# IN3070/4070 - Logic - Autumn 2020 <br> Lecture 8: First-order Resolution 

## Martin Giese

8th October 2020

ifj
Department of Informatics

University of
Oslo

## Today's Plan

- Reminder: Clausal Form Translations
- Reminder: Propositional Resolution
- Reminder: Unification
- First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary


## Outline

- Reminder: Clausal Form Translations
- Reminder: Propositional Resolution
- Reminder: Unification
- First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary


## Translation into Clausal Form - Example

Example: $\forall x \exists y p(x, y) \rightarrow \exists y \forall x p(x, y)$
Try to prove this formula based on refutation in CNF

- negate the formula: $\neg(\forall x \exists y p(x, y) \rightarrow \exists y \forall x p(x, y))$
- Rename bound variables: $\neg(\forall x \exists y p(x, y) \rightarrow \exists w \forall z p(z, w))$
- Eliminate implication $\rightarrow: \neg(\neg \forall x \exists y p(x, y) \vee \exists w \forall z p(z, w))$
- Push negation inwards: $\forall x \exists y p(x, y) \wedge \forall w \exists z \neg p(z, w)$
- Skolemize, i.e., replace $\exists: \forall x p(x, f(x)) \wedge \forall w \neg p(g(w), w)$
- Write in clausal form : $\{\{p(x, f(x))\},\{\neg p(g(w), w)\}\}$


## Outline

## - Reminder: Clausal Form Translations

- Reminder: Propositional Resolution
- Reminder: Unification
- First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary


## Reminder: The Resolution Rule

The resolution calculus is a refutation procedure.

- in order to determine whether a formula $F$ (in clausal form) is valid, we check whether $\neg F$ is unsatisfiable


## Definition 2.1 (Complementary Literal).

The complementary literal $\bar{L}$ of a literal $L$ is $A$ if $L$ is of the form $\neg A$, otherwise it is $\neg$ L.

## Definition 2.2 (Resolution Rule).

Let $C_{1}, C_{2}$ be clauses with $L \in C_{1}$ and $\bar{L} \in C_{2}$. The resolvent $C^{\prime}$ of $C_{1}$ and $C_{2}$ is $\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right) . C_{1}$ and $C_{2}$ are the parents of $C^{\prime}$.

- the resolution rule maintains satisfiability: If $\mathcal{I} \vDash C_{1}$ and $\mathcal{I} \vDash C_{2}$ then $\mathcal{I} \models C^{\prime}$
- if a set of clauses $S$ is satisfiable and $C_{1}, C_{2} \in S$, then $S \cup\left\{C^{\prime}\right\}$ is satisfiable.


## The Resolution Rule - Example

Example: Let $C_{1}=\{a, b, \neg c\}$ and $C_{2}=\{b, c, \neg e\}$.

$$
\begin{aligned}
& \{a, b, \neg c\} \quad\{b, c, \neg e\} \\
& \{a, b, \neg e\}
\end{aligned}
$$

The resolvent of $C_{1}$ and $C_{2}$ is $\{a, b, \neg e\}$.

## Observations:

- if $\{a, b, \neg c\}$ and $\{b, c, \neg e\} \equiv(a \vee b \vee \neg c) \wedge(b \vee c \vee \neg e)$ are satisfiable, then $(a \vee b)$ is satisfiable (if $c$ is true) or $(b \vee \neg e$ ) is satisfiable (if $c$ is false); hence $(a \vee b \vee \neg e)$ is satisfiable
- if resolvent is unsatisfiable, then parents are unsatisfiable
- the empty clauses $\}$ is unsatisfiable
- goal: derive empty clause $\}$


## The Resolution Calculus

- a set of clauses is unsatisfiable iff the empty clause can be derived
- a clause $C$ is true iff at least one of its literals is true; if there is no literal in $C$, then $C$ is false and every set of clauses (in CNF) that contains $C$ is false, i.e.unsatisfiable


## Definition 2.3 (Resolution Procedure).

Given a set of clauses S.

1. apply the resolution rule to a pair of clauses $\left\{C_{1}, C_{2}\right\} \subseteq S$ that has not been chosen before; let $C^{\prime}$ be the resolvent
2. $S^{\prime}:=S \cup\left\{C^{\prime}\right\}, S:=S^{\prime}$
3. if $C^{\prime}=\{ \}$, then output "unsatisfiable";
if all possible resolvents have been considered, then output
"satisfiable"; otherwise continue with 1.

## Outline

- Reminder: Clausal Form Translations
- Reminder: Propositional Resolution
- Reminder: Unification
- First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary


## Unification

- Motivation: try refuting the following

$$
\{\{p(x, b)\},\{\neg p(a, y)\}\}
$$

- Remember: these mean

$$
\forall x p(x, b) \quad \text { and } \quad \forall y \neg p(a, y)
$$

- Should be OK to instantiate $x$ with $a$ and $y$ with $b$
- Giving

$$
\{\{p(a, b)\},\{\neg p(a, b)\}\}
$$

- Which can be resolved to $\square$


## Unification problem

Let $s$ and $t$ be terms. Find all substitutions that make $s$ and $t$ syntactically equal, i.e. all $\sigma$ with $\sigma(s)=\sigma(t)$.

- A substitution that makes $s$ and $t$ syntactically equal is called a unifier for $s$ and $t$.
- To terms are unifiable if they have a unifier.


## Examples

## Are $f(x)$ and $f(a)$ unifiable?

Yes. We see that $\sigma=\{x \backslash a\}$ is a unifier: $\sigma(f(x))=f(a)$
Are $p(x, b)$ and $p(a, y)$ unifiable?
Easier to see if we write terms as trees:


- The root symbols are the same.
- The left children are different, but can be unified with $\{x \backslash a\}$.
- The right children are different, but can be unified with $\{y \backslash b\}$.

Are $f(a, b)$ and $g(a, b)$ unifiable?


The root symbols are different, and can not be unified!

## Are $f(x, x)$ and $f(a, b)$ unifiable?



- The root symbols are equal.
- The left children are different, but can be unified with $\{x \backslash a\}$.
- We must apply $\{x \backslash a\}$ to $x$ in both branches.
- The right children are now different, and can not be unified!
x

- The root symbols are different, but can be unified by $\{x \backslash f(x)\}$.
- We also have to apply $\{x \backslash f(x)\}$ on $x$ in the right tree.
- The symbols $x$ and $f$ are different.
- If we unify with $\{f(x) / x\}$, we have to replace $x$ in the right tree again.
- This continues indefinitely


## Unification

## Generally:

- Two distinct constant or function symbols are not unifiable.
- A variable $x$ is not unifiable with a term that contains $x$.
- We will define a unification algorithm, that finds all unifiers for two terms.
- Problem: Two terms can potentially have infinitely many unifiers. We can't compute all of them!
- Solution: Find a represetative $\sigma$ for the set of unifiers, such that all other unifiers can be constructed from $\sigma$.
- Such a unifier is known as a most general unifier.


## More General Substitution

## Definition 3.1 (More General Substitution).

Let $\sigma_{1}$ and $\sigma_{2}$ be substitutions. We say that $\sigma_{2}$ is more general than $\sigma_{1}$ if there exists a subsitution $\tau$ such that $\sigma_{1}=\tau \sigma_{2}$.

Is $\{x \backslash f(y)\}$ more general than $\{x \backslash f(a), y \backslash a\}$ ?
Yes, since $\{x \backslash f(a), y \backslash a\}=\{y \backslash a\}\{x \backslash f(y)\}$.

Is $\{x \backslash f(a)\}$ more general than $\{x \backslash f(y)\}$ ?
No, because there is no substitution $\tau$ such that $\{x \backslash f(y)\}=\tau\{x \backslash f(a)\}$.

Is $\{x \backslash f(y)\}$ more general than $\{x \backslash f(y)\}$
Yes, since $\{x \backslash f(y)\}=\{ \}\{x \backslash f(y)\}$, where $\}$ is the identity substitution.

## Most General Unifiers

## Definition 3.2 (Unifier, Most General Unifier).

Let $s$ and $t$ be terms. A substitution $\sigma$ is

- a unifier for $s$ and $t$ if $\sigma(s)=\sigma(t)$.
- a most general unifier (mgu) for $s$ and $t$ if
- it is a unifier for $s$ and $t$, and
- it is more general than any other unifiers for $s$ and $t$.

We say that $s$ and $t$ are unifiable if they have a unifier.

Let $s=f(x)$ and $t=f(y)$.

- $\sigma_{1}=\{x \backslash a, y \backslash a\}$ is a unifier for $s$ and $t$
- $\sigma_{2}=\{x \backslash y\}$ and $\sigma_{3}=\{y \backslash x\}$ are also unifiers for $s$ and $t$
- $\sigma_{2}$ and $\sigma_{3}$ are the most general unifiers for $s$ and $t$


## Uniqueness "up to variable renaming"

## Proposition 3.1.

If $\sigma_{1}$ and $\sigma_{2}$ are most general unifiers for two terms $s$ and $t$, then there is a variable renaming $\eta$ such that $\eta \sigma_{1}=\sigma_{2}$.

- We leave out the proof.


## Unification Algorithm

## Algoritm: unify $\left(t_{1}, t_{2}\right)$

$$
\sigma:=\epsilon
$$

while $\left(\sigma\left(t_{1}\right) \neq \sigma\left(t_{2}\right)\right)$ do
choose a critical pair $\left\langle k_{1}, k_{2}\right\rangle$ for $\sigma\left(t_{1}\right), \sigma\left(t_{2}\right)$;
if (neither $k_{1}$ nor $k_{2}$ are variables) then return "not unifiable";
end if
$x:=$ the one of $k_{1}, k_{2}$ that is a variable (if both are, choose one)
$t:=$ the one of $k_{1}, k_{2}$ that is not $x$;
if ( $x$ occurs in $t$ ) then return "not unifiable";
end if
$\sigma:=\{x \backslash t\} \sigma ;$
end while
return $\sigma$;

## Properties of the Unification Algorithm

- If the terms $t_{1}$ and $t_{2}$ are unifiable, the algorithm returns a most general unifier for $t_{1}$ and $t_{2}$.
- The mgu is representative for all other unifiers of $t_{1}$ and $t_{2}$.
- If $t_{1}$ and $t_{2}$ are not unifiable, the algorithm returns "not unifiable".


## Outline

- Reminder: Clausal Form Translations
- Reminder: Propositional Resolution
- Reminder: Unification
- First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary


## The First-Order Resolution Calculus

The resolution rule is generalized by performing unification as part of the rule and an additional factorization rule is added.

## Definition 4.1 (First-Order Resolution Calculus).

$C_{1}, \ldots,\{ \}, \ldots, C_{n}$ axiom
$\frac{C_{1}, \ldots, C_{i} \cup\left\{L_{1}\right\}, \ldots, C_{j} \cup\left\{L_{2}\right\}, \ldots, C_{n}, \sigma\left(C_{i} \cup C_{j}\right)}{C_{1}, \ldots, C_{i} \cup\left\{L_{1}\right\}, \ldots, C_{j} \cup\left\{L_{2}\right\}, \ldots, C_{n}}$ resolution
with $\sigma$ a m.g.u. of $L_{1}$ and $\overline{L_{2}}$.
$\frac{C_{1}, \ldots, C_{i} \cup\left\{L_{1}, \ldots, L_{m}\right\}, \ldots, C_{n}, \sigma\left(C_{i} \cup\left\{L_{1}\right\}\right)}{C_{1}, \ldots, C_{i} \cup\left\{L_{1}, \ldots, L_{m}\right\}, \ldots, C_{n}}$ factorization
with $\sigma$ a m.g.u. of $L_{1} \ldots L_{m}$.

- a resolution proof for a set of clauses $S$ is a derivation of $S$ in the resolution calculus; the substitution $\sigma$ is local for every rule application; variables in every clause $C$ can be renamed


## First-Order Resolution Calculus - Example

1. $\neg p(x), q(x), r(x, f(x))$
2. $\neg p(x), q(x), r^{\prime}(f(x))$
3. $p^{\prime}(a)$
4. $p(a)$
5. $\neg r(a, y), p^{\prime}(y)$
6. $\neg p^{\prime}(x), \neg q(x)$
7. $\neg p^{\prime}(x), \neg r^{\prime}(x)$
8. $\neg q(a)-$ from 3 and 6 with $[x \backslash a]$
9. $\neg r^{\prime}(a)-$ from 3 and 7 with $[x \backslash a]$
10. $q(a), r(a, f(a))$ - from 1 and 4 with $[x \backslash a]$
11. $q(a), r^{\prime}(f(a))-$ from 2 and 4 with $[x \backslash a$ ]
12. $r(a, f(a))$ - from 10 and 8 with $[x \backslash a$ ]
13. $r^{\prime}(f(a))$ - from 11 and 8 with $[x \backslash a]$
14. $p^{\prime}(f(a))$ - from 12 and 5 with $[y \backslash f(a)]$
15. $\neg p^{\prime}(f(a))$ - from 13 and 7 with $[x \backslash f(a)]$
16. $\square-$ from 14 and 15

## The Necessity of Factoring

(1): $p(u) \vee p(f(u))$
(2): $\neg p(v) \vee p(f(w))$
(3): $\neg p(x) \vee \neg p(f(x))$

A possible resolution derivation:
(4): $\quad p(u) \vee p(f(w))$ by resolving (1) and (2), with $v=f(u)$
(5): $p(f(w))$ by factoring (4), with $u=f(w)$
(6) : $\neg p\left(f\left(f\left(w^{\prime}\right)\right)\right) \quad$ by resolving (5) and (3), with $w=w^{\prime}, x=f\left(w^{\prime}\right)$
(7): $\square$ by resolving (5) and (6), with $w=f\left(w^{\prime}\right)$

## Outline

- Reminder: Clausal Form Translations
- Reminder: Propositional Resolution
- Reminder: Unification
- First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary


## Soundness and Completeness

## Theorem 5.1 (Soundness and Completeness of Resolution).

The resolution calculus is sound and complete, i.e.

- if $A$ is provable in the resolution calculus, then $A$ is valid (if $\vdash A$ then $\vDash A$ )
- if $A$ is valid, then $A$ is provable in the resolution calculus (if $\vDash A$ then $\vdash A$ )


## Proof.

See Ben-Ari, section 10.5, [Robinson 1965].

## Soundness

## Definition 5.1.

An interpretation $\mathcal{I}$ satisfies a clause $C$ if for every variable assignment $\alpha$, there is a $L \in C$ with $v_{\mathcal{I}}(\alpha, L)=T$.

So $\mathcal{I} \models\{p(x), q(x)\}$ if either $p$ or $q$ holds for all domain elements.

## Lemma 5.1.

If a set of clauses $S$ is satisfiable, then the result of adding the resolvent of two clauses $C_{1}, C_{2} \in A$ to $S$ is also satisfiable.

## Proof.

Sketch: if $\mathcal{I} \models C_{1}$ and $\mathcal{I} \models C_{2}$ then also $\mathcal{I} \models \sigma\left(C_{1}\right)$ and $\mathcal{I} \models \sigma\left(C_{2}\right)$ (where $\sigma$ is the m.g.u.) due to the substitution lemma. Then $\mathcal{I} \models \sigma\left(\left(C_{1} \backslash\left\{L_{1}\right\}\right) \cup\left(C_{2} \backslash\left\{\overline{L_{2}}\right\}\right)\right)$ like for propositional logic.

## Completeness

- Semantic Trees can be infininte
- Define complete semantic trees for all closed literals

- Same notions of failure nodes and closed semantic trees as before
- There are resolution steps from closed instances of clauses
- Lifting: There are corresponding steps using m.g.u.s


## Outline

## - Reminder: Clausal Form Translations

- Reminder: Propositional Resolution
- Reminder: Unification
- First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary


## Compactness

## Observation

Nowhere in the definition of resolution do we need that $S$ is finite.

- If $S$ is unsatisfiable there is a closed semantic tree which enables a resolution step that gives a smaller semantic tree.
- No need to use all of $S$
- The closed tree is always finite (König's Lemma)
- To close the semantic tree we need only finitely many clauses $S^{\prime} \subseteq S$.
- Collect all clauses $S_{0} \subseteq S$ that are used in a refutation
- $S_{0} \subseteq S$ is finite and unsatisfiable


## Theorem 6.1 (Compactness).

Every unsatisfiable set of clauses $S$ has a finite unsatisfiable subset

## Compactness: Example

$$
\exists x \neg p(x), p(a), p(f a), p(f f a), p(f f f a), \ldots
$$

- Every finite subset is satisfiable.
- E.g. take a domain with an extra element $d \in D$ that is not the value of any $f^{n}(a)$
- Interpret $p$ such that $p^{\iota}(d)=F$, and therefore $\mathcal{I} \models \exists x \neg p(x)$.
- By compactness: The whole set is also satisfiable


## Compactness: Counterexample

- Now we look at satisfiability 'over $\mathbb{N}^{\prime}$
- i.e. in interpretations with $D=\mathbb{N}, 0^{\iota}=0,1^{\iota}=1, \ldots$

$$
\exists x \neg p(x), p(0), p(1), p(2), p(3), \ldots
$$

- Every finite subset $S_{0} \subseteq S$ is satisfiable over $\mathbb{N}$.
- E.g. let $n$ be maximal with $p(n) \in S_{0}$
- Interpret $p(0) \ldots p(n)$ as true, but $p(n+1)$ as false.
- Then all $p(\cdots) \in S_{0}$ are satisfied and also $\exists x \neg p(x)$.
- But the whole set of formulas is unsatisfiable over $\mathbb{N}$


## Theorem 6.2.

Satisfiability over the natural numbers is not compact.
Reasoning about numbers involves more than just first-order logic.

## Outline

## - Reminder: Clausal Form Translations

- Reminder: Propositional Resolution
- Reminder: Unification
- First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary


## Summary

- resolution calculus is one of the most popular proof search calculi for (classical) first-order logic
- consists of:
- one axiom
- resolution rule
- factorization rule
- unification is used to unify terms of complementary literals
- easy to implement, but for an efficient proof search the application of the resolution rule needs to be controlled
- implemented in popular automated theorem provers, e.g. Otter, Prover9, Vampire
- Compactness: we can reason over (countably) infinite clause sets, but 1st-order reasoning is not strong enough for all of maths
- Next Week: logic programming and Prolog

