IN3070,/4070 — Logic — Autumn 2020
Lecture 10: DPLL

Martin Giese

22nd October 2020

d d DEPARTMENT OF
c INFORMATICS

NIVERSITY OF

Today's Plan

» Motivation

» Simplification Rules
» Atomic Cut

» The DPLL Algorithm

» Other Tricks

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Outline

» Motivation

IN3070/4070 :: Autumn 2020 Lecture 1 22nd October

Smullyan's categories: a/83/v/d

» Many similar cases in proofs and implementations

» Categorise rules, rule applications, and formulae

a-rules (B-rules
Propositional, one branch, e.g. Propositional, splitting, e.g.

F,A,B:A/\Ift r= AA B = A
LANB = A /¢ A=B = A
~-rules 0-rules
Apply for all terms t, e.g. Introduce new constant c, e.g.
M Ax\t],¥xA = A MAx\c], = A

FVxA = A "eft T

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

A Naive SAT Solver at Work

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Problems

PPap = Tapap > PP ad = a.pdq =
P a.p = —a.a.p = PP d = —4,=p.q = P a.q = —4.9,9 =
PP = P = P = a.q =

PV a,-pVa,pV—q,-pV-qg >

Costly repetitions of identical proof trees
9 Branches

>

| 4

» Can often be avoided by using /3 rules in the “right” order
» But finding the best order is harder (!) than finding a proof
>

Better: avoid using (3 (i.e. splitting) rules

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Outline

» Simplification Rules

Lecture 10

Simplification Rules: Motivation

» Given two formulas p and g A (r — s A p)
» And an interpretation Z with Z = p
> vi(gA(r—=sAp))=vi(gA(r—= sAtrue)) =vr(gA(r —s))

» An interpretation Z falsifies a sequent
p,gN(r—sAp),lEA
if and only if Z falsifies the sequent

p,gNA(r—s),TFA

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Simplification

Definition 2.1 (Simplification).
Given two formulas A and B,where B does not have — as top-symbol, the
simplification of A with B, written A[B], is the result of

» Replacing all occurrences of B in A by true, and

» Simplifying subformulae as long as possible using the rewritings

AV true — true AV false — A
AN true — A A A false — false

A — true — true A — false — —A
true > A— A false — A true
—true — false —false — true

The simplification of A with =B, written A[—B], is the result of
» Replacing all occurrences of B in A by false, and

» Applying the same rewritings.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Simplification Examples

» To compute (g A (r — s A p))[p]
» Do the replacement: g A (r — s A true)
» Then simplify g A (r — s A true) — g A (r — s)

> So (gA(r—sAp)lpl = gA(r—s)

» To compute (g A (r — s A p))[—p]
» Do the replacement: g A (r — s A false)
» Then simplify g A (r — s A false) — g A (r — false) — g A —r

> So(gA(r—sAp))-pl = gnA-r

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let B = B’. Then A
is logically equivalent to the result of replacing B by B’ in A.

Proof.

Easily shown by structural induction over A. O

Theorem 2.1.

Given formulas A and B and an interpretation 7 with Z |= B.
Then T |= A if and only if T |= A[B]

Proof.

For the first step (replacing B by true or false), the proof is by structural
induction on A. For the simplification steps, each formula is logicaly
equivalent to the next, due to the preceding lemma. O

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Simplification Rules

Simplification Rules

We add the following four “simplification rules” to LK:
A-B],T = B, A

B, AB],T = A
B,AT = A AT = B, A

B,T = A[B], A [= B, A[-B], A

B,T = A A [= B,A A

9

Lecture 10 :: 22nd October

IN3070/4070 :: Autumn 2020

Example: (one-sided) LK with Simplification Rules

p, q, true,(-pV —q){p} = q, true,p, —p =

P q, (PV —d, ~pV g = q, true, p,—pV ~q =
p,(—pV Q). pV-g,~pV-qg = q, true,p\ =q,~pV -q =
p,—pV q,pV g, mpV g = q,-pVa,pV-g,-pV-oq =

pVaqg-pVaqgpV-oq-pVoq =

» Strategy: Apply simplification as much as possible, before 3 rules
» In this case: from 9 branches down to 2.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Simplification for Clauses

» Simplify a clause C with a literal L
» Case 1: C contains L, C=A;1V---VA(VL
» Then C[L] = true
» In refutation (left of sequent, resolution), true is useless and can be
removed
» Removing C because L € C is called unit subsumption
» Case 2: C contains L, C = Al\/---\/Ak\/[
» Then C[L]:A1V~‘~\/Ak
» CJ[L] is the resolvent of C and L!
» Replacing C by A; V---V Ag is called unit resolution
» Note that C is subsumed by A; V-V Ag

» Unit subsumption and unit resolution together: unit propagation

v

Given a literal L, every clause can be either removed completely, or
shortened by removing L, unit propagation can be used to remove L
from every other clause containing L or L.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Outline

» Atomic Cut

Lecture 10

Atomic Cut: Motivation

For a sequent with n different S-formulas,
each of them has to be expanded on every branch. ..
... which gives 2" branches. ..

even though there might be only k < n propositional variables,

vVvyVvyYVvyy

and therefore only 2 different interpretations!

v

E.g. in the motivating example:

9 branches for 4 interpretations for 2 prop. variables.

» Idea: max. 1 split per propositional variable

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

The Cut Rule

» The cut rule for LK:

N = AA Al = A
r= A

» The rule is sound (exercise) but not needed for completeness.

v

It is a bit like proving a lemma A and then using it.

» Using cut can make proofs non-elementarily shorter (in first order
logic)
2
> l.e. size O(k) with cut but O(2%) without.
<~
k
» Not useful for automated proof search, because A has to be guessed.

» The essence of human theorem proving: introducing the right
lemmas!

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Atomic Cut

» The atomic cut rule is just the cut rule

N = AA Al = A
M= A

Where A is resricted to be an atomic formula.

No nonelementary speedup :-(

But we don’t need more atomic cuts than we have prop. variables :-)
We can replace 3 rules in LK by atomic cut. ..

vVvyVvyyvyy

...if we add the simplification rules to deal with 8 formulas.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Atomic Cut + Unit Propagation

q, p, p =

q,p, pV—q =
q,pV—q,~pV-q = =q, p. 7p,pV —q,7pV g =
q,~pVgq,pV—q,pVoq = -q, p, 7PV q,pVq,pVq =

q,pPVq,pVq,pVoqpVoq = —q,pVq,2pVq,pVoq,pVoq =
PV 4, =PV PV g, pV g =

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Outline

» The DPLL Algorithm

IN3070/4070 :: Autumn 2020 Lecture 10 nd October

The DPLL Algorithm

DPLL stands for Davis-Putnam-Logemann-Loveland

v

» Introduced in 1962 by Martin Davis, George Logemann and Donald
W. Loveland

» A refinement of an earlier algorithm, invented by Martin Davis and
Hilary Putnam in (1960)

» Made propositional theorem proving (“SAT solving”) practically viable

» After almost 60 years, still the basis of most efficient SAT solvers

» DPLL works on a set of propositional clauses
» DPLL Consists of

» Atomic Cut (with a heuristic for choosing the atom)
» Unit Propagation
» Pure Literal Elimination (exercise!)

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Outline

» Other Tricks

Lecture 10

Lemma Generation

» Remember the exercise sheet 27
r= A A NnA= B A
= AAB, A
» Closing the left branch, we “learnt the Lemma A”

N-lg

> With single-sided sequents:

A, r = —|A’ B, r =
AVB, T =
» We refuted A, so now we may assume —A.

V-lg

» Whenever we close a branch, we learn that a certain combination of
literals Lq,..., Ly leads to a contradiction

» We can add a clause Ly V --- V Ly to caputre this.

» “Clause Learning”

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Pruning

» Pruning = Backjumping = Intelligent Backtracking =
Non-chronological Backtracking

» Consider the following derivation

needed B and G needed G
p,q, p,r = p,q,r,r = G
p,q,—\p\/r,—\r = pPySy... =
p,qVs,—pVr,or = R qg,... =

pVa,qVs,—~pVr,or =
» No formulae introduced by R needed to close the two left branches

» Could have closed the branch without applying R

» Pruning: after closing the left two branches, continue with

needed B and G needed G
p, p,r = p,r,r = G
p,pVr,r = q,... =

pVvVq,qVs,pVr,or =

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Other Tricks

Conflict-driven clause learning (CDCL)

» The modern take on DPLL
> See e.g. the successful MiniSat implementation http://minisat.se/

» A combination of
» Atomic cut
» Unit propagation
» Clause learning
» Pruning

: 22nd October

IN3070/4070 :: Autumn 2020 Lecture 10 ::

http://minisat.se/

Stalmarck’'s Method

vVvyVvyyvyy

Devised by Gunnar Stalmarck, applied for patent 1989
The Dilemma Rule:
Nl =
M = M =
ATl = -ATl =
r =

After unit propagation, join branches generated by cut
Stdlmarck’s discovery: often enough to consider max two branches
Not always. Why?

In general: nesting of Dilemma Rule.

Still: deep nesting rarely needed.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Summary

» Efficient theorem provers combine formulas instead of just
decomposing
» The resolution rule is an example
» The simplification rules are another

For propositional logic, unit propagation is very effective
Atomic cut and unit propagation are the main ingredients of DPLL
DPLL has been refined to CDCL

CDCL incorporates clause learning and pruning

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

	Motivation
	Simplification Rules
	Atomic Cut
	The DPLL Algorithm
	Other Tricks

