
IN3070/4070 – Logic – Autumn 2020
Lecture 9: Logic Programming

Martin Giese

15th October 2019

Department of
Informatics

University of
Oslo

Today’s Plan

I Motivation

I SLD Resolution

I Prolog

I Syntax

I Semantics

I Lists & Arithmetic

I Negation/Cut/If-then-else

I Summary

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 2 / 38

Motivation

Outline

I Motivation

I SLD Resolution

I Prolog

I Syntax

I Semantics

I Lists & Arithmetic

I Negation/Cut/If-then-else

I Summary

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 3 / 38

Motivation

The First-Order Resolution Calculus

Definition 1.1 (First-Order Resolution Calculus).

axiom
C1, ..., {}, ...,Cn

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn,Ciσ ∪ Cjσ
resolution

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn

with σ(L1) = σ(L2)

C1, ...,Ci ∪ {L1, ..., Lm}, ...,Cn,Ciσ ∪ {L1σ}
factorization

C1, ...,Ci ∪ {L1, ..., Lm}, ...,Cn

with σ(L1) = ... = σ(Lm)

I a resolution proof for a set of clauses S is a derivation of S in the
resolution calculus; the substitution σ is local for every rule application;
variables in every clause C can be renamed

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 4 / 38

Motivation

The First-Order Resolution Calculus

Definition 1.1 (First-Order Resolution Calculus).

axiom
C1, ..., {}, ...,Cn

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn,Ciσ ∪ Cjσ
resolution

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn

with σ(L1) = σ(L2)

C1, ...,Ci ∪ {L1, ..., Lm}, ...,Cn,Ciσ ∪ {L1σ}
factorization

C1, ...,Ci ∪ {L1, ..., Lm}, ...,Cn

with σ(L1) = ... = σ(Lm)

I a resolution proof for a set of clauses S is a derivation of S in the
resolution calculus; the substitution σ is local for every rule application;
variables in every clause C can be renamed

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 4 / 38

Motivation

Logic Programming

I use restricted form of resolution for programming a computation

I program is expressed as a set of “Horn” clauses

I given a query, “SLD resolution” is used to prove that the query is a
logical consequence of the program

I unification is used to calculate a substitution of the variables in the
given query

I in imperative programming languages, computation is explicitly
constructed by the programmer (using if-then-else, while, for, ...)

I in logic programming, the program is a declarative specification and the
resolution inference engine provides an implicit control

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 5 / 38

Motivation

Logic Programming

I use restricted form of resolution for programming a computation

I program is expressed as a set of “Horn” clauses

I given a query, “SLD resolution” is used to prove that the query is a
logical consequence of the program

I unification is used to calculate a substitution of the variables in the
given query

I in imperative programming languages, computation is explicitly
constructed by the programmer (using if-then-else, while, for, ...)

I in logic programming, the program is a declarative specification and the
resolution inference engine provides an implicit control

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 5 / 38

Motivation

Logic Programming

I use restricted form of resolution for programming a computation

I program is expressed as a set of “Horn” clauses

I given a query, “SLD resolution” is used to prove that the query is a
logical consequence of the program

I unification is used to calculate a substitution of the variables in the
given query

I in imperative programming languages, computation is explicitly
constructed by the programmer (using if-then-else, while, for, ...)

I in logic programming, the program is a declarative specification and the
resolution inference engine provides an implicit control

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 5 / 38

SLD Resolution

Outline

I Motivation

I SLD Resolution

I Prolog

I Syntax

I Semantics

I Lists & Arithmetic

I Negation/Cut/If-then-else

I Summary

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 6 / 38

SLD Resolution

Horn Clauses and Logic Programs

Definition 2.1 (Horn Clause).

A Horn clause is a clause that contains at most one positive literal (a
positive literal is a non-negated literal). A definite clause is a Horn clause
that contains a (single) positive literal.

Definition 2.2 (Logic Program).

A logic program consists of definite clauses of the form:

I facts: {A} (A)
I rules: {A,¬B1, ...,¬Bn} (A← B1 ∧ ... ∧ Bn)

where A,B1, ...,Bn are atomic formulae.

Definition 2.3 (Goal or Query).

A goal/query clause has the form {¬B1, ...,¬Bn} where B1, ...,Bn are
atomic formulae.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 7 / 38

SLD Resolution

Horn Clauses and Logic Programs

Definition 2.1 (Horn Clause).

A Horn clause is a clause that contains at most one positive literal (a
positive literal is a non-negated literal). A definite clause is a Horn clause
that contains a (single) positive literal.

Definition 2.2 (Logic Program).

A logic program consists of definite clauses of the form:

I facts: {A} (A)
I rules: {A,¬B1, ...,¬Bn} (A← B1 ∧ ... ∧ Bn)

where A,B1, ...,Bn are atomic formulae.

Definition 2.3 (Goal or Query).

A goal/query clause has the form {¬B1, ...,¬Bn} where B1, ...,Bn are
atomic formulae.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 7 / 38

SLD Resolution

Horn Clauses and Logic Programs

Definition 2.1 (Horn Clause).

A Horn clause is a clause that contains at most one positive literal (a
positive literal is a non-negated literal). A definite clause is a Horn clause
that contains a (single) positive literal.

Definition 2.2 (Logic Program).

A logic program consists of definite clauses of the form:

I facts: {A} (A)
I rules: {A,¬B1, ...,¬Bn} (A← B1 ∧ ... ∧ Bn)

where A,B1, ...,Bn are atomic formulae.

Definition 2.3 (Goal or Query).

A goal/query clause has the form {¬B1, ...,¬Bn} where B1, ...,Bn are
atomic formulae.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 7 / 38

SLD Resolution

SLD Resolution

SLD resolution (Selective Linear Definite clause resolution) is the inference
rule used in logic programming

I it is a refinement of the general resolution rule

I it is sound and complete for Horn clauses

Definition 2.4 (SLD Resolution).

axiom
C1, ..., {}, ...,Cn

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn,Ciσ ∪ Cjσ
resolution

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn

with σ(L1) = σ(L2)

I first step: 1st parent clause Ci∪{L1} is the query clause
step n≥2: 1st parent clauses Ci∪{L1} is resolvent Ciσ∪Cjσ of step n−1

I 2nd parent clauses Cj∪{L2} is always a clause of the logic program

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 8 / 38

SLD Resolution

SLD Resolution

SLD resolution (Selective Linear Definite clause resolution) is the inference
rule used in logic programming

I it is a refinement of the general resolution rule

I it is sound and complete for Horn clauses

Definition 2.4 (SLD Resolution).

axiom
C1, ..., {}, ...,Cn

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn,Ciσ ∪ Cjσ
resolution

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn

with σ(L1) = σ(L2)

I first step: 1st parent clause Ci∪{L1} is the query clause
step n≥2: 1st parent clauses Ci∪{L1} is resolvent Ciσ∪Cjσ of step n−1

I 2nd parent clauses Cj∪{L2} is always a clause of the logic program

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 8 / 38

SLD Resolution

SLD Resolution

SLD resolution (Selective Linear Definite clause resolution) is the inference
rule used in logic programming

I it is a refinement of the general resolution rule

I it is sound and complete for Horn clauses

Definition 2.4 (SLD Resolution).

axiom
C1, ..., {}, ...,Cn

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn,Ciσ ∪ Cjσ
resolution

C1, ...,Ci ∪ {L1}, ...,Cj ∪ {L2}, ...,Cn

with σ(L1) = σ(L2)

I first step: 1st parent clause Ci∪{L1} is the query clause
step n≥2: 1st parent clauses Ci∪{L1} is resolvent Ciσ∪Cjσ of step n−1

I 2nd parent clauses Cj∪{L2} is always a clause of the logic program

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 8 / 38

SLD Resolution

An SLD Resolution Derivation

Let {¬Q1,¬Q2, ...} be a query clause and

{A1,¬B1,¬B ′
1, ...}, ... {An,¬Bn,¬B ′

n, ...} be a logic program.

An SLD resolution derivation has the following form:

{¬Q1, ...,¬Qi , ...} {Aj ,¬Bj ,¬B ′
j , ...} with σ(Qi) = σ(Aj)

↓ ↙
{¬D1, ...,¬Dk ,} {Al ,¬Bl ,¬B ′

l , ...} with σ(Dk) = σ(Al)
↓ ↙

{¬E1, ...,¬Em,}
...

{¬F1} {An} with σ(F1) = σ(An)
↓ ↙
{}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 9 / 38

SLD Resolution

An SLD Resolution Derivation

Let {¬Q1,¬Q2, ...} be a query clause and

{A1,¬B1,¬B ′
1, ...}, ... {An,¬Bn,¬B ′

n, ...} be a logic program.

An SLD resolution derivation has the following form:

{¬Q1, ...,¬Qi , ...}

{Aj ,¬Bj ,¬B ′
j , ...} with σ(Qi) = σ(Aj)

↓ ↙
{¬D1, ...,¬Dk ,} {Al ,¬Bl ,¬B ′

l , ...} with σ(Dk) = σ(Al)
↓ ↙

{¬E1, ...,¬Em,}
...

{¬F1} {An} with σ(F1) = σ(An)
↓ ↙
{}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 9 / 38

SLD Resolution

An SLD Resolution Derivation

Let {¬Q1,¬Q2, ...} be a query clause and

{A1,¬B1,¬B ′
1, ...}, ... {An,¬Bn,¬B ′

n, ...} be a logic program.

An SLD resolution derivation has the following form:

{¬Q1, ...,¬Qi , ...} {Aj ,¬Bj ,¬B ′
j , ...}

with σ(Qi) = σ(Aj)
↓ ↙

{¬D1, ...,¬Dk ,} {Al ,¬Bl ,¬B ′
l , ...} with σ(Dk) = σ(Al)

↓ ↙
{¬E1, ...,¬Em,}

...
{¬F1} {An} with σ(F1) = σ(An)
↓ ↙
{}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 9 / 38

SLD Resolution

An SLD Resolution Derivation

Let {¬Q1,¬Q2, ...} be a query clause and

{A1,¬B1,¬B ′
1, ...}, ... {An,¬Bn,¬B ′

n, ...} be a logic program.

An SLD resolution derivation has the following form:

{¬Q1, ...,¬Qi , ...} {Aj ,¬Bj ,¬B ′
j , ...} with σ(Qi) = σ(Aj)

↓ ↙
{¬D1, ...,¬Dk ,}

{Al ,¬Bl ,¬B ′
l , ...} with σ(Dk) = σ(Al)

↓ ↙
{¬E1, ...,¬Em,}

...
{¬F1} {An} with σ(F1) = σ(An)
↓ ↙
{}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 9 / 38

SLD Resolution

An SLD Resolution Derivation

Let {¬Q1,¬Q2, ...} be a query clause and

{A1,¬B1,¬B ′
1, ...}, ... {An,¬Bn,¬B ′

n, ...} be a logic program.

An SLD resolution derivation has the following form:

{¬Q1, ...,¬Qi , ...} {Aj ,¬Bj ,¬B ′
j , ...} with σ(Qi) = σ(Aj)

↓ ↙
{¬D1, ...,¬Dk ,} {Al ,¬Bl ,¬B ′

l , ...}

with σ(Dk) = σ(Al)
↓ ↙

{¬E1, ...,¬Em,}
...

{¬F1} {An} with σ(F1) = σ(An)
↓ ↙
{}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 9 / 38

SLD Resolution

An SLD Resolution Derivation

Let {¬Q1,¬Q2, ...} be a query clause and

{A1,¬B1,¬B ′
1, ...}, ... {An,¬Bn,¬B ′

n, ...} be a logic program.

An SLD resolution derivation has the following form:

{¬Q1, ...,¬Qi , ...} {Aj ,¬Bj ,¬B ′
j , ...} with σ(Qi) = σ(Aj)

↓ ↙
{¬D1, ...,¬Dk ,} {Al ,¬Bl ,¬B ′

l , ...} with σ(Dk) = σ(Al)
↓ ↙

{¬E1, ...,¬Em,}

...
{¬F1} {An} with σ(F1) = σ(An)
↓ ↙
{}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 9 / 38

SLD Resolution

An SLD Resolution Derivation

Let {¬Q1,¬Q2, ...} be a query clause and

{A1,¬B1,¬B ′
1, ...}, ... {An,¬Bn,¬B ′

n, ...} be a logic program.

An SLD resolution derivation has the following form:

{¬Q1, ...,¬Qi , ...} {Aj ,¬Bj ,¬B ′
j , ...} with σ(Qi) = σ(Aj)

↓ ↙
{¬D1, ...,¬Dk ,} {Al ,¬Bl ,¬B ′

l , ...} with σ(Dk) = σ(Al)
↓ ↙

{¬E1, ...,¬Em,}
...

{¬F1}

{An} with σ(F1) = σ(An)
↓ ↙
{}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 9 / 38

SLD Resolution

An SLD Resolution Derivation

Let {¬Q1,¬Q2, ...} be a query clause and

{A1,¬B1,¬B ′
1, ...}, ... {An,¬Bn,¬B ′

n, ...} be a logic program.

An SLD resolution derivation has the following form:

{¬Q1, ...,¬Qi , ...} {Aj ,¬Bj ,¬B ′
j , ...} with σ(Qi) = σ(Aj)

↓ ↙
{¬D1, ...,¬Dk ,} {Al ,¬Bl ,¬B ′

l , ...} with σ(Dk) = σ(Al)
↓ ↙

{¬E1, ...,¬Em,}
...

{¬F1} {An}

with σ(F1) = σ(An)
↓ ↙
{}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 9 / 38

SLD Resolution

An SLD Resolution Derivation

Let {¬Q1,¬Q2, ...} be a query clause and

{A1,¬B1,¬B ′
1, ...}, ... {An,¬Bn,¬B ′

n, ...} be a logic program.

An SLD resolution derivation has the following form:

{¬Q1, ...,¬Qi , ...} {Aj ,¬Bj ,¬B ′
j , ...} with σ(Qi) = σ(Aj)

↓ ↙
{¬D1, ...,¬Dk ,} {Al ,¬Bl ,¬B ′

l , ...} with σ(Dk) = σ(Al)
↓ ↙

{¬E1, ...,¬Em,}
...

{¬F1} {An} with σ(F1) = σ(An)
↓ ↙
{}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 9 / 38

Prolog

Outline

I Motivation

I SLD Resolution

I Prolog

I Syntax

I Semantics

I Lists & Arithmetic

I Negation/Cut/If-then-else

I Summary

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 10 / 38

Prolog

The Programming Language Prolog

I Prolog (Programming in Logic) is a declarative programming language
invented in the early 1970s by A. Colmerauer, R. Kowalski, and
P. Roussel

I declarative programming: specify the problem and let the computer
solve it

I algorithm = logic + control [Kowalski 1979]

I A Prolog program is a logic program, i.e. a set of definite clauses

I the symbol ’:-’ is used to represent the implication ’←’

I A Prolog program is “executed” by the Prolog interpreter (control) that
implements SLD resolution

I search strategy: choose leftmost literal in the first parent/goal clause
(D1) and choose second parent clause (D2) from top to bottom among
the program clauses

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 11 / 38

Prolog

The Programming Language Prolog

I Prolog (Programming in Logic) is a declarative programming language
invented in the early 1970s by A. Colmerauer, R. Kowalski, and
P. Roussel

I declarative programming: specify the problem and let the computer
solve it

I algorithm = logic + control [Kowalski 1979]

I A Prolog program is a logic program, i.e. a set of definite clauses

I the symbol ’:-’ is used to represent the implication ’←’

I A Prolog program is “executed” by the Prolog interpreter (control) that
implements SLD resolution

I search strategy: choose leftmost literal in the first parent/goal clause
(D1) and choose second parent clause (D2) from top to bottom among
the program clauses

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 11 / 38

Prolog

The Programming Language Prolog

I Prolog (Programming in Logic) is a declarative programming language
invented in the early 1970s by A. Colmerauer, R. Kowalski, and
P. Roussel

I declarative programming: specify the problem and let the computer
solve it

I algorithm = logic + control [Kowalski 1979]

I A Prolog program is a logic program, i.e. a set of definite clauses

I the symbol ’:-’ is used to represent the implication ’←’

I A Prolog program is “executed” by the Prolog interpreter (control) that
implements SLD resolution

I search strategy: choose leftmost literal in the first parent/goal clause
(D1) and choose second parent clause (D2) from top to bottom among
the program clauses

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 11 / 38

Prolog

The Programming Language Prolog

I Prolog (Programming in Logic) is a declarative programming language
invented in the early 1970s by A. Colmerauer, R. Kowalski, and
P. Roussel

I declarative programming: specify the problem and let the computer
solve it

I algorithm = logic + control [Kowalski 1979]

I A Prolog program is a logic program, i.e. a set of definite clauses

I the symbol ’:-’ is used to represent the implication ’←’

I A Prolog program is “executed” by the Prolog interpreter (control) that
implements SLD resolution

I search strategy: choose leftmost literal in the first parent/goal clause
(D1) and choose second parent clause (D2) from top to bottom among
the program clauses

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 11 / 38

Prolog

Prolog – An Example

I An example in Prolog (file family.pl)

male(thomas). % these are facts

male(rolf).

female(anna).

female(maria).

parent(thomas,anna).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X). % these are rules

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

I start Prolog and type ’[family].’ to load the program

I Ctrl-C stops Prolog; ’halt.’ exits Prolog

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 12 / 38

Prolog

Prolog – An Example

I An example in Prolog (file family.pl)

male(thomas). % these are facts

male(rolf).

female(anna).

female(maria).

parent(thomas,anna).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X). % these are rules

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

I start Prolog and type ’[family].’ to load the program

I Ctrl-C stops Prolog; ’halt.’ exits Prolog

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 12 / 38

Prolog

Prolog – An Example

I An example in Prolog (file family.pl)

male(thomas). % these are facts

male(rolf).

female(anna).

female(maria).

parent(thomas,anna).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X). % these are rules

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

I start Prolog and type ’[family].’ to load the program

I Ctrl-C stops Prolog; ’halt.’ exits Prolog

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 12 / 38

Prolog

Prolog – An Example

I An example in Prolog (file family.pl)

male(thomas). % these are facts

male(rolf).

female(anna).

female(maria).

parent(thomas,anna).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X). % these are rules

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

I start Prolog and type ’[family].’ to load the program

I Ctrl-C stops Prolog; ’halt.’ exits Prolog

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 12 / 38

Prolog

Prolog – An Example

I An example in Prolog (file family.pl)

male(thomas). % these are facts

male(rolf).

female(anna).

female(maria).

parent(thomas,anna).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X). % these are rules

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

I start Prolog and type ’[family].’ to load the program

I Ctrl-C stops Prolog; ’halt.’ exits Prolog

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 12 / 38

Prolog

Prolog – An Example

I An example in Prolog (file family.pl)

male(thomas). % these are facts

male(rolf).

female(anna).

female(maria).

parent(thomas,anna).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X). % these are rules

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

I start Prolog and type ’[family].’ to load the program

I Ctrl-C stops Prolog; ’halt.’ exits Prolog

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 12 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

Prolog Queries – Examples

I ?- parent(maria,anna).

true.

?- parent(anna,maria).

false.

I ?- parent(X,anna).

X = thomas <press ’;’ for more solutions>

X = maria <press ’;’ for more solutions>

false.

I ?- father(X,Y).

X = thomas,

Y = anna <press ’;’ for more solutions>

X = rolf,

Y = maria.

I ?- grandfather(rolf,Y).

Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 13 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}
↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)}

{grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}
↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}

↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}
↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)}

{father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}
↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}

↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}
↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)}

{parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}
↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}

↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}
↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)}

{male(rolf)}
↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}

↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}
↘ ↙
{¬parent(maria,Z)}

{parent(maria,anna)}
↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}
↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Prolog

SLD Resolution Derivation – Example

program clauses:
male(rolf).

parent(maria,anna).

parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{¬grandfather(rolf,Y)} {grandfather(X,Z),¬father(X,U),¬parent(U,Z)}
↓ ↙ with σ(X)=rolf, σ(Y)=Z

{¬father(rolf,U),¬parent(U,Z)} {father(V,W),¬parent(V,W),¬male(V)}
↓ ↙ with σ(V)=rolf, σ(U)=W

{¬parent(rolf,W),¬male(rolf),¬parent(W,Z)} {parent(rolf,maria)}
↘ ↙ with σ(W)=maria

{¬male(rolf),¬parent(maria,Z)} {male(rolf)}
↘ ↙
{¬parent(maria,Z)} {parent(maria,anna)}

↘ ↙ with σ(Z)=anna

Y = anna. (= σ(Y)= σ(Z)) { }
IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 14 / 38

Syntax

Outline

I Motivation

I SLD Resolution

I Prolog

I Syntax

I Semantics

I Lists & Arithmetic

I Negation/Cut/If-then-else

I Summary

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 15 / 38

Syntax

Terms and Predicates

Terms 〈term〉:

I constants 〈constant〉: start with lower case letters (e.g. parent, anna)

I numbers: like usual (e.g. 123, 123.456)

I variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’ is anonymous variable)

I structures: 〈constant〉 or 〈constant〉(Term1, ...,TermN)
(e.g. parent(maria,anna))

Predicates 〈predicate〉:
I 〈constant〉 or 〈constant〉(Term1, ...,TermN)

(e.g. thomas, parent(maria,anna))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 16 / 38

Syntax

Terms and Predicates

Terms 〈term〉:
I constants 〈constant〉: start with lower case letters (e.g. parent, anna)

I numbers: like usual (e.g. 123, 123.456)

I variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’ is anonymous variable)

I structures: 〈constant〉 or 〈constant〉(Term1, ...,TermN)
(e.g. parent(maria,anna))

Predicates 〈predicate〉:
I 〈constant〉 or 〈constant〉(Term1, ...,TermN)

(e.g. thomas, parent(maria,anna))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 16 / 38

Syntax

Terms and Predicates

Terms 〈term〉:
I constants 〈constant〉: start with lower case letters (e.g. parent, anna)

I numbers: like usual (e.g. 123, 123.456)

I variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’ is anonymous variable)

I structures: 〈constant〉 or 〈constant〉(Term1, ...,TermN)
(e.g. parent(maria,anna))

Predicates 〈predicate〉:
I 〈constant〉 or 〈constant〉(Term1, ...,TermN)

(e.g. thomas, parent(maria,anna))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 16 / 38

Syntax

Terms and Predicates

Terms 〈term〉:
I constants 〈constant〉: start with lower case letters (e.g. parent, anna)

I numbers: like usual (e.g. 123, 123.456)

I variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’ is anonymous variable)

I structures: 〈constant〉 or 〈constant〉(Term1, ...,TermN)
(e.g. parent(maria,anna))

Predicates 〈predicate〉:
I 〈constant〉 or 〈constant〉(Term1, ...,TermN)

(e.g. thomas, parent(maria,anna))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 16 / 38

Syntax

Terms and Predicates

Terms 〈term〉:
I constants 〈constant〉: start with lower case letters (e.g. parent, anna)

I numbers: like usual (e.g. 123, 123.456)

I variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’ is anonymous variable)

I structures: 〈constant〉 or 〈constant〉(Term1, ...,TermN)
(e.g. parent(maria,anna))

Predicates 〈predicate〉:
I 〈constant〉 or 〈constant〉(Term1, ...,TermN)

(e.g. thomas, parent(maria,anna))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 16 / 38

Syntax

Terms and Predicates

Terms 〈term〉:
I constants 〈constant〉: start with lower case letters (e.g. parent, anna)

I numbers: like usual (e.g. 123, 123.456)

I variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’ is anonymous variable)

I structures: 〈constant〉 or 〈constant〉(Term1, ...,TermN)
(e.g. parent(maria,anna))

Predicates 〈predicate〉:

I 〈constant〉 or 〈constant〉(Term1, ...,TermN)
(e.g. thomas, parent(maria,anna))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 16 / 38

Syntax

Terms and Predicates

Terms 〈term〉:
I constants 〈constant〉: start with lower case letters (e.g. parent, anna)

I numbers: like usual (e.g. 123, 123.456)

I variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’ is anonymous variable)

I structures: 〈constant〉 or 〈constant〉(Term1, ...,TermN)
(e.g. parent(maria,anna))

Predicates 〈predicate〉:
I 〈constant〉 or 〈constant〉(Term1, ...,TermN)

(e.g. thomas, parent(maria,anna))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 16 / 38

Syntax

Facts, Rules, and Queries

A Prolog program consists of clauses; a clause is either a fact or a rule.
The user can query the Prolog program/database.

Facts:

I 〈predicate〉. (observe the ‘.’ at the end)

(e.g. male(rolf). or parent(maria,anna).)

Rules:

I 〈predicate〉 :- 〈predicate1〉, ... , 〈predicateN〉.
(e.g. father(X,Y) :- parent(X,Y), male(X).)

I rules have the form Head :- Body.

I ‘:-’ can be read as ‘←’; comma ‘,’ in the body can be read as ‘∧’

Query:

I 〈predicate1〉, ... , 〈predicateN〉.
(e,g, parent(maria,anna). or grandfather(rolf,Y).)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 17 / 38

Syntax

Facts, Rules, and Queries

A Prolog program consists of clauses; a clause is either a fact or a rule.
The user can query the Prolog program/database.

Facts:

I 〈predicate〉. (observe the ‘.’ at the end)

(e.g. male(rolf). or parent(maria,anna).)

Rules:

I 〈predicate〉 :- 〈predicate1〉, ... , 〈predicateN〉.
(e.g. father(X,Y) :- parent(X,Y), male(X).)

I rules have the form Head :- Body.

I ‘:-’ can be read as ‘←’; comma ‘,’ in the body can be read as ‘∧’

Query:

I 〈predicate1〉, ... , 〈predicateN〉.
(e,g, parent(maria,anna). or grandfather(rolf,Y).)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 17 / 38

Syntax

Facts, Rules, and Queries

A Prolog program consists of clauses; a clause is either a fact or a rule.
The user can query the Prolog program/database.

Facts:

I 〈predicate〉. (observe the ‘.’ at the end)

(e.g. male(rolf). or parent(maria,anna).)

Rules:

I 〈predicate〉 :- 〈predicate1〉, ... , 〈predicateN〉.
(e.g. father(X,Y) :- parent(X,Y), male(X).)

I rules have the form Head :- Body.

I ‘:-’ can be read as ‘←’; comma ‘,’ in the body can be read as ‘∧’

Query:

I 〈predicate1〉, ... , 〈predicateN〉.
(e,g, parent(maria,anna). or grandfather(rolf,Y).)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 17 / 38

Syntax

Facts, Rules, and Queries

A Prolog program consists of clauses; a clause is either a fact or a rule.
The user can query the Prolog program/database.

Facts:

I 〈predicate〉. (observe the ‘.’ at the end)

(e.g. male(rolf). or parent(maria,anna).)

Rules:

I 〈predicate〉 :- 〈predicate1〉, ... , 〈predicateN〉.
(e.g. father(X,Y) :- parent(X,Y), male(X).)

I rules have the form Head :- Body.

I ‘:-’ can be read as ‘←’; comma ‘,’ in the body can be read as ‘∧’

Query:

I 〈predicate1〉, ... , 〈predicateN〉.
(e,g, parent(maria,anna). or grandfather(rolf,Y).)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 17 / 38

Syntax

Facts, Rules, and Queries

A Prolog program consists of clauses; a clause is either a fact or a rule.
The user can query the Prolog program/database.

Facts:

I 〈predicate〉. (observe the ‘.’ at the end)

(e.g. male(rolf). or parent(maria,anna).)

Rules:

I 〈predicate〉 :- 〈predicate1〉, ... , 〈predicateN〉.
(e.g. father(X,Y) :- parent(X,Y), male(X).)

I rules have the form Head :- Body.

I ‘:-’ can be read as ‘←’; comma ‘,’ in the body can be read as ‘∧’

Query:

I 〈predicate1〉, ... , 〈predicateN〉.
(e,g, parent(maria,anna). or grandfather(rolf,Y).)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 17 / 38

Semantics

Outline

I Motivation

I SLD Resolution

I Prolog

I Syntax

I Semantics

I Lists & Arithmetic

I Negation/Cut/If-then-else

I Summary

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 18 / 38

Semantics

Operational Semantics

I Prolog tries to prove the query using the facts and rules in its database

I it starts trying to fulfil/solve the predicates one after the other

I if an appropriate fact matches, then the predicate/goal succeeds

I if the head of a rule matches, then Prolog continues by trying to fulfil
the predicates of the rule’s body

I the database is searched top to bottom

I if more than one fact or head of a rule matches, then alternative options
are considered if the search fails (via backtracking)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 19 / 38

Semantics

Operational Semantics

I Prolog tries to prove the query using the facts and rules in its database

I it starts trying to fulfil/solve the predicates one after the other

I if an appropriate fact matches, then the predicate/goal succeeds

I if the head of a rule matches, then Prolog continues by trying to fulfil
the predicates of the rule’s body

I the database is searched top to bottom

I if more than one fact or head of a rule matches, then alternative options
are considered if the search fails (via backtracking)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 19 / 38

Semantics

Operational Semantics

I Prolog tries to prove the query using the facts and rules in its database

I it starts trying to fulfil/solve the predicates one after the other

I if an appropriate fact matches, then the predicate/goal succeeds

I if the head of a rule matches, then Prolog continues by trying to fulfil
the predicates of the rule’s body

I the database is searched top to bottom

I if more than one fact or head of a rule matches, then alternative options
are considered if the search fails (via backtracking)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 19 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).

-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y)

-> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y)

-> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna)

-> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria)

-> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Operational Semantics – Example

male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

male(thomas)

parent(anna,anna) -> fail

-> parent(maria, anna)

male(maria) -> fail

-> parent(rolf, maria)

male(rolf)

parent(maria,anna)

grandfather(rolf,anna) succeeds

X = rolf.

I variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 20 / 38

Semantics

Logical Semantics

The semantics of a program is specified by the following formula F .

fact 1.

...

fact n.

head 1 :- body 1.

...

head m :- body m.

?- query.

(fact 1

∧ . . .
∧ fact n

∧ head 1 ← body 1

∧ . . .
∧ head m ← body m)

→ query

The query succeeds iff the Prolog program terminates and F is valid.

I variables are quantified in the following way:

∀X1, ...,Xn (∃Y 1, ...Yn body i → head i)

for all variables X1, ...,Xn occurring in head i and all variables Y 1, ...Yn
occurring in body i

I inference engine is a theorem prover based on SLD resolution (only Horn
clauses, depth-first search (incomplete!), no occurs-check (unsound!))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 21 / 38

Semantics

Logical Semantics

The semantics of a program is specified by the following formula F .

fact 1.

...

fact n.

head 1 :- body 1.

...

head m :- body m.

?- query.

(fact 1

∧ . . .
∧ fact n

∧ head 1 ← body 1

∧ . . .
∧ head m ← body m)

→ query

The query succeeds iff the Prolog program terminates and F is valid.

I variables are quantified in the following way:

∀X1, ...,Xn (∃Y 1, ...Yn body i → head i)

for all variables X1, ...,Xn occurring in head i and all variables Y 1, ...Yn
occurring in body i

I inference engine is a theorem prover based on SLD resolution (only Horn
clauses, depth-first search (incomplete!), no occurs-check (unsound!))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 21 / 38

Semantics

Logical Semantics

The semantics of a program is specified by the following formula F .

fact 1.

...

fact n.

head 1 :- body 1.

...

head m :- body m.

?- query.

(fact 1

∧ . . .
∧ fact n

∧ head 1 ← body 1

∧ . . .
∧ head m ← body m)

→ query

The query succeeds iff the Prolog program terminates and F is valid.

I variables are quantified in the following way:

∀X1, ...,Xn (∃Y 1, ...Yn body i → head i)

for all variables X1, ...,Xn occurring in head i and all variables Y 1, ...Yn
occurring in body i

I inference engine is a theorem prover based on SLD resolution (only Horn
clauses, depth-first search (incomplete!), no occurs-check (unsound!))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 21 / 38

Semantics

Logical Semantics

The semantics of a program is specified by the following formula F .

fact 1.

...

fact n.

head 1 :- body 1.

...

head m :- body m.

?- query.

(fact 1

∧ . . .
∧ fact n

∧ head 1 ← body 1

∧ . . .
∧ head m ← body m)

→ query

The query succeeds iff the Prolog program terminates and F is valid.

I variables are quantified in the following way:

∀X1, ...,Xn (∃Y 1, ...Yn body i → head i)

for all variables X1, ...,Xn occurring in head i and all variables Y 1, ...Yn
occurring in body i

I inference engine is a theorem prover based on SLD resolution (only Horn
clauses, depth-first search (incomplete!), no occurs-check (unsound!))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 21 / 38

Semantics

Logical Semantics

The semantics of a program is specified by the following formula F .

fact 1.

...

fact n.

head 1 :- body 1.

...

head m :- body m.

?- query.

(fact 1

∧ . . .
∧ fact n

∧ head 1 ← body 1

∧ . . .
∧ head m ← body m)

→ query

The query succeeds iff the Prolog program terminates and F is valid.

I variables are quantified in the following way:

∀X1, ...,Xn (∃Y 1, ...Yn body i → head i)

for all variables X1, ...,Xn occurring in head i and all variables Y 1, ...Yn
occurring in body i

I inference engine is a theorem prover based on SLD resolution (only Horn
clauses, depth-first search (incomplete!), no occurs-check (unsound!))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 21 / 38

Semantics

Logical Semantics

The semantics of a program is specified by the following formula F .

fact 1.

...

fact n.

head 1 :- body 1.

...

head m :- body m.

?- query.

(fact 1

∧ . . .
∧ fact n

∧ head 1 ← body 1

∧ . . .
∧ head m ← body m)

→ query

The query succeeds iff the Prolog program terminates and F is valid.

I variables are quantified in the following way:

∀X1, ...,Xn (∃Y 1, ...Yn body i → head i)

for all variables X1, ...,Xn occurring in head i and all variables Y 1, ...Yn
occurring in body i

I inference engine is a theorem prover based on SLD resolution (only Horn
clauses, depth-first search (incomplete!), no occurs-check (unsound!))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 21 / 38

Lists & Arithmetic

Outline

I Motivation

I SLD Resolution

I Prolog

I Syntax

I Semantics

I Lists & Arithmetic

I Negation/Cut/If-then-else

I Summary

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 22 / 38

Lists & Arithmetic

Prolog Lists

Lists are terms that are represented in the following way:

[<Head>|<Tail>]

where <Head> is the first element and <Tail> is the rest of the list

I Example: [a,b,c,d,e] can be represented, e.g., as

[a|[b, c, d, e]]

[a|[b|[c|[d|[e]]]]]

[a, b|[c, d, e]]

[a, b, c, d|[e]]

I ?- [H|T]=[a,b,c,d].

H = a,

T = [b, c, d].

?- [H1,H2|T]=[a,b,c,d].

H1 = a,

H2 = b,

T = [c, d].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 23 / 38

Lists & Arithmetic

Prolog Lists

Lists are terms that are represented in the following way:

[<Head>|<Tail>]

where <Head> is the first element and <Tail> is the rest of the list

I Example: [a,b,c,d,e] can be represented, e.g., as

[a|[b, c, d, e]]

[a|[b|[c|[d|[e]]]]]

[a, b|[c, d, e]]

[a, b, c, d|[e]]

I ?- [H|T]=[a,b,c,d].

H = a,

T = [b, c, d].

?- [H1,H2|T]=[a,b,c,d].

H1 = a,

H2 = b,

T = [c, d].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 23 / 38

Lists & Arithmetic

Prolog Lists

Lists are terms that are represented in the following way:

[<Head>|<Tail>]

where <Head> is the first element and <Tail> is the rest of the list

I Example: [a,b,c,d,e] can be represented, e.g., as

[a|[b, c, d, e]]

[a|[b|[c|[d|[e]]]]]

[a, b|[c, d, e]]

[a, b, c, d|[e]]

I ?- [H|T]=[a,b,c,d].

H = a,

T = [b, c, d].

?- [H1,H2|T]=[a,b,c,d].

H1 = a,

H2 = b,

T = [c, d].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 23 / 38

Lists & Arithmetic

Prolog Lists

Lists are terms that are represented in the following way:

[<Head>|<Tail>]

where <Head> is the first element and <Tail> is the rest of the list

I Example: [a,b,c,d,e] can be represented, e.g., as

[a|[b, c, d, e]]

[a|[b|[c|[d|[e]]]]]

[a, b|[c, d, e]]

[a, b, c, d|[e]]

I ?- [H|T]=[a,b,c,d].

H = a,

T = [b, c, d].

?- [H1,H2|T]=[a,b,c,d].

H1 = a,

H2 = b,

T = [c, d].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 23 / 38

Lists & Arithmetic

Prolog Lists

Lists are terms that are represented in the following way:

[<Head>|<Tail>]

where <Head> is the first element and <Tail> is the rest of the list

I Example: [a,b,c,d,e] can be represented, e.g., as

[a|[b, c, d, e]]

[a|[b|[c|[d|[e]]]]]

[a, b|[c, d, e]]

[a, b, c, d|[e]]

I ?- [H|T]=[a,b,c,d].

H = a,

T = [b, c, d].

?- [H1,H2|T]=[a,b,c,d].

H1 = a,

H2 = b,

T = [c, d].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 23 / 38

Lists & Arithmetic

Prolog Lists

Lists are terms that are represented in the following way:

[<Head>|<Tail>]

where <Head> is the first element and <Tail> is the rest of the list

I Example: [a,b,c,d,e] can be represented, e.g., as

[a|[b, c, d, e]]

[a|[b|[c|[d|[e]]]]]

[a, b|[c, d, e]]

[a, b, c, d|[e]]

I ?- [H|T]=[a,b,c,d].

H = a,

T = [b, c, d].

?- [H1,H2|T]=[a,b,c,d].

H1 = a,

H2 = b,

T = [c, d].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 23 / 38

Lists & Arithmetic

Predefined Predicates on Lists

I member(Element,List) succeeds iff Element occurs in List

I append(List1,List2,List3) succeeds iff appending List1 and List2

results in List3

I length(List,Length) succeeds iff List has length/size Length

I ?- member(a,[a,b,c]).

true .

?- member(X,[a,b]).

X = a ;

X = b .

?- append([a,b],[c],Z).

Z = [a, b, c].

?- append(X,Y,[a,b,c]).

X = [], Y = [a, b, c] ;

X = [a], Y = [b, c] ;

X = [a, b], Y = [c] ;

X = [a, b, c], Y = [] .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 24 / 38

Lists & Arithmetic

Predefined Predicates on Lists

I member(Element,List) succeeds iff Element occurs in List

I append(List1,List2,List3) succeeds iff appending List1 and List2

results in List3

I length(List,Length) succeeds iff List has length/size Length

I ?- member(a,[a,b,c]).

true .

?- member(X,[a,b]).

X = a ;

X = b .

?- append([a,b],[c],Z).

Z = [a, b, c].

?- append(X,Y,[a,b,c]).

X = [], Y = [a, b, c] ;

X = [a], Y = [b, c] ;

X = [a, b], Y = [c] ;

X = [a, b, c], Y = [] .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 24 / 38

Lists & Arithmetic

Predefined Predicates on Lists

I member(Element,List) succeeds iff Element occurs in List

I append(List1,List2,List3) succeeds iff appending List1 and List2

results in List3

I length(List,Length) succeeds iff List has length/size Length

I ?- member(a,[a,b,c]).

true .

?- member(X,[a,b]).

X = a ;

X = b .

?- append([a,b],[c],Z).

Z = [a, b, c].

?- append(X,Y,[a,b,c]).

X = [], Y = [a, b, c] ;

X = [a], Y = [b, c] ;

X = [a, b], Y = [c] ;

X = [a, b, c], Y = [] .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 24 / 38

Lists & Arithmetic

Predefined Predicates on Lists

I member(Element,List) succeeds iff Element occurs in List

I append(List1,List2,List3) succeeds iff appending List1 and List2

results in List3

I length(List,Length) succeeds iff List has length/size Length

I ?- member(a,[a,b,c]).

true .

?- member(X,[a,b]).

X = a ;

X = b .

?- append([a,b],[c],Z).

Z = [a, b, c].

?- append(X,Y,[a,b,c]).

X = [], Y = [a, b, c] ;

X = [a], Y = [b, c] ;

X = [a, b], Y = [c] ;

X = [a, b, c], Y = [] .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 24 / 38

Lists & Arithmetic

Predefined Predicates on Lists

I member(Element,List) succeeds iff Element occurs in List

I append(List1,List2,List3) succeeds iff appending List1 and List2

results in List3

I length(List,Length) succeeds iff List has length/size Length

I ?- member(a,[a,b,c]).

true .

?- member(X,[a,b]).

X = a ;

X = b .

?- append([a,b],[c],Z).

Z = [a, b, c].

?- append(X,Y,[a,b,c]).

X = [], Y = [a, b, c] ;

X = [a], Y = [b, c] ;

X = [a, b], Y = [c] ;

X = [a, b, c], Y = [] .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 24 / 38

Lists & Arithmetic

Predefined Predicates on Lists

I member(Element,List) succeeds iff Element occurs in List

I append(List1,List2,List3) succeeds iff appending List1 and List2

results in List3

I length(List,Length) succeeds iff List has length/size Length

I ?- member(a,[a,b,c]).

true .

?- member(X,[a,b]).

X = a ;

X = b .

?- append([a,b],[c],Z).

Z = [a, b, c].

?- append(X,Y,[a,b,c]).

X = [], Y = [a, b, c] ;

X = [a], Y = [b, c] ;

X = [a, b], Y = [c] ;

X = [a, b, c], Y = [] .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 24 / 38

Lists & Arithmetic

Predefined Predicates on Lists

I member(Element,List) succeeds iff Element occurs in List

I append(List1,List2,List3) succeeds iff appending List1 and List2

results in List3

I length(List,Length) succeeds iff List has length/size Length

I ?- member(a,[a,b,c]).

true .

?- member(X,[a,b]).

X = a ;

X = b .

?- append([a,b],[c],Z).

Z = [a, b, c].

?- append(X,Y,[a,b,c]).

X = [], Y = [a, b, c] ;

X = [a], Y = [b, c] ;

X = [a, b], Y = [c] ;

X = [a, b, c], Y = [] .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 24 / 38

Lists & Arithmetic

Predefined Predicates on Lists

I member(Element,List) succeeds iff Element occurs in List

I append(List1,List2,List3) succeeds iff appending List1 and List2

results in List3

I length(List,Length) succeeds iff List has length/size Length

I ?- member(a,[a,b,c]).

true .

?- member(X,[a,b]).

X = a ;

X = b .

?- append([a,b],[c],Z).

Z = [a, b, c].

?- append(X,Y,[a,b,c]).

X = [], Y = [a, b, c] ;

X = [a], Y = [b, c] ;

X = [a, b], Y = [c] ;

X = [a, b, c], Y = [] .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 24 / 38

Lists & Arithmetic

Predefined Predicates on Lists

I member(Element,List) succeeds iff Element occurs in List

I append(List1,List2,List3) succeeds iff appending List1 and List2

results in List3

I length(List,Length) succeeds iff List has length/size Length

I ?- member(a,[a,b,c]).

true .

?- member(X,[a,b]).

X = a ;

X = b .

?- append([a,b],[c],Z).

Z = [a, b, c].

?- append(X,Y,[a,b,c]).

X = [], Y = [a, b, c] ;

X = [a], Y = [b, c] ;

X = [a, b], Y = [c] ;

X = [a, b, c], Y = [] .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 24 / 38

Lists & Arithmetic

Lists – Examples

I delete all identical elements from list

delete([],_,[]).

delete([X1|T],X,L) :- X==X1, delete(T,X,L).

delete([X1|T],X,[X1|L]) :- X \==X1, delete(T,X,L).

‘==’-operator succeeds if both sides are identical without unification)

I reverse list

reverse([],[]).

reverse([H|T],L):- reverse(T,R), append(R,[H],L).

?- reverse([o,l,l,e,h],L).

L = [h,e,l,l,o].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 25 / 38

Lists & Arithmetic

Lists – Examples

I delete all identical elements from list

delete([],_,[]).

delete([X1|T],X,L) :- X==X1, delete(T,X,L).

delete([X1|T],X,[X1|L]) :- X \==X1, delete(T,X,L).

‘==’-operator succeeds if both sides are identical without unification)

I reverse list

reverse([],[]).

reverse([H|T],L):- reverse(T,R), append(R,[H],L).

?- reverse([o,l,l,e,h],L).

L = [h,e,l,l,o].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 25 / 38

Lists & Arithmetic

Lists – Examples

I delete all identical elements from list

delete([],_,[]).

delete([X1|T],X,L) :- X==X1, delete(T,X,L).

delete([X1|T],X,[X1|L]) :- X \==X1, delete(T,X,L).

‘==’-operator succeeds if both sides are identical without unification)

I reverse list

reverse([],[]).

reverse([H|T],L):- reverse(T,R), append(R,[H],L).

?- reverse([o,l,l,e,h],L).

L = [h,e,l,l,o].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 25 / 38

Lists & Arithmetic

Lists – Examples

I delete all identical elements from list

delete([],_,[]).

delete([X1|T],X,L) :- X==X1, delete(T,X,L).

delete([X1|T],X,[X1|L]) :- X \==X1, delete(T,X,L).

‘==’-operator succeeds if both sides are identical without unification)

I reverse list

reverse([],[]).

reverse([H|T],L):- reverse(T,R), append(R,[H],L).

?- reverse([o,l,l,e,h],L).

L = [h,e,l,l,o].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 25 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted

?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used

?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:

?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:

factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Arithmetic Operations

I numbers and terms with arithmetic operators are not interpreted
?- X=3+5, X=Y+Z.

X = 3+5, Y = 3, Z = 5.

I to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+5.

X = 8.

I The term has to be fully instantiated:
?- 8 is X+5.

uncaught exception: error(instantiation_error,(is)/2)

I arithmetic operators ‘=’, ‘<’, ‘>’, ‘>=’, ‘=<’ are interpreted predicates

I 0! = 1, n! = n ∗ (n − 1)! if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,

factorial(N1,I1), I is N*I1.

?- factorial(5,I).

N = 120.
IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 26 / 38

Lists & Arithmetic

Example: Ordered Lists

ordered([]).

ordered([X]).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries:

| ?- ordered([3,4,67,8]).

no

| ?- ordered([3,4,67, 88]).

yes

| ? - ordered([3,4,X,88]).

instantiation error: 4=<_30 - arg 2

Comparison only works if variables are instantiated to numbers.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 27 / 38

Lists & Arithmetic

Example: Ordered Lists

ordered([]).

ordered([X]).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries:

| ?- ordered([3,4,67,8]).

no

| ?- ordered([3,4,67, 88]).

yes

| ? - ordered([3,4,X,88]).

instantiation error: 4=<_30 - arg 2

Comparison only works if variables are instantiated to numbers.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 27 / 38

Lists & Arithmetic

Example: Ordered Lists

ordered([]).

ordered([X]).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries:

| ?- ordered([3,4,67,8]).

no

| ?- ordered([3,4,67, 88]).

yes

| ? - ordered([3,4,X,88]).

instantiation error: 4=<_30 - arg 2

Comparison only works if variables are instantiated to numbers.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 27 / 38

Lists & Arithmetic

Example: Ordered Lists

ordered([]).

ordered([X]).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries:

| ?- ordered([3,4,67,8]).

no

| ?- ordered([3,4,67, 88]).

yes

| ? - ordered([3,4,X,88]).

instantiation error: 4=<_30 - arg 2

Comparison only works if variables are instantiated to numbers.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 27 / 38

Lists & Arithmetic

Example: Ordered Lists

ordered([]).

ordered([X]).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries:

| ?- ordered([3,4,67,8]).

no

| ?- ordered([3,4,67, 88]).

yes

| ? - ordered([3,4,X,88]).

instantiation error: 4=<_30 - arg 2

Comparison only works if variables are instantiated to numbers.
IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 27 / 38

Lists & Arithmetic

Example: Length of Lists

I An intuitive definition:

length([],0).

length([_ | Ts], N+1) :- length(Ts,N).

I Let’s try it:

| ?- length([3,5,56,7],X).

X = 0+1+1+1+1

Yes

I Correct definition

length([],0).

length([_ | Ts], N) :- length(Ts,M), N is M+1.

I Let’s try it:

| ?- length([3,5,56,7],X).

X = 4

Yes

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 28 / 38

Lists & Arithmetic

Example: Length of Lists

I An intuitive definition:

length([],0).

length([_ | Ts], N+1) :- length(Ts,N).

I Let’s try it:

| ?- length([3,5,56,7],X).

X = 0+1+1+1+1

Yes

I Correct definition

length([],0).

length([_ | Ts], N) :- length(Ts,M), N is M+1.

I Let’s try it:

| ?- length([3,5,56,7],X).

X = 4

Yes

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 28 / 38

Lists & Arithmetic

Example: Length of Lists

I An intuitive definition:

length([],0).

length([_ | Ts], N+1) :- length(Ts,N).

I Let’s try it:

| ?- length([3,5,56,7],X).

X = 0+1+1+1+1

Yes

I Correct definition

length([],0).

length([_ | Ts], N) :- length(Ts,M), N is M+1.

I Let’s try it:

| ?- length([3,5,56,7],X).

X = 4

Yes

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 28 / 38

Lists & Arithmetic

Example: Length of Lists

I An intuitive definition:

length([],0).

length([_ | Ts], N+1) :- length(Ts,N).

I Let’s try it:

| ?- length([3,5,56,7],X).

X = 0+1+1+1+1

Yes

I Correct definition

length([],0).

length([_ | Ts], N) :- length(Ts,M), N is M+1.

I Let’s try it:

| ?- length([3,5,56,7],X).

X = 4

YesIN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 28 / 38

Negation/Cut/If-then-else

Outline

I Motivation

I SLD Resolution

I Prolog

I Syntax

I Semantics

I Lists & Arithmetic

I Negation/Cut/If-then-else

I Summary

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 29 / 38

Negation/Cut/If-then-else

Negation as Failure

I negation ‘\+’ is implemented as “negation as failure”

I ‘\+ predicate’ succeeds iff ‘predicate’ fails

I male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- female(kristine).

false.

?- \+ female(kristine).

true.

?- \+ parent(rolf,thomas).

true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 30 / 38

Negation/Cut/If-then-else

Negation as Failure

I negation ‘\+’ is implemented as “negation as failure”

I ‘\+ predicate’ succeeds iff ‘predicate’ fails

I male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- female(kristine).

false.

?- \+ female(kristine).

true.

?- \+ parent(rolf,thomas).

true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 30 / 38

Negation/Cut/If-then-else

Negation as Failure

I negation ‘\+’ is implemented as “negation as failure”

I ‘\+ predicate’ succeeds iff ‘predicate’ fails

I male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- female(kristine).

false.

?- \+ female(kristine).

true.

?- \+ parent(rolf,thomas).

true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 30 / 38

Negation/Cut/If-then-else

Negation as Failure

I negation ‘\+’ is implemented as “negation as failure”

I ‘\+ predicate’ succeeds iff ‘predicate’ fails

I male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- female(kristine).

false.

?- \+ female(kristine).

true.

?- \+ parent(rolf,thomas).

true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 30 / 38

Negation/Cut/If-then-else

Negation as Failure

I negation ‘\+’ is implemented as “negation as failure”

I ‘\+ predicate’ succeeds iff ‘predicate’ fails

I male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- female(kristine).

false.

?- \+ female(kristine).

true.

?- \+ parent(rolf,thomas).

true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 30 / 38

Negation/Cut/If-then-else

Negation as Failure

I negation ‘\+’ is implemented as “negation as failure”

I ‘\+ predicate’ succeeds iff ‘predicate’ fails

I male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- female(kristine).

false.

?- \+ female(kristine).

true.

?- \+ parent(rolf,thomas).

true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 30 / 38

Negation/Cut/If-then-else

Negation as Failure

I negation ‘\+’ is implemented as “negation as failure”

I ‘\+ predicate’ succeeds iff ‘predicate’ fails

I male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- female(kristine).

false.

?- \+ female(kristine).

true.

?- \+ parent(rolf,thomas).

true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 30 / 38

Negation/Cut/If-then-else

Negation as Failure

I negation ‘\+’ is implemented as “negation as failure”

I ‘\+ predicate’ succeeds iff ‘predicate’ fails

I male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- female(kristine).

false.

?- \+ female(kristine).

true.

?- \+ parent(rolf,thomas).

true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 30 / 38

Negation/Cut/If-then-else

Negation as Failure

I negation ‘\+’ is implemented as “negation as failure”

I ‘\+ predicate’ succeeds iff ‘predicate’ fails

I male(thomas). male(rolf). female(anna). female(maria).

parent(thomas,anna). parent(maria,anna). parent(rolf,maria).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- female(kristine).

false.

?- \+ female(kristine).

true.

?- \+ parent(rolf,thomas).

true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 30 / 38

Negation/Cut/If-then-else

Non-monotonic Logics

I Standard “classical” propositional and first-order logic is monotonic.

I If A ⊆ A′ and A |= B, then A′ |= B

I Adding facts will never remove logical consequences

I In a semantics with negation as failure,

p, q |= ¬r

since r cannot be derived from {p, q}
I This is what Prolog does.

I Now add the fact r :
p, q, r 6|= ¬r

since r can be derived from {p, q, r}
I Negation as Failure gives a non-monotonic logic

I Very different from our classical notion of logical consequence

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 31 / 38

Negation/Cut/If-then-else

Non-monotonic Logics

I Standard “classical” propositional and first-order logic is monotonic.

I If A ⊆ A′ and A |= B, then A′ |= B

I Adding facts will never remove logical consequences

I In a semantics with negation as failure,

p, q |= ¬r

since r cannot be derived from {p, q}
I This is what Prolog does.

I Now add the fact r :
p, q, r 6|= ¬r

since r can be derived from {p, q, r}
I Negation as Failure gives a non-monotonic logic

I Very different from our classical notion of logical consequence

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 31 / 38

Negation/Cut/If-then-else

Non-monotonic Logics

I Standard “classical” propositional and first-order logic is monotonic.

I If A ⊆ A′ and A |= B, then A′ |= B

I Adding facts will never remove logical consequences

I In a semantics with negation as failure,

p, q |= ¬r

since r cannot be derived from {p, q}
I This is what Prolog does.

I Now add the fact r :
p, q, r 6|= ¬r

since r can be derived from {p, q, r}
I Negation as Failure gives a non-monotonic logic

I Very different from our classical notion of logical consequence

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 31 / 38

Negation/Cut/If-then-else

Non-monotonic Logics

I Standard “classical” propositional and first-order logic is monotonic.

I If A ⊆ A′ and A |= B, then A′ |= B

I Adding facts will never remove logical consequences

I In a semantics with negation as failure,

p, q |= ¬r

since r cannot be derived from {p, q}

I This is what Prolog does.

I Now add the fact r :
p, q, r 6|= ¬r

since r can be derived from {p, q, r}
I Negation as Failure gives a non-monotonic logic

I Very different from our classical notion of logical consequence

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 31 / 38

Negation/Cut/If-then-else

Non-monotonic Logics

I Standard “classical” propositional and first-order logic is monotonic.

I If A ⊆ A′ and A |= B, then A′ |= B

I Adding facts will never remove logical consequences

I In a semantics with negation as failure,

p, q |= ¬r

since r cannot be derived from {p, q}
I This is what Prolog does.

I Now add the fact r :
p, q, r 6|= ¬r

since r can be derived from {p, q, r}
I Negation as Failure gives a non-monotonic logic

I Very different from our classical notion of logical consequence

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 31 / 38

Negation/Cut/If-then-else

Non-monotonic Logics

I Standard “classical” propositional and first-order logic is monotonic.

I If A ⊆ A′ and A |= B, then A′ |= B

I Adding facts will never remove logical consequences

I In a semantics with negation as failure,

p, q |= ¬r

since r cannot be derived from {p, q}
I This is what Prolog does.

I Now add the fact r :
p, q, r 6|= ¬r

since r can be derived from {p, q, r}

I Negation as Failure gives a non-monotonic logic

I Very different from our classical notion of logical consequence

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 31 / 38

Negation/Cut/If-then-else

Non-monotonic Logics

I Standard “classical” propositional and first-order logic is monotonic.

I If A ⊆ A′ and A |= B, then A′ |= B

I Adding facts will never remove logical consequences

I In a semantics with negation as failure,

p, q |= ¬r

since r cannot be derived from {p, q}
I This is what Prolog does.

I Now add the fact r :
p, q, r 6|= ¬r

since r can be derived from {p, q, r}
I Negation as Failure gives a non-monotonic logic

I Very different from our classical notion of logical consequence

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 31 / 38

Negation/Cut/If-then-else

Non-monotonic Logics

I Standard “classical” propositional and first-order logic is monotonic.

I If A ⊆ A′ and A |= B, then A′ |= B

I Adding facts will never remove logical consequences

I In a semantics with negation as failure,

p, q |= ¬r

since r cannot be derived from {p, q}
I This is what Prolog does.

I Now add the fact r :
p, q, r 6|= ¬r

since r can be derived from {p, q, r}
I Negation as Failure gives a non-monotonic logic

I Very different from our classical notion of logical consequence

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 31 / 38

Negation/Cut/If-then-else

The Cut

I the cut ‘!’ is used to restrict Prolog’s backtracking mechanism

I the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

I “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.

factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

I “red cut”: does change returned solutions

parent(thomas,anna) :- !.

parent(maria,anna). parent(rolf,maria).

?- parent(X,anna).

X = thomas.

? grandfather(X,anna).

false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 32 / 38

Negation/Cut/If-then-else

The Cut

I the cut ‘!’ is used to restrict Prolog’s backtracking mechanism

I the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

I “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.

factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

I “red cut”: does change returned solutions

parent(thomas,anna) :- !.

parent(maria,anna). parent(rolf,maria).

?- parent(X,anna).

X = thomas.

? grandfather(X,anna).

false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 32 / 38

Negation/Cut/If-then-else

The Cut

I the cut ‘!’ is used to restrict Prolog’s backtracking mechanism

I the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

I “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.

factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

I “red cut”: does change returned solutions

parent(thomas,anna) :- !.

parent(maria,anna). parent(rolf,maria).

?- parent(X,anna).

X = thomas.

? grandfather(X,anna).

false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 32 / 38

Negation/Cut/If-then-else

The Cut

I the cut ‘!’ is used to restrict Prolog’s backtracking mechanism

I the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

I “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.

factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

I “red cut”: does change returned solutions

parent(thomas,anna) :- !.

parent(maria,anna). parent(rolf,maria).

?- parent(X,anna).

X = thomas.

? grandfather(X,anna).

false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 32 / 38

Negation/Cut/If-then-else

The Cut

I the cut ‘!’ is used to restrict Prolog’s backtracking mechanism

I the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

I “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.

factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

I “red cut”: does change returned solutions

parent(thomas,anna) :- !.

parent(maria,anna). parent(rolf,maria).

?- parent(X,anna).

X = thomas.

? grandfather(X,anna).

false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 32 / 38

Negation/Cut/If-then-else

The Cut

I the cut ‘!’ is used to restrict Prolog’s backtracking mechanism

I the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

I “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.

factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

I “red cut”: does change returned solutions

parent(thomas,anna) :- !.

parent(maria,anna). parent(rolf,maria).

?- parent(X,anna).

X = thomas.

? grandfather(X,anna).

false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 32 / 38

Negation/Cut/If-then-else

The Cut

I the cut ‘!’ is used to restrict Prolog’s backtracking mechanism

I the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

I “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.

factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

I “red cut”: does change returned solutions

parent(thomas,anna) :- !.

parent(maria,anna). parent(rolf,maria).

?- parent(X,anna).

X = thomas.

? grandfather(X,anna).

false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 32 / 38

Negation/Cut/If-then-else

The Cut

I the cut ‘!’ is used to restrict Prolog’s backtracking mechanism

I the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

I “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.

factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

I “red cut”: does change returned solutions

parent(thomas,anna) :- !.

parent(maria,anna). parent(rolf,maria).

?- parent(X,anna).

X = thomas.

? grandfather(X,anna).

false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 32 / 38

Negation/Cut/If-then-else

The Cut

I the cut ‘!’ is used to restrict Prolog’s backtracking mechanism

I the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

I “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.

factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

I “red cut”: does change returned solutions

parent(thomas,anna) :- !.

parent(maria,anna). parent(rolf,maria).

?- parent(X,anna).

X = thomas.

? grandfather(X,anna).

false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 32 / 38

Negation/Cut/If-then-else

The Cut

I the cut ‘!’ is used to restrict Prolog’s backtracking mechanism

I the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

I “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.

factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

I “red cut”: does change returned solutions

parent(thomas,anna) :- !.

parent(maria,anna). parent(rolf,maria).

?- parent(X,anna).

X = thomas.

? grandfather(X,anna).

false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 32 / 38

Negation/Cut/If-then-else

Example: Siblings

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 33 / 38

Negation/Cut/If-then-else

Disjunction and If-then-else

I predicate :- predicate1 ; predicate2.

succeeds if predicate1 succeeds or predicate2 succeeds; backtracking over
predicate1 and predicate2 when re-fulfilling predicate

grandparent(X,Y) :- grandfather(X,Y) ; grandmother(X,Y).

(backtracking over grandfather(X,Y) grandmother(X,Y))

I Cond -> Goal1 ; Goal2 succeeds iff Cond succeeds and Goal1 succeeds or
Cond fails and Goal2 succeeds; no backtracking within Cond (“implicit cut”)

grandparent(X,Y) :-

male(X) -> grandfather(X,Y) ; grandmother(X,Y).

(information given by male(X) needs to be complete)

grandparent(X,Y) :-

grandfather(X,Y) -> true ; grandmother(X,Y).

(no backtracking over grandfather)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 34 / 38

Negation/Cut/If-then-else

Disjunction and If-then-else

I predicate :- predicate1 ; predicate2.

succeeds if predicate1 succeeds or predicate2 succeeds; backtracking over
predicate1 and predicate2 when re-fulfilling predicate

grandparent(X,Y) :- grandfather(X,Y) ; grandmother(X,Y).

(backtracking over grandfather(X,Y) grandmother(X,Y))

I Cond -> Goal1 ; Goal2 succeeds iff Cond succeeds and Goal1 succeeds or
Cond fails and Goal2 succeeds; no backtracking within Cond (“implicit cut”)

grandparent(X,Y) :-

male(X) -> grandfather(X,Y) ; grandmother(X,Y).

(information given by male(X) needs to be complete)

grandparent(X,Y) :-

grandfather(X,Y) -> true ; grandmother(X,Y).

(no backtracking over grandfather)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 34 / 38

Negation/Cut/If-then-else

Disjunction and If-then-else

I predicate :- predicate1 ; predicate2.

succeeds if predicate1 succeeds or predicate2 succeeds; backtracking over
predicate1 and predicate2 when re-fulfilling predicate

grandparent(X,Y) :- grandfather(X,Y) ; grandmother(X,Y).

(backtracking over grandfather(X,Y) grandmother(X,Y))

I Cond -> Goal1 ; Goal2 succeeds iff Cond succeeds and Goal1 succeeds or
Cond fails and Goal2 succeeds; no backtracking within Cond (“implicit cut”)

grandparent(X,Y) :-

male(X) -> grandfather(X,Y) ; grandmother(X,Y).

(information given by male(X) needs to be complete)

grandparent(X,Y) :-

grandfather(X,Y) -> true ; grandmother(X,Y).

(no backtracking over grandfather)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 34 / 38

Negation/Cut/If-then-else

Disjunction and If-then-else

I predicate :- predicate1 ; predicate2.

succeeds if predicate1 succeeds or predicate2 succeeds; backtracking over
predicate1 and predicate2 when re-fulfilling predicate

grandparent(X,Y) :- grandfather(X,Y) ; grandmother(X,Y).

(backtracking over grandfather(X,Y) grandmother(X,Y))

I Cond -> Goal1 ; Goal2 succeeds iff Cond succeeds and Goal1 succeeds or
Cond fails and Goal2 succeeds; no backtracking within Cond (“implicit cut”)

grandparent(X,Y) :-

male(X) -> grandfather(X,Y) ; grandmother(X,Y).

(information given by male(X) needs to be complete)

grandparent(X,Y) :-

grandfather(X,Y) -> true ; grandmother(X,Y).

(no backtracking over grandfather)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 34 / 38

Negation/Cut/If-then-else

Disjunction and If-then-else

I predicate :- predicate1 ; predicate2.

succeeds if predicate1 succeeds or predicate2 succeeds; backtracking over
predicate1 and predicate2 when re-fulfilling predicate

grandparent(X,Y) :- grandfather(X,Y) ; grandmother(X,Y).

(backtracking over grandfather(X,Y) grandmother(X,Y))

I Cond -> Goal1 ; Goal2 succeeds iff Cond succeeds and Goal1 succeeds or
Cond fails and Goal2 succeeds; no backtracking within Cond (“implicit cut”)

grandparent(X,Y) :-

male(X) -> grandfather(X,Y) ; grandmother(X,Y).

(information given by male(X) needs to be complete)

grandparent(X,Y) :-

grandfather(X,Y) -> true ; grandmother(X,Y).

(no backtracking over grandfather)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 34 / 38

Negation/Cut/If-then-else

Problems with Prolog

I No type system

I No standardized module system

I Non-declarative arithmetic

I Cut needed for efficiency

I Cut has non-declarative semantics
I Cut can simulate negation as failure (non-monotonic)
I Cut can be tricky to use
I Cut makes automated optimization hard

I IO does not play nice with backtracking

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 35 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system

I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .

I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables

I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4

I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order

I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification

I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data

I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Negation/Cut/If-then-else

Prolog-like Languages

I Mercury

I ‘Pure’ language with type system
I No cut, functional features (syntax), monad-style IO,. . .
I Steep learning curve

I Constraint logic programming

I Gathers and solves constraints on variables
I From X>3, X<6, X\==5 infer X=4
I Applications in planning, scheduling, etc.

I Higher-order logic programming, Lambda prolog

I Like Prolog, but λ-terms instead of first-order
I Higher-order unification
I not a functional language, lambda terms are just data
I Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 36 / 38

Summary

Outline

I Motivation

I SLD Resolution

I Prolog

I Syntax

I Semantics

I Lists & Arithmetic

I Negation/Cut/If-then-else

I Summary

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 37 / 38

Summary

Summary

I logic program consists of definite clauses (facts and rules)

I SLD resolution is a sound and complete strategy for Horn clauses

I Prolog is a declarative programming language

I clear and simple semantics based on first-order logic

I Turing-complete (can simulate a Turing machine)

I Prolog is used for, e.g, theorem proving, expert systems, term rewriting,
automated planning, and natural language processing

I has given rise to a number of other languages

I Prolog is used in, e.g.,

I IBM Watson (natural language question answering system)
I Tivoli software (system and service management tools)

I next week: DPLL (efficient SAT solving)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 38 / 38

Summary

Summary

I logic program consists of definite clauses (facts and rules)

I SLD resolution is a sound and complete strategy for Horn clauses

I Prolog is a declarative programming language

I clear and simple semantics based on first-order logic

I Turing-complete (can simulate a Turing machine)

I Prolog is used for, e.g, theorem proving, expert systems, term rewriting,
automated planning, and natural language processing

I has given rise to a number of other languages

I Prolog is used in, e.g.,

I IBM Watson (natural language question answering system)
I Tivoli software (system and service management tools)

I next week: DPLL (efficient SAT solving)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 38 / 38

Summary

Summary

I logic program consists of definite clauses (facts and rules)

I SLD resolution is a sound and complete strategy for Horn clauses

I Prolog is a declarative programming language

I clear and simple semantics based on first-order logic

I Turing-complete (can simulate a Turing machine)

I Prolog is used for, e.g, theorem proving, expert systems, term rewriting,
automated planning, and natural language processing

I has given rise to a number of other languages

I Prolog is used in, e.g.,

I IBM Watson (natural language question answering system)
I Tivoli software (system and service management tools)

I next week: DPLL (efficient SAT solving)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 38 / 38

Summary

Summary

I logic program consists of definite clauses (facts and rules)

I SLD resolution is a sound and complete strategy for Horn clauses

I Prolog is a declarative programming language

I clear and simple semantics based on first-order logic

I Turing-complete (can simulate a Turing machine)

I Prolog is used for, e.g, theorem proving, expert systems, term rewriting,
automated planning, and natural language processing

I has given rise to a number of other languages

I Prolog is used in, e.g.,

I IBM Watson (natural language question answering system)
I Tivoli software (system and service management tools)

I next week: DPLL (efficient SAT solving)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October 38 / 38

	Motivation
	SLD Resolution
	Prolog
	Syntax
	Semantics
	Lists & Arithmetic
	Negation/Cut/If-then-else
	Summary

