IN3070/4070 — Logic — Autumn 2020

Lecture 9: Logic Programming

Martin Giese
15th October 2019

hd d DEPARTMENT OF
‘ INFORMATICS

%) UNIVERSITY OF
OsLo

Today's Plan

» Motivation

» SLD Resolution

» Prolog

» Syntax

» Semantics

» Lists & Arithmetic

» Negation/Cut/If-then-else

» Summary

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Outline

» Motivation

IN3070/4070 :: Autumn 2020 Lecture 9 5th October

The First-Order Resolution Calculus

Definition 1.1 (First-Order Resolution Calculus).

axiom

Ctros sy G

G,...,GU {Ll}, e CJ U {LQ}, ey Cp, Cio U CJ'O'
G,...,G U {Ll}, e CJ U {Lz}, e, G
with o(L;) = o(L2)

resolution

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

The First-Order Resolution Calculus

Definition 1.1 (First-Order Resolution Calculus).

axiom

ConlhnGo
G,...,.GU {Ll}, e CJ U {LQ}, ey Cp, Cio U CJ'(T

Cl,...,C,'U{Ll},...,CJ-U{L2}’M’C" resolution
with O'(I_l) = 0’([__2)
G,....CGGU{L1,....Ln}, ..., Cp, o U{Li0} o
factorization

G,...,.GU {Ll7 Lm}, ., Gy
with o(L1) = ... = o(Lpm)

» a resolution proof for a set of clauses S is a derivation of S in the
resolution calculus; the substitution o is local for every rule application;
variables in every clause C can be renamed

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Logic Programming

» use restricted form of resolution for programming a computation

» program is expressed as a set of “Horn” clauses

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Logic Programming

» use restricted form of resolution for programming a computation

» program is expressed as a set of “Horn” clauses

» given a query, “SLD resolution” is used to prove that the query is a
logical consequence of the program

» unification is used to calculate a substitution of the variables in the
given query

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Logic Programming

» use restricted form of resolution for programming a computation

» program is expressed as a set of “Horn” clauses

» given a query, “SLD resolution” is used to prove that the query is a
logical consequence of the program

» unification is used to calculate a substitution of the variables in the
given query

» in imperative programming languages, computation is explicitly
constructed by the programmer (using if-then-else, while, for, ...)

» in logic programming, the program is a declarative specification and the
resolution inference engine provides an implicit control

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Outline

» SLD Resolution

/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution

Horn Clauses and Logic Programs

Definition 2.1 (Horn Clause).

A Horn clause is a clause that contains at most one positive literal (a

positive literal is a non-negated literal). A definite clause is a Horn clause
that contains a (single) positive literal.

IN3070/4070 :: Autumn 2020

Lecture 9 :: 15th October

SLD Resolution

Horn Clauses and Logic Programs

Definition 2.1 (Horn Clause).

A Horn clause is a clause that contains at most one positive literal (a
positive literal is a non-negated literal). A definite clause is a Horn clause
that contains a (single) positive literal.

Definition 2.2 (Logic Program).

A logic program consists of definite clauses of the form:

» facts: {A} (A)
» rules: {A, =By, ..., —|Bn} (A > WA Bn)
where A, By, ..., B, are atomic formulae.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Horn Clauses and Logic Programs

Definition 2.1 (Horn Clause).

A Horn clause is a clause that contains at most one positive literal (a
positive literal is a non-negated literal). A definite clause is a Horn clause
that contains a (single) positive literal.

Definition 2.2 (Logic Program).

A logic program consists of definite clauses of the form:

» facts: {A} (A)
» rules: {A, =By, ..., —|Bn} (A > WA Bn)

where A, By, ..., B, are atomic formulae.

Definition 2.3 (Goal or Query).

A goal/query clause has the form {—Bi,...,—B,} where By, ..., B, are
atomic formulae.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution

SLD resolution (Selective Linear Definite clause resolution) is the inference
rule used in logic programming

» it is a refinement of the general resolution rule

» it is sound and complete for Horn clauses

IN3070/4070 :: Autumn 2020

Lecture 9 :: 15th October

SLD Resolution

SLD Resolution

SLD resolution (Selective Linear Definite clause resolution) is the inference
rule used in logic programming

» it is a refinement of the general resolution rule

» it is sound and complete for Horn clauses

Definition 2.4 (SLD Resolution).

Ctyon{dy s Co axiom
ClaaCIU{Ll},-,C]U{L2},, Cn’ CIO'U QU /]
G, ..., GU{L1}, ..., GU{L>}, ..., Cy resolution

with o(Ly) = o(Ly)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution

SLD Resolution

SLD resolution (Selective Linear Definite clause resolution) is the inference
rule used in logic programming

» it is a refinement of the general resolution rule

» it is sound and complete for Horn clauses

Definition 2.4 (SLD Resolution).

Ctyon{dy s Co axiom
ClaaCIU{Ll},-,C]U{L2},, Cn’ CIO'U QU /]
G, ..., GU{L1}, ..., GU{L>}, ..., Cy resolution

with o(Ly) = o(Ly)
» first step: Ist parent clause G;GU{Ly} is the query clause

step n>2: 1st parent clauses C;U{L1} is resolvent CioUCjo of step n—1
» 2nd parent clauses C;U{L,} is always a clause of the logic program

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

An SLD Resolution Derivation

Let {=Q1, @2, ...} be a query clause and
{A1,—B1,-Bj, ...}, ... {An, By, 0B}, ...} be a logic program.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution

An SLD Resolution Derivation

Let {=Q1, @2, ...} be a query clause and
{A1,—B1,-Bj, ...}, ... {An, By, 0B}, ...} be a logic program.

An SLD resolution derivation has the following form:

{—|Q1, ceey —|Q,', }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution

An SLD Resolution Derivation

Let {=Q1, @2, ...} be a query clause and
{A1,—B1,-Bj, ...}, ... {An, By, 0B}, ...} be a logic program.

An SLD resolution derivation has the following form:

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

An SLD Resolution Derivation

Let {=Q1, @2, ...} be a query clause and
{A1,—B1,-Bj, ...}, ... {An, By, 0B}, ...} be a logic program.

An SLD resolution derivation has the following form:

{—|Q1,...,—|Q,',...} {Aj,—!Bj,—!Bj{,...} with O'(Q,') :O'(Aj)
! %
{=D1,..., 7Dy, }

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

An SLD Resolution Derivation

Let {=Q1, @2, ...} be a query clause and
{A1,—B1,-Bj, ...}, ... {An, By, 0B}, ...} be a logic program.

An SLD resolution derivation has the following form:

{—|Q1,...,—|Q,',...} {Aj,—!Bj,—!Bj{,...} with O'(Q,') :O'(Aj)
1 v
{ﬁDl,...,ﬁDk, } {A/,ﬁB/,—'Bl/,...}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

E— T ————
An SLD Resolution Derivation

Let {=Q1, @2, ...} be a query clause and
{A1,—B1,-Bj, ...}, ... {An, By, 0B}, ...} be a logic program.

An SLD resolution derivation has the following form:

{—|Q1,...,—|Q,',...} {Aj,—!Bj,—!Bj{,...} with O'(Q,') :O'(Aj)

\: vd

{ﬁDl,...,ﬁDk, } {A/,ﬂB/,—'Bl/,...} with U(Dk) :O'(A/)
1 e

(SEp oo, ~Epmy oo}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

An SLD Resolution Derivation

Let {=Q1, @2, ...} be a query clause and
{A1,—B1,-Bj, ...}, ... {An, By, 0B}, ...} be a logic program.

An SLD resolution derivation has the following form:

{—|Q1,...,—|Q,',...} {Aj,—!Bj,—!Bj{,...} with O'(Q,') :O'(Aj)

\: vd

{ﬁDl,...,ﬁDk, } {A/,ﬂB/,—'Bl/,...} with U(Dk) :O'(A/)
1 e

(SEp oo, ~Epmy oo}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

E— T ————
An SLD Resolution Derivation

Let {=Q1, @2, ...} be a query clause and
{A1,—B1,-Bj, ...}, ... {An, By, 0B}, ...} be a logic program.

An SLD resolution derivation has the following form:

{—|Q1,...,—|Q,',...} {Aj,—!Bj,—!Bj{,...} with O'(Q,') :O'(Aj)

\: vd

{ﬁDl,...,ﬁDk, } {A/,ﬂB/,—'Bl/,...} with U(Dk) :O'(A/)
1 e

(SEp oo, ~Epmy oo}

R} (A

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

An SLD Resolution Derivation

Let {=Q1, @2, ...} be a query clause and
{A1,—B1,-Bj, ...}, ... {An, By, 0B}, ...} be a logic program.

An SLD resolution derivation has the following form:

{—|Q1,...,—|Q,',...} {Aj,—!Bj,—!Bj{,...} with O'(Q,') :O'(Aj)
\J e
{ﬁDl,...,ﬁDk, } {A/,ﬂB/,—'Bl/,...} with U(Dk) :O'(A/)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Outline

» Prolog

Lecture 9 :: 15th October

The Programming Language Prolog
» Prolog (Programming in Logic) is a declarative programming language

invented in the early 1970s by A. Colmerauer, R. Kowalski, and
P. Roussel

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

The Programming Language Prolog

» Prolog (Programming in Logic) is a declarative programming language
invented in the early 1970s by A. Colmerauer, R. Kowalski, and
P. Roussel

» declarative programming: specify the problem and let the computer
solve it

» algorithm = logic + control [Kowalski 1979]

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

The Programming Language Prolog

» Prolog (Programming in Logic) is a declarative programming language
invented in the early 1970s by A. Colmerauer, R. Kowalski, and
P. Roussel

» declarative programming: specify the problem and let the computer
solve it

» algorithm = logic + control [Kowalski 1979]

» A Prolog program is a logic program, i.e. a set of definite clauses
» the symbol ":-' is used to represent the implication '+’

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

The Programming Language Prolog

» Prolog (Programming in Logic) is a declarative programming language
invented in the early 1970s by A. Colmerauer, R. Kowalski, and
P. Roussel

» declarative programming: specify the problem and let the computer
solve it

» algorithm = logic + control [Kowalski 1979]

» A Prolog program is a logic program, i.e. a set of definite clauses

» the symbol ':-' is used to represent the implication "<’

» A Prolog program is “executed” by the Prolog interpreter (control) that
implements SLD resolution

» search strategy: choose leftmost literal in the first parent/goal clause

(D1) and choose second parent clause (D;) from top to bottom among
the program clauses

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog — An Example

» An example in Prolog (file family.pl)

male(thomas) . % these are facts
male(rolf).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog — An Example

» An example in Prolog (file family.pl)
male(thomas) . % these are facts
male(rolf).
female (anna) .
female (maria) .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog — An Example

» An example in Prolog (file family.pl)

male(thomas) . % these are facts
male(rolf).

female(anna) .

female(maria) .

parent (thomas,anna) .

parent (maria,anna) .

parent (rolf ,maria) .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog — An Example

» An example in Prolog (file family.pl)

male(thomas) . % these are facts
male(rolf).

female(anna) .

female(maria) .

parent (thomas,anna) .

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X). % these are rules
mother (X,Y) :- parent(X,Y), female(X).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog — An Example

» An example in Prolog (file family.pl)

male(thomas) . % these are facts
male(rolf).

female(anna) .

female(maria) .

parent (thomas,anna) .

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X). % these are rules
mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog — An Example

» An example in Prolog (file family.pl)

male(thomas) .
male(rolf).
female(anna) .
female(maria) .
parent (thomas,anna) .
parent (maria,anna) .
parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

» start Prolog and type '[family] .’ to load the program
» Ctrl-C stops Prolog; 'halt.’ exits Prolog

% these are facts

% these are rules

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).

/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).
false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).
false.

» 7- parent(X,anna).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).
false.

» 7- parent(X,anna).
X = thomas <press ’;’ for more solutions>

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).
false.

» 7- parent(X,anna).
X = thomas <press ’;’ for more solutions>
X maria <press ’;’ for more solutions>

Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).
false.

» 7- parent(X,anna).
X = thomas <press ’;’ for more solutions>
X = maria <press ’;’ for more solutions>
false.

Autumn 2020 Lecture 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).
false.

» 7- parent(X,anna).
X = thomas <press ’;’ for more solutions>
X = maria <press ’;’ for more solutions>
false.

» 7- father(X,Y).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).
false.

» 7- parent(X,anna).
X = thomas <press ’;’ for more solutions>
X = maria <press ’;’ for more solutions>
false.

» 7- father(X,Y).
X = thomas,
Y = anna <press ’;’ for more solutions>

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).
false.

» 7- parent(X,anna).
X = thomas <press ’;’ for more solutions>
X = maria <press ’;’ for more solutions>
false.

» 7- father(X,Y).
X = thomas,
= anna <press ’;’ for more solutions>
rolf,
maria.

Y
X
Y

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).
false.

» 7- parent(X,anna).
X = thomas <press ’;’ for more solutions>
X = maria <press ’;’ for more solutions>
false.

» 7- father(X,Y).
X = thomas,
Y = anna <press ’;’ for more solutions>
X = rolf,
Y = maria.

» 7- grandfather(rolf,Y).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Queries — Examples

» 7- parent(maria,anna).
true.
?- parent(anna,maria).
false.

» 7- parent(X,anna).

X = thomas <press ’;’ for more solutions>
X = maria <press ’;’ for more solutions>
false.

» 7- father(X,Y).

X = thomas,
Y = anna <press ’;’ for more solutions>
X = rolf,

Y = maria.

» 7- grandfather(rolf,Y).
Y = anna.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
query: ?- grandfather(rolf,Y).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)} {grandfather(X,Z),~father(X,U),—parent(U,Z)}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)} {grandfather(X,Z),~father(X,U),—parent(U,Z)}

i} e with o(X)=rolf, o(Y)=2Z
{—father (rolf,U),—parent(U,Z)}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)} {grandfather(X,Z),~father(X,U),—parent(U,Z)}
i} e with o(X)=rolf, o(Y)=2Z

{—father (rolf,U),—parent(U,Z)} {father (V,W),~parent (V,W),—~male(V)}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)} {grandfather(X,Z),~father(X,U),—parent(U,Z)}

i} e with o(X)=rolf, o(Y)=2Z
{—father (rolf,U),—parent(U,Z)} {father (V,W),~parent (V,W),—~male(V)}
i} v with o(V)=rolf, o(U)=W

{—parent (rolf,W),—male(rolf),—parent(W,Z)}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)} {grandfather(X,Z),~father(X,U),—parent(U,Z)}

i} e with o(X)=rolf, o(Y)=2Z
{—father (rolf,U),—parent(U,Z)} {father (V,W),~parent (V,W),—~male(V)}
i} v with o(V)=rolf, o(U)=W

{—parent (rolf,W),—male(rolf),—parent(W,Z)} {parent(rolf,maria)}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)} {grandfather(X,Z),~father(X,U),—parent(U,Z)}
i} e with o(X)=rolf, o(Y)=2Z
{—father (rolf,U),—parent(U,Z)} {father (V,W),~parent (V,W),—~male(V)}
1 v with o(V)=rolf, o(U)=W
{—parent (rolf,W),—male(rolf),—parent (W,Z)} {parent (rolf,maria)}
AW ' with o(W)=maria
{-male(rolf),—parent(maria,Z)}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)} {grandfather(X,Z),~father(X,U),—parent(U,Z)}
i} e with o(X)=rolf, o(Y)=2Z
{—father (rolf,U),—parent(U,Z)} {father (V,W),~parent (V,W),—~male(V)}
1 v with o(V)=rolf, o(U)=W
{—parent (rolf,W),—male(rolf),—parent (W,Z)} {parent (rolf,maria)}
AW ' with o(W)=maria
{-male(rolf),—parent(maria,Z)} {male(rolf)}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)} {grandfather(X,Z),~father(X,U),—parent(U,Z)}

i} e with o(X)=rolf, o(Y)=2Z
{—father (rolf,U),—parent(U,Z)} {father (V,W),~parent (V,W),—~male(V)}
1 v with o(V)=rolf, o(U)=W
{—parent (rolf,W),—male(rolf),—parent(W,Z)} {parent(rolf,maria)}

AW ' with o(W)=maria
{-male(rolf),—parent(maria,Z)} {male(rolf)}
hN e

{-parent (maria,Z)}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)} {grandfather(X,Z),~father(X,U),—parent(U,Z)}

i} e with o(X)=rolf, o(Y)=2Z
{—father (rolf,U),—parent(U,Z)} {father (V,W),~parent (V,W),—~male(V)}

1 v with o(V)=rolf, o(U)=W
{—parent (rolf,W),—male(rolf),—parent(W,Z)} {parent(rolf,maria)}

AW ' with o(W)=maria

{-male(rolf),—parent(maria,Z)} {male(rolf)}
hN e

{-parent (maria,Z)} {parent (maria,anna)}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

SLD Resolution Derivation — Example

program clauses:
male(rolf).

parent (maria,anna) .

parent (rolf ,maria) .

father(X,Y) :- parent(X,Y), male(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
query: ?- grandfather(rolf,Y).

{—grandfather(rolf,Y)} {grandfather(X,Z),~father(X,U),—parent(U,Z)}
i} e with o(X)=rolf, o(Y)=2Z
{—father (rolf,U),—parent(U,Z)} {father (V,W),~parent (V,W),—~male(V)}
1 v with o(V)=rolf, o(U)=W
{—parent (rolf,W),—male(rolf),—parent(W,Z)} {parent(rolf,maria)}

AW ' with o(W)=maria
{-male(rolf),—parent(maria,Z)} {male(rolf)}
hN e
{-parent (maria,Z)} {parent (maria,anna)}
N with 0(Z)=anna
Y = anna. (=o(Y)=0(2)) {}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Outline

» Syntax

Lecture 9 :: 15th October

Terms and Predicates

Terms (term):

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Terms and Predicates

Terms (term):

> constants (constant): start with lower case letters (e.g. parent, anna)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Terms and Predicates

Terms (term):

> constants (constant): start with lower case letters (e.g. parent, anna)

» numbers: like usual (e.g. 123, 123.456)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Terms and Predicates

Terms (term):
> constants (constant): start with lower case letters (e.g. parent, anna)

» numbers: like usual (e.g. 123, 123.456)

» variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’" is anonymous variable)

Lecture 9 :: 15th October

IN3070/4070 :: Autumn 2020

Terms and Predicates

Terms (term):
> constants (constant): start with lower case letters (e.g. parent, anna)

» numbers: like usual (e.g. 123, 123.456)

» variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’" is anonymous variable)

> structures: (constant) or (constant)(Terml, ..., TermN)
(e.g. parent (maria,anna))

Lecture 9 :: 15th October

IN3070/4070 :: Autumn 2020

Terms and Predicates

Terms (term):
> constants (constant): start with lower case letters (e.g. parent, anna)

» numbers: like usual (e.g. 123, 123.456)

» variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’" is anonymous variable)

> structures: (constant) or (constant)(Terml, ..., TermN)
(e.g. parent (maria,anna))

Predicates (predicate):

Lecture 9 :: 15th October

IN3070/4070 :: Autumn 2020

Terms and Predicates

Terms (term):
> constants (constant): start with lower case letters (e.g. parent, anna)

» numbers: like usual (e.g. 123, 123.456)

» variables: start with upper case letter or the underscore ‘_’
(e.g. X, Y, Number, List, _ABC; ‘_’" is anonymous variable)

> structures: (constant) or (constant)(Terml, ..., TermN)
(e.g. parent (maria,anna))

Predicates (predicate):

» (constant) or (constant)(Terml, ..., TermN)
(e.g. thomas, parent (maria,anna))

Lecture 9 :: 15th October

IN3070/4070 :: Autumn 2020

Facts, Rules, and Queries

A Prolog program consists of clauses; a clause is either a fact or a rule.
The user can query the Prolog program/database.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Facts, Rules, and Queries

A Prolog program consists of clauses; a clause is either a fact or a rule
The user can query the Prolog program/database.

Facts:
> (predicate). (observe the ‘.’ at the end)

(e.g. male(rolf). or parent(maria,anna).)

IN3070/4070 :: Autumn 2020

Lecture 9 :: 15th October

Facts, Rules, and Queries

A Prolog program consists of clauses; a clause is either a fact or a rule.
The user can query the Prolog program/database.
Facts:
> (predicate). (observe the ‘.’ at the end)
(e.g. male(rolf). or parent(maria,anna).)
Rules:

> (predicate) :- (predicatel), ... , (predicateN).
(e.g. father(X,Y) :- parent(X,Y), male(X).)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Facts, Rules, and Queries

A Prolog program consists of clauses; a clause is either a fact or a rule.
The user can query the Prolog program/database.

Facts:
> (predicate). (observe the ‘.’ at the end)

(e.g. male(rolf). or parent(maria,anna).)

Rules:
> (predicate) :- (predicatel), ... , (predicateN).
(e.g. father(X,Y) :- parent(X,Y), male(X).)

» rules have the form Head :- Body.
| 4

;=" can be read as ‘<—'; comma ‘," in the body can be read as ‘A’

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Facts, Rules, and Queries

A Prolog program consists of clauses; a clause is either a fact or a rule.
The user can query the Prolog program/database.

Facts:

> (predicate). (observe the ‘.’ at the end)

(e.g. male(rolf). or parent(maria,anna).)
Rules:
> (predicate) :- (predicatel), ... , (predicateN).
(e.g. father(X,Y) :- parent(X,Y), male(X).)
» rules have the form Head :- Body.
» ‘:-'can be read as ‘<—'; comma ‘,’ in the body can be read as ‘A’
Query:
> (predicatel), ... , (predicateN).

(e,g, parent (maria,anna). or grandfather(rolf,Y).)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Outline

» Semantics

IN3070/4070 :: Autumn 2020 Lecture 9 5th October

Operational Semantics

» Prolog tries to prove the query using the facts and rules in its database

> it starts trying to fulfil/solve the predicates one after the other

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Operational Semantics

» Prolog tries to prove the query using the facts and rules in its database

> it starts trying to fulfil/solve the predicates one after the other

if an appropriate fact matches, then the predicate/goal succeeds

v

» if the head of a rule matches, then Prolog continues by trying to fulfil
the predicates of the rule's body

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Operational Semantics

» Prolog tries to prove the query using the facts and rules in its database

> it starts trying to fulfil/solve the predicates one after the other

if an appropriate fact matches, then the predicate/goal succeeds

v

» if the head of a rule matches, then Prolog continues by trying to fulfil
the predicates of the rule's body

» the database is searched top to bottom

» if more than one fact or head of a rule matches, then alternative options
are considered if the search fails (via backtracking)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

IN3070/4070 :: Autumn 2020

Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).

IN3070/4070 :: Autumn 2020

Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)
male (thomas)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)
male (thomas)
parent (anna,anna)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)
male (thomas)
parent (anna,anna) -> fail

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)
male (thomas)
parent (anna,anna) -> fail

-> parent(maria, anna)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)
male (thomas)
parent (anna,anna) -> fail
-> parent(maria, anna)
male (maria)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)
male (thomas)
parent (anna,anna) -> fail
-> parent(maria, anna)
male(maria) -> fail

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)
male (thomas)
parent (anna,anna) -> fail
-> parent(maria, anna)
male(maria) -> fail
-> parent(rolf, maria)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)
male (thomas)
parent (anna,anna) -> fail
-> parent(maria, anna)
male(maria) -> fail
-> parent(rolf, maria)
male(rolf)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)
male(thomas)
parent (anna,anna) -> fail
-> parent(maria, anna)
male(maria) -> fail
-> parent(rolf, maria)
male(rolf)
parent (maria,anna)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Operational Semantics — Example

male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).

mother (X,Y) :- parent(X,Y), female(X).

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?- grandfather(X,anna).
-> father(X,Y) -> parent(X,Y) -> parent(thomas, anna)
male(thomas)
parent (anna,anna) -> fail
-> parent(maria, anna)
male(maria) -> fail
-> parent(rolf, maria)
male(rolf)
parent (maria,anna)
grandfather (rolf,anna) succeeds

X = rolf.

> variables are instantiated (“bound”) during the unification of terms

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Logical Semantics

The semantics of a program is specified by the following formula F.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Logical Semantics

The semantics of a program is specified by the following formula F.
fact_1.

factmn.

head_1 :- body_1.

head m :- bodym.
?7- query.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Logical Semantics

The semantics of a program is specified by the following formula F.

fact_1. (fact_1

. A

factn. A factn

head_1 :- body_1. A head_1 < body-1
e N o

head m :- body.m. A head m ¢ bodym)
?7- query. — query

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Logical Semantics

The semantics of a program is specified by the following formula F.

fact_1. (fact_1

. AN

factn. A factn

head_1 :- body_1. A head_1 < body-1
e N o

head m :- body.m. A head m ¢ bodym)
7- query. — query

The query succeeds iff the Prolog program terminates and F is valid.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Logical Semantics

The semantics of a program is specified by the following formula F.

fact_1. (fact_1

A
factn. A factn
head_1 :- body_1. A head_1 < body-1
e N o
head m :- body.m. A head m ¢ bodym)
7- query. — query

The query succeeds iff the Prolog program terminates and F is valid.
» variables are quantified in the following way:
vX1,...Xn (3IY1,...Yn body.i — head_ i)

for all variables X1, ..., Xn occurring in head_i and all variables Y1,...Yn
occurring in body_i

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Semantics

Logical Semantics

The semantics of a program is specified by the following formula F.

fact_1. (fact_1

A
factn. A factn
head_1 :- body_1. A head_1 < body-1
e N o
head m :- body.m. A head m ¢ bodym)
7- query. — query

The query succeeds iff the Prolog program terminates and F is valid.
» variables are quantified in the following way:
vX1,...Xn (3IY1,...Yn body.i — head_ i)

for all variables X1, ..., Xn occurring in head_i and all variables Y1,...Yn
occurring in body_i

» inference engine is a theorem prover based on SLD resolution (only Horn
clauses, depth-first search (incomplete!l), no occurs-check (unsound!))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Outline

» Lists & Arithmetic

Lecture 9 :: 15th October

Prolog Lists
Lists are terms that are represented in the following way:

[<Head>|<Tail>]
where <Head> is the first element and <Tail> is the rest of the list

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists & Arithmetic

Prolog Lists

Lists are terms that are represented in the following way:
[<Head>|<Tail>]

where <Head> is the first element and <Tail> is the rest of the list

» Example: [a,b,c,d,e] can be represented, e.g., as
[al [b, c, d, e]ll
[al bl [cl[dl[e]l]1]]
[a, bllc, a, ell
[a, b, c, dll[e]ll]

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists & Arithmetic

Prolog Lists

Lists are terms that are represented in the following way:
[<Head>|<Tail>]

where <Head> is the first element and <Tail> is the rest of the list

» Example: [a,b,c,d,e] can be represented, e.g., as
[al [b, c, d, e]ll
[al bl [cl[dl[e]l]1]]
[a, bllc, a, ell
[a, b, c, dll[e]ll]

» 7- [HI|T]=[a,b,c,d].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists & Arithmetic

Prolog Lists

Lists are terms that are represented in the following way:
[<Head>|<Tail>]
where <Head> is the first element and <Tail> is the rest of the list

» Example: [a,b,c,d,e] can be represented, e.g., as

[al [b, c, d, e]ll
[al bl [cl[dl[e]l]1]]
[a, bllc, d, e]l]
[a, b, c, dl[el]

» 7- [HIT]=[a,b,c,d].
H=a,
T=[b, c, d].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Prolog Lists

Lists are terms that are represented in the following way:
[<Head>|<Tail>]
where <Head> is the first element and <Tail> is the rest of the list

» Example: [a,b,c,d,e] can be represented, e.g., as
[al [b, c, d, e]ll
[al bl [cl[dl[e]l]1]]
[a, bllc, a, ell
[a, b, c, dll[e]ll]

» 7- [HIT]=[a,b,c,d].
H=a,
T=[b, c, d].

?- [H1,H2|T]=[a,b,c,d].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists & Arithmetic

Prolog Lists

Lists are terms that are represented in the following way:
[<Head>|<Tail>]
where <Head> is the first element and <Tail> is the rest of the list

» Example: [a,b,c,d,e] can be represented, e.g., as

[al [b, c, d, e]ll
[al bl [cl[dl[e]l]1]]
[a, bllc, d, e]l]
[a, b, c, dl[el]

» 7- [HIT]=[a,b,c,d].
H=a,
T=[b, c, d].

?- [H1,H2|T]=[a,b,c,d].

H1 = a,
H2 = b,
T = [c, d].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Predefined Predicates on Lists

» member (Element,List) succeeds iff Element occurs in List

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Predefined Predicates on Lists

» member (Element,List) succeeds iff Element occurs in List

» append(Listl,List2,List3) succeeds iff appending Listl and List2
results in List3

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists & Arithmetic

Predefined Predicates on Lists

» member (Element,List) succeeds iff Element occurs in List

» append(Listl,List2,List3) succeeds iff appending Listl and List2
results in List3

> length(List,Length) succeeds iff List has length/size Length

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Predefined Predicates on Lists

» member (Element,List) succeeds iff Element occurs in List

» append(Listl,List2,List3) succeeds iff appending Listl and List2
results in List3

> length(List,Length) succeeds iff List has length/size Length

» 7- member(a,[a,b,c]).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Predefined Predicates on Lists

» member (Element,List) succeeds iff Element occurs in List

» append(Listl,List2,List3) succeeds iff appending Listl and List2
results in List3

> length(List,Length) succeeds iff List has length/size Length

» 7- member(a,[a,b,c]).
true .
?- member (X, [a,b]).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Predefined Predicates on Lists

>
>

member (Element,List) succeeds iff Element occurs in List

append(Listl,List2,List3) succeeds iff appending List1 and List2
results in List3

length(List,Length) succeeds iff List has length/size Length

?7- member(a, [a,b,c]).
true

?- member (X, [a,b]).

X =a;

X=Db.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Predefined Predicates on Lists

>
>

member (Element,List) succeeds iff Element occurs in List

append(Listl,List2,List3) succeeds iff appending List1 and List2
results in List3

length(List,Length) succeeds iff List has length/size Length
?7- member(a, [a,b,c]).

true .

?- member (X, [a,b]).

X =a;

X=Db.

?- append([a,b], [c],2).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Predefined Predicates on Lists

» member (Element,List) succeeds iff Element occurs in List

» append(Listl,List2,List3) succeeds iff appending Listl and List2
results in List3

> length(List,Length) succeeds iff List has length/size Length

» 7- member(a,[a,b,c]).

true .
?- member (X, [a,b]).
X =a;
X=Db.

?- append([a,b], [c],2).
Z = [a, b, c].
?- append(X,Y, [a,b,c]).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Predefined Predicates on Lists

» member (Element,List) succeeds iff Element occurs in List

» append(Listl,List2,List3) succeeds iff appending Listl and List2
results in List3

> length(List,Length) succeeds iff List has length/size Length

» 7- member(a,[a,b,c]).

true .
?- member (X, [a,b]).
X =a;
X=Db.

?- append([a,b]l, [c],Z).
Z = [a, b, c].

?- append(X,Y, [a,b,c]).
X=1[0], Y=1[a, b, c] ;
[al, Y = [b, c] ;
= [a, b], Y = [c] ;
X=1[a, b, cl, Y=1[]

<o
o

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists — Examples

» delete all identical elements from list

delete([1,_,[1).
delete([X1|T],X,L) :- X==X1, delete(T,X,L).
delete([X1IT],X, [X1IL]) :- X\==X1, delete(T,X,L).

=="-operator succeeds if both sides are identical without unification)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists — Examples

» delete all identical elements from list

delete([1,_,[1).
delete([X1|T],X,L) :- X==X1, delete(T,X,L).
delete([X1IT],X, [X1IL]) :- X\==X1, delete(T,X,L).

=="-operator succeeds if both sides are identical without unification)

» reverse list

reverse([],[]).
reverse([H|T],L) :- reverse(T,R), append(R, [H],L).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists — Examples

» delete all identical elements from list

delete([1,_,[1).
delete([X1|T],X,L) :- X==X1, delete(T,X,L).
delete([X1IT],X, [X1IL]) :- X\==X1, delete(T,X,L).

=="-operator succeeds if both sides are identical without unification)

» reverse list

reverse([],[]).
reverse([H|T],L) :- reverse(T,R), append(R, [H],L).

?- reverse([o,1,1,e,h],L).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists — Examples

» delete all identical elements from list

delete([1,_,[1).
delete([X1|T],X,L) :- X==X1, delete(T,X,L).
delete([X1IT],X, [X1IL]) :- X\==X1, delete(T,X,L).

=="-operator succeeds if both sides are identical without unification)

» reverse list

reverse([],[]).
reverse([H|T],L) :- reverse(T,R), append(R, [H],L).

?- reverse([o,1,1,e,h],L).
L = [h,e,1,1,0].

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations
» numbers and terms with arithmetic operators are not interpreted

7- X=3+5, X=Y+Z.
X =23+5, Y =23, Z=5.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+b.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+b.
X = 8.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+b.
X = 8.

» The term has to be fully instantiated:

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+b.
X = 8.

» The term has to be fully instantiated:
?- 8 is X+5.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+b.
X = 8.

» The term has to be fully instantiated:
?- 8 is X+5.
uncaught exception: error(instantiation_error, (is)/2)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+b.
X = 8.

» The term has to be fully instantiated:
?- 8 is X+5.
uncaught exception: error(instantiation_error, (is)/2)

1

» arithmetic operators ‘=', '<', '>" '>=' '=<" are interpreted predicates

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+b.
X = 8.
» The term has to be fully instantiated:
?- 8 is X+5.
uncaught exception: error(instantiation_error, (is)/2)

1

» arithmetic operators ‘=', '<', '>" '>=' '=<" are interpreted predicates
> 0l=1 nl=nx(n—1) if n>0:

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+b.
X = 8.

» The term has to be fully instantiated:
?- 8 is X+5.
uncaught exception: error(instantiation_error, (is)/2)

» arithmetic operators ‘=', '<', '>" '>=' '=<" are interpreted predicates
> 0l=1 nl=nx(n—1) if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,
factorial(N1,I1), I is Nx*I1.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+b.
X = 8.

» The term has to be fully instantiated:
?- 8 is X+5.
uncaught exception: error(instantiation_error, (is)/2)

» arithmetic operators ‘=', '<', '>" '>=' '=<" are interpreted predicates
> 0l=1 nl=nx(n—1) if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,
factorial(N1,I1), I is Nx*I1.

?- factorial(5,I).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Arithmetic Operations

» numbers and terms with arithmetic operators are not interpreted
7- X=3+5, X=Y+Z.
X =235, Y =3, Z =5.

> to evaluate an arithmetic term the (predefined) ‘is’ predicate is used
?- X is 3+b.
X = 8.

» The term has to be fully instantiated:
?- 8 is X+5.
uncaught exception: error(instantiation_error, (is)/2)

» arithmetic operators ‘=', '<', '>" '>=' '=<" are interpreted predicates
> 0l=1 nl=nx(n—1) if n>0:
factorial(0,1).

factorial(N,I) :- N>0, N1 is N-1,
factorial(N1,I1), I is Nx*I1.

?- factorial(5,I).
N = 120.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists & Arithmetic

Example: Ordered Lists

ordered([]).
ordered([X]).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

IN3070/4070 :: Autumn 2020

Lecture 9 :: 15th October

Lists & Arithmetic

Example: Ordered Lists

ordered([]).
ordered([X]).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries:

| ?- ordered([3,4,67,8]).
no

IN3070/4070 :: Autumn 2020

Lecture 9 :: 15th October

Lists & Arithmetic

Example: Ordered Lists

ordered([]).
ordered([X]).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries:

| ?- ordered([3,4,67,8]).
no

| ?- ordered([3,4,67, 88]).
yes

IN3070/4070 :: Autumn 2020

Lecture 9 :: 15th October

Example: Ordered Lists

ordered([]).
ordered([X]).
ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries:

| ?- ordered([3,4,67,8]).
no

| ?- ordered([3,4,67, 88]).
yes

| ? - ordered([3,4,X,88]).
instantiation error: 4=<_30 - arg 2

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Example: Ordered Lists

ordered([]).
ordered([X]).
ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Queries:

| ?- ordered([3,4,67,8]).
no

| ?- ordered([3,4,67, 88]).
yes

| ? - ordered([3,4,X,88]).
instantiation error: 4=<_30 - arg 2

Comparison only works if variables are instantiated to numbers.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Example: Length of Lists
» An intuitive definition:

length([1,0).
length([_ | Ts], N+1) :- length(Ts,N).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists & Arithmetic

Example: Length of Lists

» An intuitive definition:
length([1,0).
length([_ | Ts], N+1) :- length(Ts,N).

> Let's try it:
| ?- length([3,5,56,7],X).
X = 0+1+1+1+1
Yes

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Lists & Arithmetic

Example: Length of Lists

» An intuitive definition:
length([1,0).
length([_ | Ts], N+1) :- length(Ts,N).

> Let's try it:
| ?- length([3,5,56,7],X).
X = O+1+1+1+1
Yes

» Correct definition
length([],0).
length([_ | Tsl, N) :- length(Ts,M), N is M+1.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Example: Length of Lists

» An intuitive definition:
length([1,0).
length([_ | Ts], N+1) :- length(Ts,N).

> Let's try it:
| ?- length([3,5,56,7],X).
X = O+1+1+1+1
Yes

» Correct definition
length([],0).
length([_ | Tsl, N) :- length(Ts,M), N is M+1.

> Let's try it:
| ?- length([3,5,56,7],X).
X =4

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Cut/If-then-else

Outline

» Negation/Cut/If-then-else

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Negation as Failure

» negation ‘\+' is implemented as “negation as failure”

/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Negation as Failure

» negation ‘\+' is implemented as “negation as failure”

> ‘\+ predicate’ succeeds iff ‘predicate’ fails

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Negation as Failure

» negation ‘\+' is implemented as “negation as failure”
> ‘\+ predicate’ succeeds iff ‘predicate’ fails

» male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).
mother (X,Y) :- parent(X,Y), female(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Negation as Failure

» negation ‘\+' is implemented as “negation as failure”
> ‘\+ predicate’ succeeds iff ‘predicate’ fails

» male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).
mother (X,Y) :- parent(X,Y), female(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?7- female(kristine).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Negation as Failure

» negation ‘\+' is implemented as “negation as failure”
> ‘\+ predicate’ succeeds iff ‘predicate’ fails

» male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).
mother (X,Y) :- parent(X,Y), female(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?7- female(kristine).
false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Negation as Failure

» negation ‘\+' is implemented as “negation as failure”
> ‘\+ predicate’ succeeds iff ‘predicate’ fails

» male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).
mother (X,Y) :- parent(X,Y), female(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?7- female(kristine).
false.

?7- \+ female(kristine).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Negation as Failure

» negation ‘\+' is implemented as “negation as failure”
> ‘\+ predicate’ succeeds iff ‘predicate’ fails

» male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).
mother (X,Y) :- parent(X,Y), female(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?7- female(kristine).
false.

?7- \+ female(kristine).
true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Negation as Failure

» negation ‘\+' is implemented as “negation as failure”
> ‘\+ predicate’ succeeds iff ‘predicate’ fails

» male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).
mother (X,Y) :- parent(X,Y), female(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?7- female(kristine).
false.

?7- \+ female(kristine).
true.

?- \+ parent(rolf,thomas) .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Negation as Failure

» negation ‘\+' is implemented as “negation as failure”
> ‘\+ predicate’ succeeds iff ‘predicate’ fails

» male(thomas). male(rolf). female(anna). female(maria).
parent (thomas,anna). parent(maria,anna). parent(rolf,maria).
father(X,Y) :- parent(X,Y), male(X).
mother (X,Y) :- parent(X,Y), female(X).
grandfather(X,Z) :- father(X,Y), parent(Y,Z).

?7- female(kristine).
false.

?7- \+ female(kristine).
true.

?- \+ parent(rolf,thomas) .
true.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Non-monotonic Logics

» Standard “classical” propositional and first-order logic is monotonic.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Non-monotonic Logics

» Standard “classical” propositional and first-order logic is monotonic.
» IfACA and AE B, then A =B

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Non-monotonic Logics

» Standard “classical” propositional and first-order logic is monotonic.
» IfACA and AE B, then A =B

» Adding facts will never remove logical consequences

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Non-monotonic Logics

» Standard “classical” propositional and first-order logic is monotonic.
» IfACA and AE B, then A =B
» Adding facts will never remove logical consequences

» In a semantics with negation as failure,

p,q = —r

since r cannot be derived from {p, q}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Non-monotonic Logics

Standard ‘classical” propositional and first-order logic is monotonic.
If AC A and A= B, then A= B

Adding facts will never remove logical consequences

vVvyyvyy

In a semantics with negation as failure,

p,q = —r

since r cannot be derived from {p, q}
» This is what Prolog does.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Non-monotonic Logics

Standard ‘classical” propositional and first-order logic is monotonic.
If AC A and A= B, then A= B

Adding facts will never remove logical consequences

vVvyyvyy

In a semantics with negation as failure,

p,q = —r

since r cannot be derived from {p, q}
» This is what Prolog does.
» Now add the fact r:
psq,r i~ —r

since r can be derived from {p, q, r}

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Non-monotonic Logics

Standard ‘classical” propositional and first-order logic is monotonic.
If AC A and A= B, then A= B

Adding facts will never remove logical consequences

vVvyyvyy

In a semantics with negation as failure,

p,q = —r

since r cannot be derived from {p, q}
» This is what Prolog does.
» Now add the fact r:
p,q,r = —r
since r can be derived from {p, q, r}

» Negation as Failure gives a non-monotonic logic

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Non-monotonic Logics

vVvyyvyy

Standard ‘classical” propositional and first-order logic is monotonic.
If AC A and A= B, then A= B
Adding facts will never remove logical consequences

In a semantics with negation as failure,

p,q = —r

since r cannot be derived from {p, q}
This is what Prolog does.
Now add the fact r:
p,q,r i —r
since r can be derived from {p, q, r}
Negation as Failure gives a non-monotonic logic

Very different from our classical notion of logical consequence

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

The Cut

» the cut '!" is used to restrict Prolog’s backtracking mechanism

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

~then-else

The Cut

» the cut '!" is used to restrict Prolog's backtracking mechanism

» the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

~then-else

The Cut

» the cut '!" is used to restrict Prolog's backtracking mechanism

» the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

» “green cut”: does not change solutions, only affects efficiency

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

The Cut

» the cut '!" is used to restrict Prolog's backtracking mechanism

» the cut is a predefined predicate that succeeds when it is encountered for the

first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

» “green cut”: does not change solutions, only affects efficiency
factorial(0,1) :- !.
factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

The Cut

» the cut '!" is used to restrict Prolog's backtracking mechanism

» the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

» “green cut”: does not change solutions, only affects efficiency
factorial(0,1) :- !.
factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

» ‘“red cut”: does change returned solutions

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

The Cut

» the cut '!" is used to restrict Prolog's backtracking mechanism

» the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

» “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.
factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

» ‘“red cut”: does change returned solutions

parent (thomas,anna) :- !.
parent (maria,anna). parent(rolf,maria).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

The Cut

» the cut '!" is used to restrict Prolog's backtracking mechanism

» the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

» “green cut”: does not change solutions, only affects efficiency
factorial(0,1) :- !.
factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

» ‘“red cut”: does change returned solutions

parent (thomas,anna) :- !.
parent (maria,anna). parent(rolf,maria).

?- parent(X,anna) .

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

The Cut

» the cut '!" is used to restrict Prolog's backtracking mechanism

» the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

» “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.
factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

» ‘“red cut”: does change returned solutions

parent (thomas,anna) :- !.
parent (maria,anna). parent(rolf,maria).

?- parent(X,anna) .
X = thomas.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

The Cut

» the cut '!" is used to restrict Prolog's backtracking mechanism

» the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

» “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.
factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

» ‘“red cut”: does change returned solutions

parent (thomas,anna) :- !.
parent (maria,anna). parent(rolf,maria).

?- parent(X,anna) .
X = thomas.
? grandfather(X,anna).

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

The Cut

» the cut '!" is used to restrict Prolog's backtracking mechanism

» the cut is a predefined predicate that succeeds when it is encountered for the
first time; any attempt to re-fulfil it results in the failure of the calling (head)
predicate

» “green cut”: does not change solutions, only affects efficiency

factorial(0,1) :- !.
factorial(I,N) :- I>0,I1 is I-1,factorial(I1,N1),N is I*N1.

» ‘“red cut”: does change returned solutions

parent (thomas,anna) :- !.
parent (maria,anna). parent(rolf,maria).

?- parent(X,anna) .

X = thomas.

? grandfather(X,anna).
false.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

ut/If-then-else

Example: Siblings

Lecture 9 :: 15th October

Negation/Cut/If-then-else

Disjunction and If-then-else

» predicate :- predicatel ; predicate2.
succeeds if predicatel succeeds or predicate?2 succeeds; backtracking over
predicatel and predicate2 when re-fulfilling predicate

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Disjunction and If-then-else

» predicate :- predicatel ; predicate2.
succeeds if predicatel succeeds or predicate?2 succeeds; backtracking over
predicatel and predicate2 when re-fulfilling predicate
grandparent (X,Y) :- grandfather(X,Y) ; grandmother(X,Y).
(backtracking over grandfather (X,Y) grandmother (X,Y))

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Disjunction and If-then-else

» predicate :- predicatel ; predicate2.
succeeds if predicatel succeeds or predicate?2 succeeds; backtracking over
predicatel and predicate2 when re-fulfilling predicate
grandparent (X,Y) :- grandfather(X,Y) ; grandmother(X,Y).
(backtracking over grandfather (X,Y) grandmother (X,Y))

» Cond -> Goall ; Goal2 succeeds iff Cond succeeds and Goall succeeds or
Cond fails and Goal2 succeeds; no backtracking within Cond (“implicit cut™)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Disjunction and If-then-else

» predicate :- predicatel ; predicate2.

succeeds if predicatel succeeds or predicate?2 succeeds; backtracking over
predicatel and predicate2 when re-fulfilling predicate

grandparent (X,Y) :- grandfather(X,Y) ; grandmother(X,Y).
(backtracking over grandfather (X,Y) grandmother (X,Y))

Cond -> Goall ; Goal2 succeeds iff Cond succeeds and Goall succeeds or
Cond fails and Goal2 succeeds; no backtracking within Cond (“implicit cut™)

grandparent (X,Y) :-
male(X) -> grandfather(X,Y) ; grandmother(X,Y).

(information given by male(X) needs to be complete)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Disjunction and If-then-else

» predicate :- predicatel ; predicate2.

succeeds if predicatel succeeds or predicate?2 succeeds; backtracking over
predicatel and predicate2 when re-fulfilling predicate

grandparent (X,Y) :- grandfather(X,Y) ; grandmother(X,Y).
(backtracking over grandfather (X,Y) grandmother (X,Y))

Cond -> Goall ; Goal2 succeeds iff Cond succeeds and Goall succeeds or
Cond fails and Goal2 succeeds; no backtracking within Cond (“implicit cut™)

grandparent (X,Y) :-

male(X) -> grandfather(X,Y) ; grandmother(X,Y).
(information given by male(X) needs to be complete)
grandparent (X,Y) :-

grandfather (X,Y) -> true ; grandmother(X,Y).

(no backtracking over grandfather)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/

Problems with Prolog

No type system

/If-then-else

system

Non-declarative arithmetic

>
» No standardized module
>
»

Cut needed for efficiency

» Cut has non-declarative semantics

» Cut can simulate negation as failure (non-monotonic)
» Cut can be tricky to use
>

Cut makes automated

optimization hard

» 1O does not play nice with backtracking

IN3070/4070 :: Autumn 2020

Lecture 9 :: 15th October

Cut/If-then-else

Prolog-like Languages

» Mercury

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Prolog-like Languages

» Mercury
» ‘Pure’ language with type system

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Prolog-like Languages

» Mercury

» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

~then-else

Prolog-like Languages

» Mercury
» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..
» Steep learning curve

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Prolog-like Languages

» Mercury

» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..
» Steep learning curve

» Constraint logic programming

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

~then-else

Prolog-like Languages

» Mercury

» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..
» Steep learning curve

» Constraint logic programming
» Gathers and solves constraints on variables

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Prolog-like Languages

» Mercury
» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..
» Steep learning curve

» Constraint logic programming

» Gathers and solves constraints on variables
» From X>3, X<6, X\==5 infer X=4

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Prolog-like Languages

» Mercury

» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..
» Steep learning curve

» Constraint logic programming

» Gathers and solves constraints on variables
» From X>3, X<6, X\==5 infer X=4
» Applications in planning, scheduling, etc.

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Prolog-like Languages

» Mercury
» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..
» Steep learning curve
» Constraint logic programming
» Gathers and solves constraints on variables
» From X>3, X<6, X\==5 infer X=4
» Applications in planning, scheduling, etc.

» Higher-order logic programming, Lambda prolog

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Prolog-like Languages

» Mercury

» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..
» Steep learning curve

» Constraint logic programming
» Gathers and solves constraints on variables
» From X>3, X<6, X\==5 infer X=4
» Applications in planning, scheduling, etc.
» Higher-order logic programming, Lambda prolog
» Like Prolog, but A\-terms instead of first-order

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Prolog-like Languages

» Mercury
» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..
» Steep learning curve

» Constraint logic programming
» Gathers and solves constraints on variables
» From X>3, X<6, X\==5 infer X=4
» Applications in planning, scheduling, etc.

» Higher-order logic programming, Lambda prolog
» Like Prolog, but A\-terms instead of first-order
» Higher-order unification

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Prolog-like Languages

» Mercury

» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..
» Steep learning curve

» Constraint logic programming
» Gathers and solves constraints on variables
» From X>3, X<6, X\==5 infer X=4
» Applications in planning, scheduling, etc.
» Higher-order logic programming, Lambda prolog
» Like Prolog, but A\-terms instead of first-order
» Higher-order unification
» not a functional language, lambda terms are just data

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Negation/Cut/If-then-else

Prolog-like Languages

» Mercury
» ‘Pure’ language with type system
» No cut, functional features (syntax), monad-style 10,. ..
» Steep learning curve
» Constraint logic programming
» Gathers and solves constraints on variables
» From X>3, X<6, X\==5 infer X=4
» Applications in planning, scheduling, etc.
» Higher-order logic programming, Lambda prolog
» Like Prolog, but A\-terms instead of first-order
» Higher-order unification
» not a functional language, lambda terms are just data
» Can be handy to implement theorem provers

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Outline

» Summary

Lecture 9 :: 15th October

Summary

» logic program consists of definite clauses (facts and rules)

» SLD resolution is a sound and complete strategy for Horn clauses

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Summary
» logic program consists of definite clauses (facts and rules)
» SLD resolution is a sound and complete strategy for Horn clauses

» Prolog is a declarative programming language
» clear and simple semantics based on first-order logic

» Turing-complete (can simulate a Turing machine)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Summary

Summary

| 4
>

vy

logic program consists of definite clauses (facts and rules)

SLD resolution is a sound and complete strategy for Horn clauses

Prolog is a declarative programming language
clear and simple semantics based on first-order logic

Turing-complete (can simulate a Turing machine)

Prolog is used for, e.g, theorem proving, expert systems, term rewriting,
automated planning, and natural language processing

has given rise to a number of other languages

Prolog is used in, e.g.,

» |IBM Watson (natural language question answering system)
» Tivoli software (system and service management tools)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

Summary

| 4
>

vy

>

logic program consists of definite clauses (facts and rules)

SLD resolution is a sound and complete strategy for Horn clauses

Prolog is a declarative programming language
clear and simple semantics based on first-order logic

Turing-complete (can simulate a Turing machine)

Prolog is used for, e.g, theorem proving, expert systems, term rewriting,
automated planning, and natural language processing

has given rise to a number of other languages

Prolog is used in, e.g.,

» |IBM Watson (natural language question answering system)
» Tivoli software (system and service management tools)

next week: DPLL (efficient SAT solving)

IN3070/4070 :: Autumn 2020 Lecture 9 :: 15th October

	Motivation
	SLD Resolution
	Prolog
	Syntax
	Semantics
	Lists & Arithmetic
	Negation/Cut/If-then-else
	Summary

