure Nodes – Example

1. ¬p ∨ ¬q ∨ ¬r
2. ¬q ∨ r

3. ¬p ∨ q

4. p

5. p ∨ ¬r
6. 2 ⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r

The empty clause is falsified by the root node
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Completeness of Resolution

Closed Semantic Trees

Definition 7.4.

Given a semantic tree and a clause set S, a branch of the tree is closed if
it contains a failure node.

The semantic tree is closed if all branches contain failure nodes.
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Completeness of Resolution

Closed Semantic Trees

Definition 7.4.

Given a semantic tree and a clause set S, a branch of the tree is closed if
it contains a failure node.
The semantic tree is closed if all branches contain failure nodes.
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Completeness of Resolution

Closed Semantic Tree – Example

1. ¬p ∨ ¬q ∨ ¬r
2. ¬q ∨ r

3. ¬p ∨ q

4. p

5. p ∨ ¬r
⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r

The semantic tree is closed for these 5 clauses.
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Completeness of Resolution

Closed Semantic Tree – Example

1. ¬p ∨ ¬q ∨ ¬r
2. ¬q ∨ r

3. ¬p ∨ q

5. p ∨ ¬r
⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r

Without p, it is not closed.

IN3070/4070 :: Autumn 2020 Lecture 7 :: 1st October 38 / 47



Completeness of Resolution

Complete Semantic Trees

Definition 7.5.

A semantic tree is complete if for every atomic formula A and every
branch (from root to leaf) either A or ¬A occurs

Every branch B in a complete semantic tree corresponds to an
interpretation IB with I |= A iff A is on the branch.

Lemma 7.1.

For every interpretation I there is a branch B in a complete semantic tree
with I = IB.

A complete semantic tree ‘enumerates’ all possible interpretations.
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Completeness of Resolution

Example: Complete Semantic Tree

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r

q ¬q

¬r

q ¬q
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Completeness of Resolution

Example: Complete Semantic Tree

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r

q ¬q

¬r

q ¬q

Not complete, since neither q nor ¬q on branch
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Completeness of Resolution

Example: Complete Semantic Tree

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r

q ¬q

¬r

q ¬q

Complete for vocabulary {p, q, r}
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Completeness of Resolution

Complete Semantic Trees

Definition 7.5.

A semantic tree is complete if for every atomic formula A and every
branch (from root to leaf) either A or ¬A occurs

Every branch B in a complete semantic tree corresponds to an
interpretation IB with I |= A iff A is on the branch.
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A complete semantic tree ‘enumerates’ all possible interpretations.
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Completeness of Resolution

Unsatisfiable Clause Sets close Semantic Trees

Theorem 7.1.

A clause set is unsatisfiable iff there is a closed semantic tree for it.

Proof.

⇒ Let S be an unsatisfiable clause set. Construct a complete semantic
tree. For each branch B, IB 6|= S , so IB 6|= C for some clause C ∈ S ,
so there is a node on the branch that falsifies C .
The falsifying nodes highest up on each branch are failure nodes. So
the semantic tree is closed.

⇐ Let S be a clause set and let a closed semantic tree be given. For any
interpretation I, there is a branch in the tree such that I |= L for all
literals L on that branch. Since there is a failure node for some clause
C ∈ S on that branch, the atoms on the branch entail ¬C , so I 6|= C ,
and thus I 6|= S .
This holds for arbitrary interpretations I, so S is unsatisfiable.
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Completeness of Resolution

Resolution Steps from Closed Semantic Trees

Lemma 7.2.

Let S be an unsatisfiable clause set, with a closed semantic tree

, and
2 /∈ S. Then

I a resolution step is possible from S,

I and the resulting clause set S ′ has a smaller closed semantic tree
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Completeness of Resolution

Idea of proof

1. ¬p ∨ ¬q ∨ ¬r
2. ¬q ∨ r

3. ¬p ∨ q

4. p

5. ¬p ∨ ¬q

⊥

p

q

r ¬r

¬q

r ¬r

¬p

r ¬r

I There are two sibling failure nodes

I They falsify two clauses with complementary literals

I They can be resolved to a new clause ¬p ∨ ¬q
I Which is falsified by the parent node
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Completeness of Resolution

There are two sibling failure nodes

I Let n0 be the root.

I Since 2 /∈ S , n0 is not a failure node.

I n0 has two children.

I If both are failure nodes, we are done.

I Otherwise, let n1 be one of the siblings that is not a failure node.

I n1 has two children.

I If both are failure nodes, we are done.

I . . .

I This either finds sibling failure nodes. . .

I or it constructs a path in the tree without a failure node, but that is
not possible.
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Completeness of Resolution

Sibling Failure Nodes give Resolution Opportunities

I Let n1 and n2 be sibling failure nodes

I falsifying C1 and C2,
I labeled A and ¬A.

I The parent node n of n1 and n2 does not falsify C1 and C2.

I Let N be the set of literals on the nodes up to and including n.

I Every literal in C1 has its negation in N ∪ {A}
I But not every literal in C1 has its negation in N

I Therefore ¬A ∈ C1

I Similarly A ∈ C2

I C1 and C2 can be resolved to C := (C1 \ {¬A}) ∪ (C2 \ {A})
I Every literal in C has its negation in N

I Adding C to the clause set will make n into a failure node.

I This gives a closed semantic tree with two nodes less than before.
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Completeness of Resolution

Completeness of Resolution

Theorem 7.2.

If S is an unsatisfiable clause set, then there is a resolution derivation of
the empty clause from S.

Proof.

I There exists a closed semantic tree for S

I As long as S does not contain the empty clause,

I It is possible to apply a resolution step to S
I Leading to a clause set with a smaller closed semantic tree

I Since the tree is finite, this cannot go on forever.

I Therefore, eventually the semantic tree must consist of only the
root. . .

I . . . and S contain the empty clause 2.
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I . . . and S contain the empty clause 2.
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