IN3070/4070 - Logic - Autumn 2020

Lecture 8: First-order Resolution

Martin Giese

8th October 2020

Today's Plan

- ▶ Reminder: Clausal Form Translations
- ► Reminder: Propositional Resolution
- ▶ Reminder: Unification
- ► First-Order Resolution
- ► Soundness and Completeness
- Compactness
- Summary

- ▶ Reminder: Clausal Form Translations
- Reminder: Propositional Resolution
- ▶ Reminder: Unification
- ► First-Order Resolution
- Soundness and Completeness
- ▶ Compactness
- Summary

Translation into Clausal Form – Example

Example: $\forall x \exists y \ p(x,y) \rightarrow \exists y \ \forall x \ p(x,y)$

Try to prove this formula based on refutation in CNF

- ▶ negate the formula: $\neg(\forall x \exists y \ p(x,y) \rightarrow \exists y \ \forall x \ p(x,y))$
- ▶ Rename bound variables: $\neg(\forall x \exists y \ p(x, y) \rightarrow \exists w \ \forall z \ p(z, w))$
- ▶ Eliminate implication \rightarrow : $\neg(\neg \forall x \exists y \ p(x,y) \lor \exists w \ \forall z \ p(z,w))$
- ▶ Push negation inwards: $\forall x \exists y \ p(x,y) \land \forall w \exists z \neg p(z,w)$
- ▶ Skolemize, i.e., replace \exists : $\forall x \, p(x, f(x)) \land \forall w \, \neg p(g(w), w)$
- ▶ Write in clausal form : $\{\{p(x, f(x))\}, \{\neg p(g(w), w)\}\}$

- ▶ Reminder: Clausal Form Translations
- ► Reminder: Propositional Resolution
- ▶ Reminder: Unification
- ► First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary

Reminder: The Resolution Rule

The resolution calculus is a refutation procedure.

▶ in order to determine whether a formula F (in clausal form) is valid, we check whether $\neg F$ is unsatisfiable

Definition 2.1 (Complementary Literal).

The complementary literal \overline{L} of a literal L is A if L is of the form $\neg A$, otherwise it is $\neg L$.

Definition 2.2 (Resolution Rule).

Let C_1 , C_2 be clauses with $L \in C_1$ and $\overline{L} \in C_2$. The resolvent C' of C_1 and C_2 is $(C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$. C_1 and C_2 are the parents of C'.

- ▶ the resolution rule maintains satisfiability: If $\mathcal{I} \models C_1$ and $\mathcal{I} \models C_2$ then $\mathcal{I} \models C'$
- ▶ if a set of clauses S is satisfiable and $C_1, C_2 \in S$, then $S \cup \{C'\}$ is satisfiable.

The Resolution Rule – Example

Example: Let
$$C_1 = \{a, b, \neg c\}$$
 and $C_2 = \{b, c, \neg e\}$.
$$\{a, b, \neg c\} \qquad \{b, c, \neg e\}$$
$$\{a, b, \neg e\}$$

The resolvent of C_1 and C_2 is $\{a, b, \neg e\}$.

Observations:

- ▶ if $\{a, b, \neg c\}$ and $\{b, c, \neg e\} \equiv (a \lor b \lor \neg c) \land (b \lor c \lor \neg e)$ are satisfiable, then $(a \lor b)$ is satisfiable (if c is true) or $(b \lor \neg e)$ is satisfiable (if c is false); hence $(a \lor b \lor \neg e)$ is satisfiable
- ▶ if resolvent is unsatisfiable, then parents are unsatisfiable
- ▶ the empty clauses { } is unsatisfiable
- goal: derive empty clause { }

The Resolution Calculus

- a set of clauses is unsatisfiable iff the empty clause can be derived
- ▶ a clause C is true iff at least one of its literals is true; if there is no literal in C, then C is false and every set of clauses (in CNF) that contains C is false, i.e.unsatisfiable

Definition 2.3 (Resolution Procedure).

Given a set of clauses S.

- 1. apply the resolution rule to a pair of clauses $\{C_1, C_2\} \subseteq S$ that has not been chosen before; let C' be the resolvent
- 2. $S' := S \cup \{C'\}$, S := S'
- 3. if $C' = \{\}$, then output "unsatisfiable"; if all possible resolvents have been considered, then output "satisfiable"; otherwise continue with 1.

- ▶ Reminder: Clausal Form Translations
- ► Reminder: Propositional Resolution
- ▶ Reminder: Unification
- ► First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary

Unification

► Motivation: try refuting the following

$$\{ \{p(x,b)\}, \{\neg p(a,y)\} \}$$

Remember: these mean

$$\forall x \, p(x, b)$$
 and $\forall y \, \neg p(a, y)$

- ▶ Should be OK to instantiate x with a and y with b
- Giving

$$\{ \{p(a,b)\}, \{\neg p(a,b)\} \}$$

▶ Which can be resolved to □

Unification problem

Let s and t be terms. Find all substitutions that make s and t syntactically equal, i.e. all σ with $\sigma(s) = \sigma(t)$.

- A substitution that makes s and t syntactically equal is called a unifier for s and t.
- ► To terms are unifiable if they have a unifier.

Examples

Are f(x) and f(a) unifiable?

Yes. We see that $\sigma = \{x \mid a\}$ is a unifier: $\sigma(f(x)) = f(a)$

Are p(x, b) and p(a, y) unifiable?

Easier to see if we write terms as trees:

- ► The root symbols are the same.
- ▶ The left children are different, but can be unified with $\{x \setminus a\}$.
- ▶ The right children are different, but can be unified with $\{y \setminus b\}$.

Are f(a, b) and g(a, b) unifiable?

▶ The root symbols are different, and can *not* be unified!

Are f(x,x) and f(a,b) unifiable?

- ▶ The root symbols are equal.
- ▶ The left children are different, but can be unified with $\{x \setminus a\}$.
- ▶ We must apply $\{x \setminus a\}$ to x in both branches.
- ▶ The right children are now different, and can not be unified!

Are x and f(x) unifiable?

- ▶ The root symbols are different, but can be unified by $\{x \setminus f(x)\}$.
- ▶ We also have to apply $\{x \setminus f(x)\}$ on x in the right tree.
- ▶ The symbols *x* and *f* are different.
- ▶ If we unify with $\{f(x)/x\}$, we have to replace x in the right tree again.
- ► This continues indefinitely

Unification

Generally:

- ▶ Two distinct constant or function symbols are not unifiable.
- ► A variable x is not unifiable with a term that contains x.
- ▶ We will define a unification algorithm, that finds all unifiers for two terms.
- Problem: Two terms can potentially have infinitely many unifiers. We can't compute all of them!
- Solution: Find a representative σ for the set of unifiers, such that all other unifiers can be constructed from σ .
- ► Such a unifier is known as a most general unifier.

More General Substitution

Definition 3.1 (More General Substitution).

Let σ_1 and σ_2 be substitutions. We say that σ_2 is more general than σ_1 if there exists a substitution τ such that $\sigma_1 = \tau \sigma_2$.

Is
$$\{x \setminus f(y)\}$$
 more general than $\{x \setminus f(a), y \setminus a\}$?

Yes, since
$$\{x \setminus f(a), y \setminus a\} = \{y \setminus a\}\{x \setminus f(y)\}.$$

Is
$$\{x \setminus f(a)\}$$
 more general than $\{x \setminus f(y)\}$?

No, because there is no substitution τ such that $\{x \setminus f(y)\} = \tau \{x \setminus f(a)\}$.

Is
$$\{x \setminus f(y)\}$$
 more general than $\{x \setminus f(y)\}$

Yes, since $\{x \setminus f(y)\} = \{\}\{x \setminus f(y)\}\$, where $\{\}$ is the identity substitution.

Most General Unifiers

Definition 3.2 (Unifier, Most General Unifier).

Let s and t be terms. A substitution σ is

- ▶ a unifier for s and t if $\sigma(s) = \sigma(t)$.
- ▶ a most general unifier (mgu) for s and t if
 - ▶ it is a unifier for s and t. and
 - ▶ it is more general than any other unifiers for s and t.

We say that s and t are unifiable if they have a unifier.

Let s = f(x) and t = f(y).

- $ightharpoonup \sigma_1 = \{x \setminus a, y \setminus a\}$ is a unifier for s and t
- $ightharpoonup \sigma_2 = \{x \backslash y\}$ and $\sigma_3 = \{y \backslash x\}$ are also unifiers for s and t
- \triangleright σ_2 and σ_3 are the most general unifiers for s and t

Uniqueness "up to variable renaming"

Proposition 3.1.

If σ_1 and σ_2 are most general unifiers for two terms s and t, then there is a variable renaming η such that $\eta \sigma_1 = \sigma_2$.

▶ We leave out the proof.

Unification Algorithm

```
Algoritm: unify(t_1, t_2)
   \sigma := \epsilon;
   while (\sigma(t_1) \neq \sigma(t_2)) do
       choose a critical pair \langle k_1, k_2 \rangle for \sigma(t_1), \sigma(t_2);
       if (neither k_1 nor k_2 are variables) then
            return "not unifiable":
       end if
       x := the one of k_1, k_2 that is a variable (if both are, choose one)
       t := the one of k_1, k_2 that is not x;
       if (x \text{ occurs in } t) then
            return "not unifiable";
       end if
       \sigma := \{x \setminus t\}\sigma;
   end while
   return \sigma;
```

Properties of the Unification Algorithm

- ▶ If the terms t_1 and t_2 are unifiable, the algorithm returns a most general unifier for t_1 and t_2 .
- ▶ The mgu is representative for all other unifiers of t_1 and t_2 .
- ▶ If t_1 and t_2 are not unifiable, the algorithm returns "not unifiable".

- ▶ Reminder: Clausal Form Translations
- ► Reminder: Propositional Resolution
- ▶ Reminder: Unification
- ► First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary

The First-Order Resolution Calculus

The resolution rule is generalized by performing unification as part of the rule and an additional factorization rule is added.

Definition 4.1 (First-Order Resolution Calculus).

$$\overline{C_1,...,C_i \cup \{L_1\},...,C_j \cup \{L_2\},...,C_n,\sigma(C_i \cup C_j)} \atop C_1,...,C_i \cup \{L_1\},...,C_j \cup \{L_2\},...,C_n \\ \hline c_1,...,C_i \cup \{L_1\},...,C_j \cup \{L_2\},...,C_n \\ \hline with \ \sigma \ a \ m.g.u. \ of \ L_1 \ and \ \overline{L_2}. \\ \hline c_1,...,C_i \cup \{L_1,...,L_m\},...,C_n \ factorization \\ \hline with \ \sigma \ a \ m.g.u. \ of \ L_1,...,L_m\},...,C_n \\ \hline with \ \sigma \ a \ m.g.u. \ of \ L_1,...,L_m.$$

▶ a resolution proof for a set of clauses S is a derivation of S in the resolution calculus; the substitution σ is local for every rule application; variables in every clause C can be renamed

First-Order Resolution Calculus – Example

1. $\neg p(x), q(x), r(x, f(x))$ 2. $\neg p(x), q(x), r'(f(x))$ 3. p'(a)4. p(a)5. $\neg r(a, y), p'(y)$ 6. $\neg p'(x), \neg q(x)$ 7. $\neg p'(x), \neg r'(x)$ 8. $\neg q(a)$ — from 3 and 6 with $[x \setminus a]$ 9. $\neg r'(a)$ — from 3 and 7 with $[x \setminus a]$ 10. q(a), r(a, f(a)) — from 1 and 4 with $[x \setminus a]$ 11. g(a), r'(f(a)) — from 2 and 4 with $[x \setminus a]$ 12. r(a, f(a)) — from 10 and 8 with $[x \setminus a]$ 13. r'(f(a)) — from 11 and 8 with $[x \setminus a]$ 14. p'(f(a)) — from 12 and 5 with $[y \setminus f(a)]$ 15. $\neg p'(f(a))$ — from 13 and 7 with $[x \setminus f(a)]$

16. \square — from 14 and 15

The Necessity of Factoring

```
(1): p(u) \lor p(f(u))

(2): \neg p(v) \lor p(f(w))

(3): \neg p(x) \lor \neg p(f(x))
```

A possible resolution derivation:

```
(4): p(u) \lor p(f(w)) by resolving (1) and (2), with v = f(u)

(5): p(f(w)) by factoring (4), with u = f(w)

(6): \neg p(f(f(w'))) by resolving (5) and (3), with w = w', x = f(w')

(7): \square by resolving (5) and (6), with w = f(w')
```

- ▶ Reminder: Clausal Form Translations
- ► Reminder: Propositional Resolution
- ▶ Reminder: Unification
- ► First-Order Resolution
- Soundness and Completeness
- ▶ Compactness
- Summary

Soundness and Completeness

Theorem 5.1 (Soundness and Completeness of Resolution).

The resolution calculus is sound and complete, i.e.

- ▶ if A is provable in the resolution calculus, then A is valid (if $\vdash A$ then $\models A$)
- ▶ if A is valid, then A is provable in the resolution calculus (if \models A then \vdash A)

Proof.

See Ben-Ari, section 10.5, [Robinson 1965].

Soundness

Definition 5.1.

An interpretation \mathcal{I} satisfies a clause C if for every variable assignment α , there is a $L \in C$ with $v_{\mathcal{I}}(\alpha, L) = T$.

So $\mathcal{I} \models \{p(x), q(x)\}$ if either p or q holds for all domain elements.

Lemma 5.1.

If a set of clauses S is satisfiable, then the result of adding the resolvent of two clauses $C_1, C_2 \in A$ to S is also satisfiable.

Proof.

Sketch: if $\mathcal{I} \models C_1$ and $\mathcal{I} \models C_2$ then also $\mathcal{I} \models \sigma(C_1)$ and $\mathcal{I} \models \sigma(C_2)$ (where σ is the m.g.u.) due to the substitution lemma.

Then $\mathcal{I} \models \sigma((C_1 \setminus \{L_1\}) \cup (C_2 \setminus \{\overline{L_2}\}))$ like for propositional logic.

Completeness

- Semantic Trees can be infininte
- Define complete semantic trees for all closed literals

- ▶ Same notions of failure nodes and closed semantic trees as before
- ▶ There are resolution steps from *closed instances* of clauses
- ▶ Lifting: There are corresponding steps using m.g.u.s

- ▶ Reminder: Clausal Form Translations
- ► Reminder: Propositional Resolution
- ▶ Reminder: Unification
- ► First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary

Compactness

Observation

Nowhere in the definition of resolution do we need that S is finite.

- ▶ If *S* is unsatisfiable there is a closed semantic tree which enables a resolution step that gives a smaller semantic tree.
- No need to use all of S
- ▶ The closed tree is always finite (König's Lemma)
- ▶ To close the semantic tree we need only finitely many clauses $S' \subseteq S$.
- ▶ Collect all clauses $S_0 \subseteq S$ that are used in a refutation
- ▶ $S_0 \subseteq S$ is finite and unsatisfiable

Theorem 6.1 (Compactness).

Every unsatisfiable set of clauses \$ has a finite unsatisfiable subset

Compactness: Example

$$\exists x \neg p(x), p(a), p(fa), p(ffa), p(fffa), \dots$$

- Every finite subset is satisfiable.
- ▶ E.g. take a domain with an extra element $d \in D$ that is not the value of any $f^n(a)$
- ▶ Interpret p such that $p^{\iota}(d) = F$, and therefore $\mathcal{I} \models \exists x \neg p(x)$.
- By compactness: The whole set is also satisfiable

Compactness: Counterexample

- Now we look at satisfiability 'over N'
- ightharpoonup i.e. in interpretations with $D=\mathbb{N},\ 0^{\iota}=0,\ 1^{\iota}=1,\ldots$

$$\exists x \neg p(x), \ p(0), \ p(1), \ p(2), \ p(3), \ldots$$

- ▶ Every finite subset $S_0 \subseteq S$ is satisfiable over \mathbb{N} .
- ▶ E.g. let n be maximal with $p(n) \in S_0$
- ▶ Interpret $p(0) \dots p(n)$ as true, but p(n+1) as false.
- ▶ Then all $p(\cdots) \in S_0$ are satisfied and also $\exists x \neg p(x)$.
- ▶ But the whole set of formulas is unsatisfiable over N

Theorem 6.2.

Satisfiability over the natural numbers is not compact.

Reasoning about numbers involves more than just first-order logic.

- ▶ Reminder: Clausal Form Translations
- ► Reminder: Propositional Resolution
- ▶ Reminder: Unification
- ► First-Order Resolution
- Soundness and Completeness
- Compactness
- Summary

Summary

- resolution calculus is one of the most popular proof search calculi for (classical) first-order logic
- consists of:
 - one axiom
 - resolution rule
 - ► factorization rule
- ▶ unification is used to unify terms of complementary literals
- easy to implement, but for an efficient proof search the application of the resolution rule needs to be controlled
- ► implemented in popular automated theorem provers, e.g. Otter, Prover9, Vampire
- ► Compactness: we can reason over (countably) infinite clause sets, but 1st-order reasoning is not strong enough for all of maths
- ▶ Next Week: logic programming and Prolog