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Reminder: Clausal Form Translations

Translation into Clausal Form – Example

Example: ∀x ∃y p(x , y)→ ∃y ∀x p(x , y)

Try to prove this formula based on refutation in CNF

I negate the formula: ¬(∀x ∃y p(x , y)→ ∃y ∀x p(x , y))

I Rename bound variables: ¬(∀ x ∃y p(x , y)→ ∃w ∀z p(z ,w))

I Eliminate implication →: ¬(¬∀x ∃y p(x , y) ∨ ∃w ∀z p(z ,w))

I Push negation inwards: ∀x ∃y p(x , y) ∧ ∀w ∃z ¬p(z ,w)

I Skolemize, i.e., replace ∃: ∀x p(x , f (x)) ∧ ∀w ¬p(g(w),w)

I Write in clausal form : {{p(x , f (x))}, {¬p(g(w),w)}}
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Reminder: Propositional Resolution

Reminder: The Resolution Rule

The resolution calculus is a refutation procedure.

I in order to determine whether a formula F (in clausal form) is valid, we
check whether ¬F is unsatisfiable

Definition 2.1 (Complementary Literal).

The complementary literal L of a literal L is A if L is of the form ¬A,
otherwise it is ¬L.

Definition 2.2 (Resolution Rule).

Let C1,C2 be clauses with L∈C1 and L∈C2. The resolvent C ′ of C1 and
C2 is (C1\{L}) ∪ (C2\{L}). C1 and C2 are the parents of C ′.

I the resolution rule maintains satisfiability: If I |= C1 and I |= C2 then
I |= C ′

I if a set of clauses S is satisfiable and C1,C2 ∈ S , then S ∪ {C ′} is
satisfiable.
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Reminder: Propositional Resolution

The Resolution Rule – Example

Example: Let C1 = {a, b,¬c} and C2 = {b, c ,¬e}.

{a, b,¬c} {b, c ,¬e}
↘ ↙
{a, b,¬e}

The resolvent of C1 and C2 is {a, b,¬e}.

Observations:

I if {a, b,¬c} and {b, c ,¬e} ≡ (a∨b∨¬c) ∧ (b∨c∨¬e) are satisfiable,
then (a∨b) is satisfiable (if c is true) or (b∨¬e) is satisfiable (if c is
false); hence (a∨b∨¬e) is satisfiable

I if resolvent is unsatisfiable, then parents are unsatisfiable

I the empty clauses { } is unsatisfiable

I goal: derive empty clause { }
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Reminder: Propositional Resolution

The Resolution Calculus

I a set of clauses is unsatisfiable iff the empty clause can be derived

I a clause C is true iff at least one of its literals is true; if there is no
literal in C , then C is false and every set of clauses (in CNF) that
contains C is false, i.e.unsatisfiable

Definition 2.3 (Resolution Procedure).

Given a set of clauses S .

1. apply the resolution rule to a pair of clauses {C1,C2} ⊆ S that has not
been chosen before; let C ′ be the resolvent

2. S ′ := S ∪ {C ′} , S := S ′

3. if C ′ = {}, then output “unsatisfiable”;
if all possible resolvents have been considered, then output
“satisfiable”; otherwise continue with 1.
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Reminder: Unification

Unification

I Motivation: try refuting the following

{ {p(x , b)}, {¬p(a, y)} }

I Remember: these mean

∀x p(x , b) and ∀y ¬p(a, y)

I Should be OK to instantiate x with a and y with b
I Giving

{ {p(a, b)}, {¬p(a, b)} }
I Which can be resolved to 2

Unification problem

Let s and t be terms. Find all
substitutions that make s and t
syntactically equal, i.e. all σ with
σ(s) = σ(t).

I A substitution that makes s
and t syntactically equal is
called a unifier for s and t.

I To terms are unifiable if they
have a unifier.
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Reminder: Unification

Examples

Are f (x) and f (a) unifiable?

Yes. We see that σ = {x\a} is a unifier: σ(f (x)) = f (a)

Are p(x , b) and p(a, y) unifiable?

Easier to see if we write terms as trees:

I The root symbols are the same.

I The left children are different

, but can be unified with {x\a}.

I The right children are different

, but can be unified with {y\b}.
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Reminder: Unification

Are f (a, b) and g(a, b) unifiable?

I The root symbols are different, and can not be unified!
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Reminder: Unification

Are f (x , x) and f (a, b) unifiable?

I The root symbols are equal.

I The left children are different

, but can be unified with {x\a}.

I We must apply {x\a} to x in both branches.

I The right children are now different, and can not be unified!
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Reminder: Unification

Are x and f (x) unifiable?

I The root symbols are different

, but can be unified by {x\f (x)}.

I We also have to apply {x\f (x)} on x in the right tree.

I The symbols x and f are different.

I If we unify with {f (x)/x}

, we have to replace x in the right tree
again.

I This continues indefinitely
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Reminder: Unification

Unification

Generally:

I Two distinct constant or function symbols are not unifiable.

I A variable x is not unifiable with a term that contains x .

I We will define a unification algorithm, that finds all unifiers for two
terms.

I Problem: Two terms can potentially have infinitely many unifiers. We
can’t compute all of them!

I Solution: Find a represetative σ for the set of unifiers, such that all
other unifiers can be constructed from σ.

I Such a unifier is known as a most general unifier.
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Reminder: Unification

More General Substitution

Definition 3.1 (More General Substitution).

Let σ1 and σ2 be substitutions. We say that σ2 is more general than σ1 if
there exists a subsitution τ such that σ1 = τσ2.

Is {x\f (y)} more general than {x\f (a), y\a}?

Yes, since {x\f (a), y\a} = {y\a}{x\f (y)}.

Is {x\f (a)} more general than {x\f (y)}?

No, because there is no substitution τ such that {x\f (y)} = τ{x\f (a)}.

Is {x\f (y)} more general than {x\f (y)}

Yes, since {x\f (y)} = {}{x\f (y)}, where {} is the identity substitution.
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Reminder: Unification

Most General Unifiers

Definition 3.2 (Unifier, Most General Unifier).

Let s and t be terms. A substitution σ is

I a unifier for s and t if σ(s) = σ(t).

I a most general unifier (mgu) for s and t if

I it is a unifier for s and t, and
I it is more general than any other unifiers for s and t.

We say that s and t are unifiable if they have a unifier.

Let s = f (x) and t = f (y).

I σ1 = {x\a, y\a} is a unifier for s and t

I σ2 = {x\y} and σ3 = {y\x} are also unifiers for s and t

I σ2 and σ3 are the most general unifiers for s and t
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Reminder: Unification

Uniqueness “up to variable renaming”

Proposition 3.1.

If σ1 and σ2 are most general unifiers for two terms s and t, then there is
a variable renaming η such that ησ1 = σ2.

I We leave out the proof.
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Reminder: Unification

Unification Algorithm

Algoritm: unify(t1, t2)

σ := ε;
while (σ(t1) 6= σ(t2)) do

choose a critical pair 〈k1, k2〉 for σ(t1), σ(t2);
if (neither k1 nor k2 are variables) then

return “not unifiable”;
end if
x := the one of k1, k2 that is a variable (if both are, choose one)
t := the one of k1, k2 that is not x ;
if (x occurs in t) then

return “not unifiable”;
end if
σ := {x\t}σ;

end while
return σ;
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Reminder: Unification

Properties of the Unification Algorithm

I If the terms t1 and t2 are unifiable, the algorithm returns a most
general unifier for t1 and t2.

I The mgu is representative for all other unifiers of t1 and t2.

I If t1 and t2 are not unifiable, the algorithm returns “not unifiable”.
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First-Order Resolution

Outline

I Reminder: Clausal Form Translations

I Reminder: Propositional Resolution

I Reminder: Unification

I First-Order Resolution

I Soundness and Completeness

I Compactness

I Summary
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First-Order Resolution

The First-Order Resolution Calculus

The resolution rule is generalized by performing unification as part of the
rule and an additional factorization rule is added.

Definition 4.1 (First-Order Resolution Calculus).

axiom
C1, ..., {}, ...,Cn

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn, σ(Ci ∪ Cj)
resolution

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn

with σ a m.g.u. of L1 and L2.

C1, ...,Ci ∪ {L1, ..., Lm}, ...,Cn, σ(Ci ∪ {L1})
factorization

C1, ...,Ci ∪ {L1, ..., Lm}, ...,Cn

with σ a m.g.u. of L1 . . . Lm.

I a resolution proof for a set of clauses S is a derivation of S in the
resolution calculus; the substitution σ is local for every rule
application; variables in every clause C can be renamed
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First-Order Resolution

First-Order Resolution Calculus – Example

1. ¬p(x), q(x), r(x , f (x))

2. ¬p(x), q(x), r ′(f (x))

3. p′(a)

4. p(a)

5. ¬r(a, y), p′(y)

6. ¬p′(x),¬q(x)

7. ¬p′(x),¬r ′(x)

8. ¬q(a) — from 3 and 6 with [x\a]

9. ¬r ′(a) — from 3 and 7 with [x\a]

10. q(a), r(a, f (a)) — from 1 and 4 with [x\a]

11. q(a), r ′(f (a)) — from 2 and 4 with [x\a]

12. r(a, f (a)) — from 10 and 8 with [x\a]

13. r ′(f (a)) — from 11 and 8 with [x\a]

14. p′(f (a)) — from 12 and 5 with [y\f (a)]

15. ¬p′(f (a)) — from 13 and 7 with [x\f (a)]

16. 2 — from 14 and 15

IN3070/4070 :: Autumn 2020 Lecture 8 :: 8th October 23 / 34



First-Order Resolution

First-Order Resolution Calculus – Example

1. ¬p(x), q(x), r(x , f (x))

2. ¬p(x), q(x), r ′(f (x))

3. p′(a)

4. p(a)

5. ¬r(a, y), p′(y)

6. ¬p′(x),¬q(x)

7. ¬p′(x),¬r ′(x)

8. ¬q(a) — from 3 and 6 with [x\a]

9. ¬r ′(a) — from 3 and 7 with [x\a]

10. q(a), r(a, f (a)) — from 1 and 4 with [x\a]

11. q(a), r ′(f (a)) — from 2 and 4 with [x\a]

12. r(a, f (a)) — from 10 and 8 with [x\a]

13. r ′(f (a)) — from 11 and 8 with [x\a]

14. p′(f (a)) — from 12 and 5 with [y\f (a)]

15. ¬p′(f (a)) — from 13 and 7 with [x\f (a)]

16. 2 — from 14 and 15

IN3070/4070 :: Autumn 2020 Lecture 8 :: 8th October 23 / 34



First-Order Resolution

First-Order Resolution Calculus – Example

1. ¬p(x), q(x), r(x , f (x))

2. ¬p(x), q(x), r ′(f (x))

3. p′(a)

4. p(a)

5. ¬r(a, y), p′(y)

6. ¬p′(x),¬q(x)

7. ¬p′(x),¬r ′(x)

8. ¬q(a) — from 3 and 6 with [x\a]

9. ¬r ′(a) — from 3 and 7 with [x\a]

10. q(a), r(a, f (a)) — from 1 and 4 with [x\a]

11. q(a), r ′(f (a)) — from 2 and 4 with [x\a]

12. r(a, f (a)) — from 10 and 8 with [x\a]

13. r ′(f (a)) — from 11 and 8 with [x\a]

14. p′(f (a)) — from 12 and 5 with [y\f (a)]

15. ¬p′(f (a)) — from 13 and 7 with [x\f (a)]

16. 2 — from 14 and 15

IN3070/4070 :: Autumn 2020 Lecture 8 :: 8th October 23 / 34



First-Order Resolution

First-Order Resolution Calculus – Example

1. ¬p(x), q(x), r(x , f (x))

2. ¬p(x), q(x), r ′(f (x))

3. p′(a)

4. p(a)

5. ¬r(a, y), p′(y)

6. ¬p′(x),¬q(x)

7. ¬p′(x),¬r ′(x)

8. ¬q(a) — from 3 and 6 with [x\a]

9. ¬r ′(a) — from 3 and 7 with [x\a]

10. q(a), r(a, f (a)) — from 1 and 4 with [x\a]

11. q(a), r ′(f (a)) — from 2 and 4 with [x\a]

12. r(a, f (a)) — from 10 and 8 with [x\a]

13. r ′(f (a)) — from 11 and 8 with [x\a]

14. p′(f (a)) — from 12 and 5 with [y\f (a)]

15. ¬p′(f (a)) — from 13 and 7 with [x\f (a)]

16. 2 — from 14 and 15

IN3070/4070 :: Autumn 2020 Lecture 8 :: 8th October 23 / 34



First-Order Resolution

First-Order Resolution Calculus – Example

1. ¬p(x), q(x), r(x , f (x))

2. ¬p(x), q(x), r ′(f (x))

3. p′(a)

4. p(a)

5. ¬r(a, y), p′(y)

6. ¬p′(x),¬q(x)

7. ¬p′(x),¬r ′(x)

8. ¬q(a) — from 3 and 6 with [x\a]

9. ¬r ′(a) — from 3 and 7 with [x\a]

10. q(a), r(a, f (a)) — from 1 and 4 with [x\a]

11. q(a), r ′(f (a)) — from 2 and 4 with [x\a]

12. r(a, f (a)) — from 10 and 8 with [x\a]

13. r ′(f (a)) — from 11 and 8 with [x\a]

14. p′(f (a)) — from 12 and 5 with [y\f (a)]

15. ¬p′(f (a)) — from 13 and 7 with [x\f (a)]

16. 2 — from 14 and 15

IN3070/4070 :: Autumn 2020 Lecture 8 :: 8th October 23 / 34



First-Order Resolution

First-Order Resolution Calculus – Example

1. ¬p(x), q(x), r(x , f (x))

2. ¬p(x), q(x), r ′(f (x))

3. p′(a)

4. p(a)

5. ¬r(a, y), p′(y)

6. ¬p′(x),¬q(x)

7. ¬p′(x),¬r ′(x)

8. ¬q(a) — from 3 and 6 with [x\a]

9. ¬r ′(a) — from 3 and 7 with [x\a]

10. q(a), r(a, f (a)) — from 1 and 4 with [x\a]

11. q(a), r ′(f (a)) — from 2 and 4 with [x\a]

12. r(a, f (a)) — from 10 and 8 with [x\a]

13. r ′(f (a)) — from 11 and 8 with [x\a]

14. p′(f (a)) — from 12 and 5 with [y\f (a)]

15. ¬p′(f (a)) — from 13 and 7 with [x\f (a)]

16. 2 — from 14 and 15

IN3070/4070 :: Autumn 2020 Lecture 8 :: 8th October 23 / 34



First-Order Resolution

First-Order Resolution Calculus – Example

1. ¬p(x), q(x), r(x , f (x))

2. ¬p(x), q(x), r ′(f (x))

3. p′(a)

4. p(a)

5. ¬r(a, y), p′(y)

6. ¬p′(x),¬q(x)

7. ¬p′(x),¬r ′(x)

8. ¬q(a) — from 3 and 6 with [x\a]

9. ¬r ′(a) — from 3 and 7 with [x\a]

10. q(a), r(a, f (a)) — from 1 and 4 with [x\a]

11. q(a), r ′(f (a)) — from 2 and 4 with [x\a]

12. r(a, f (a)) — from 10 and 8 with [x\a]

13. r ′(f (a)) — from 11 and 8 with [x\a]

14. p′(f (a)) — from 12 and 5 with [y\f (a)]

15. ¬p′(f (a)) — from 13 and 7 with [x\f (a)]

16. 2 — from 14 and 15

IN3070/4070 :: Autumn 2020 Lecture 8 :: 8th October 23 / 34



First-Order Resolution

First-Order Resolution Calculus – Example

1. ¬p(x), q(x), r(x , f (x))

2. ¬p(x), q(x), r ′(f (x))

3. p′(a)

4. p(a)

5. ¬r(a, y), p′(y)

6. ¬p′(x),¬q(x)

7. ¬p′(x),¬r ′(x)

8. ¬q(a) — from 3 and 6 with [x\a]

9. ¬r ′(a) — from 3 and 7 with [x\a]

10. q(a), r(a, f (a)) — from 1 and 4 with [x\a]

11. q(a), r ′(f (a)) — from 2 and 4 with [x\a]

12. r(a, f (a)) — from 10 and 8 with [x\a]

13. r ′(f (a)) — from 11 and 8 with [x\a]

14. p′(f (a)) — from 12 and 5 with [y\f (a)]

15. ¬p′(f (a)) — from 13 and 7 with [x\f (a)]

16. 2 — from 14 and 15

IN3070/4070 :: Autumn 2020 Lecture 8 :: 8th October 23 / 34



First-Order Resolution

First-Order Resolution Calculus – Example

1. ¬p(x), q(x), r(x , f (x))

2. ¬p(x), q(x), r ′(f (x))

3. p′(a)

4. p(a)

5. ¬r(a, y), p′(y)

6. ¬p′(x),¬q(x)

7. ¬p′(x),¬r ′(x)

8. ¬q(a) — from 3 and 6 with [x\a]

9. ¬r ′(a) — from 3 and 7 with [x\a]

10. q(a), r(a, f (a)) — from 1 and 4 with [x\a]

11. q(a), r ′(f (a)) — from 2 and 4 with [x\a]

12. r(a, f (a)) — from 10 and 8 with [x\a]

13. r ′(f (a)) — from 11 and 8 with [x\a]

14. p′(f (a)) — from 12 and 5 with [y\f (a)]

15. ¬p′(f (a)) — from 13 and 7 with [x\f (a)]

16. 2 — from 14 and 15

IN3070/4070 :: Autumn 2020 Lecture 8 :: 8th October 23 / 34



First-Order Resolution

First-Order Resolution Calculus – Example

1. ¬p(x), q(x), r(x , f (x))

2. ¬p(x), q(x), r ′(f (x))

3. p′(a)

4. p(a)

5. ¬r(a, y), p′(y)

6. ¬p′(x),¬q(x)

7. ¬p′(x),¬r ′(x)

8. ¬q(a) — from 3 and 6 with [x\a]

9. ¬r ′(a) — from 3 and 7 with [x\a]

10. q(a), r(a, f (a)) — from 1 and 4 with [x\a]

11. q(a), r ′(f (a)) — from 2 and 4 with [x\a]

12. r(a, f (a)) — from 10 and 8 with [x\a]

13. r ′(f (a)) — from 11 and 8 with [x\a]

14. p′(f (a)) — from 12 and 5 with [y\f (a)]

15. ¬p′(f (a)) — from 13 and 7 with [x\f (a)]

16. 2 — from 14 and 15
IN3070/4070 :: Autumn 2020 Lecture 8 :: 8th October 23 / 34



First-Order Resolution

The Necessity of Factoring

(1) : p(u) ∨ p(f (u))
(2) : ¬p(v) ∨ p(f (w))
(3) : ¬p(x) ∨ ¬p(f (x))

A possible resolution derivation:

(4) : p(u) ∨ p(f (w)) by resolving (1) and (2), with v = f (u)
(5) : p(f (w)) by factoring (4), with u = f (w)
(6) : ¬p(f (f (w ′))) by resolving (5) and (3), with w = w ′, x = f (w ′)
(7) : 2 by resolving (5) and (6), with w = f (w ′)
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Soundness and Completeness

Outline

I Reminder: Clausal Form Translations

I Reminder: Propositional Resolution

I Reminder: Unification

I First-Order Resolution

I Soundness and Completeness

I Compactness

I Summary
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Soundness and Completeness

Soundness and Completeness

Theorem 5.1 (Soundness and Completeness of Resolution).

The resolution calculus is sound and complete, i.e.

I if A is provable in the resolution calculus, then A is valid
(if ` A then |= A)

I if A is valid, then A is provable in the resolution calculus
(if |= A then ` A)

Proof.

See Ben-Ari, section 10.5, [Robinson 1965].
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Soundness and Completeness

Soundness

Definition 5.1.

An interpretation I satisfies a clause C if for every variable assignment α,
there is a L ∈ C with vI(α, L) = T .

So I |= {p(x), q(x)} if either p or q holds for all domain elements.

Lemma 5.1.

If a set of clauses S is satisfiable, then the result of adding the resolvent of
two clauses C1,C2 ∈ A to S is also satisfiable.

Proof.

Sketch: if I |= C1 and I |= C2 then also I |= σ(C1) and I |= σ(C2)
(where σ is the m.g.u.) due to the substitution lemma.
Then I |= σ((C1 \ {L1}) ∪ (C2 \ {L2})) like for propositional logic.
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Soundness and Completeness

Completeness

I Semantic Trees can be infininte

I Define complete semantic trees for all closed literals

⊥

p(a)

p(b)

r(a, b)
...

¬r(a, b)
...

¬p(b)

r(a, b)
...

¬r(a, b)
...

¬p(a)

r(a, b)

p(b)
...

¬p(b)
...

¬r(a, b)

p(b)
...

¬p(b)
...

I Same notions of failure nodes and closed semantic trees as before

I There are resolution steps from closed instances of clauses

I Lifting: There are corresponding steps using m.g.u.s
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Compactness

Compactness

Observation

Nowhere in the definition of resolution do we need that S is finite.

I If S is unsatisfiable

there is a closed semantic tree which enables a
resolution step that gives a smaller semantic tree.

I No need to use all of S

I The closed tree is always finite (König’s Lemma)

I To close the semantic tree we need only finitely many clauses S ′ ⊆ S .

I Collect all clauses S0 ⊆ S that are used in a refutation

I S0 ⊆ S is finite and unsatisfiable

Theorem 6.1 (Compactness).

Every unsatisfiable set of clauses S has a finite unsatisfiable subset
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Compactness

Compactness: Example

∃x ¬p(x), p(a), p(fa), p(ffa), p(fffa), . . .

I Every finite subset is satisfiable.

I E.g. take a domain with an extra element d ∈ D that is not the value
of any f n(a)

I Interpret p such that pι(d) = F , and therefore I |= ∃x ¬p(x).

I By compactness: The whole set is also satisfiable
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Compactness

Compactness: Counterexample

I Now we look at satisfiability ‘over N’

I i.e. in interpretations with D = N, 0ι = 0, 1ι = 1,. . .

∃x ¬p(x), p(0), p(1), p(2), p(3), . . .

I Every finite subset S0 ⊆ S is satisfiable over N.

I E.g. let n be maximal with p(n) ∈ S0

I Interpret p(0) . . . p(n) as true, but p(n + 1) as false.

I Then all p(· · · ) ∈ S0 are satisfied and also ∃x ¬p(x).

I But the whole set of formulas is unsatisfiable over N

Theorem 6.2.

Satisfiability over the natural numbers is not compact.

Reasoning about numbers involves more than just first-order logic.
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Summary

Summary

I resolution calculus is one of the most popular proof search calculi for
(classical) first-order logic

I consists of:
I one axiom
I resolution rule
I factorization rule

I unification is used to unify terms of complementary literals

I easy to implement, but for an efficient proof search the application of
the resolution rule needs to be controlled

I implemented in popular automated theorem provers, e.g. Otter,
Prover9, Vampire

I Compactness: we can reason over (countably) infinite clause sets, but
1st-order reasoning is not strong enough for all of maths

I Next Week: logic programming and Prolog
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