IN3070/4070 – Logic – Autumn 2020 Lecture 10: DPLL

Martin Giese

22nd October 2020

UNIVERSITY OF OSLO

Today's Plan

- Motivation
- Simplification Rules
- Atomic Cut
- ▶ The DPLL Algorithm
- Other Tricks

Outline

- Simplification Rules
- ► Atomic Cut
- ▶ The DPLL Algorithm
- Other Tricks

Smullyan's categories: $\alpha/\beta/\gamma/\delta$

- Many similar cases in proofs and implementations
- Categorise rules, rule applications, and formulae

α -rules

Propositional, one branch, e.g. $\frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} \land -\text{left}$

γ -rules

 $\begin{array}{l} \text{Apply for all terms } t, \text{ e.g.} \\ \frac{\Gamma, A[x \setminus t], \forall x A \Rightarrow \Delta}{\Gamma, \forall x A \Rightarrow \Delta} \, \forall \text{-left} \end{array}$

β -rules

 $\frac{\mathsf{Propositional, splitting, e.g.}}{\Gamma \Rightarrow A, \Delta \qquad \Gamma, B \Rightarrow \Delta}$ $\frac{\Gamma, A \to B \Rightarrow \Delta}{\Gamma, A \to B \Rightarrow \Delta}$

δ -rules

 $\begin{array}{l} \mbox{Introduce new constant } c, \mbox{ e.g.} \\ \hline \Gamma, A[x \setminus c], \ \Rightarrow \ \Delta \\ \hline \Gamma, \exists x \ A \ \Rightarrow \ \Delta \end{array} \exists \mbox{-left} \end{array}$

A Naïve SAT Solver at Work

Motivation

Problems

 $p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \; \Rightarrow \;$

- Costly repetitions of identical proof trees
- 9 Branches
- Can often be avoided by using β rules in the "right" order
- But finding the best order is harder (!) than finding a proof
- **•** Better: avoid using β (i.e. splitting) rules

Outline

- Motivation
- Simplification Rules
- ► Atomic Cut
- ▶ The DPLL Algorithm
- Other Tricks

Simplification Rules: Motivation

- Given two formulas p and $q \land (r \rightarrow s \land p)$
- ▶ And an interpretation \mathcal{I} with $\mathcal{I} \models p$
- ► $v_{\mathcal{I}}(q \land (r \rightarrow s \land p)) = v_{\mathcal{I}}(q \land (r \rightarrow s \land true)) = v_{\mathcal{I}}(q \land (r \rightarrow s))$
- ► An interpretation *I* falsifies a sequent

$$p, q \land (r
ightarrow s \land p), \Gamma \vdash \Delta$$

if and only if ${\mathcal I}$ falsifies the sequent

$$p, \ q \wedge (r
ightarrow s), \Gamma dash \Delta$$

Simplification

Definition 2.1 (Simplification).

Given two formulas A and B, where B does not have \neg as top-symbol, the simplification of A with B, written A[B], is the result of

- Replacing all occurrences of B in A by true, and
- Simplifying subformulae as long as possible using the rewritings

$A \lor true \mapsto true$	$A \lor \mathit{false} \mapsto A$
$A \wedge \mathit{true} \mapsto A$	$A \wedge \mathit{false} \mapsto \mathit{false}$
$A ightarrow true \mapsto true$	$A \rightarrow \mathit{false} \mapsto \neg A$
$\mathit{true} ightarrow A \mapsto A$	$\mathit{false} ightarrow \mathit{A} \mapsto \mathit{true}$
$ egtharpoonup true \mapsto \mathit{false}$	$ eg$ false \mapsto true

The simplification of A with $\neg B$, written $A[\neg B]$, is the result of

- Replacing all occurrences of B in A by false, and
- Applying the same rewritings.

Simplification Examples

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let $B \equiv B'$. Then A is logically equivalent to the result of replacing B by B' in A.

Proof.

Easily shown by structural induction over A.

Theorem 2.1.

Given formulas A and B and an interpretation \mathcal{I} with $\mathcal{I} \models B$. Then $\mathcal{I} \models A$ if and only if $\mathcal{I} \models A[B]$

Proof.

For the first step (replacing B by *true* or *false*), the proof is by structural induction on A. For the simplification steps, each formula is logicaly equivalent to the next, due to the preceding lemma.

Simplification Rules

We add the following four "simplification rules" to LK:

$B, A[B], \Gamma \Rightarrow \Delta$	$A[\neg B], \Gamma \Rightarrow B, \Delta$
$B, A, \Gamma \Rightarrow \Delta$	$A, \Gamma \Rightarrow B, \Delta$
$B, \Gamma \Rightarrow A[B], \Delta$	$\Gamma \;\Rightarrow\; B, A[\neg B], \Delta$
$B, \Gamma \Rightarrow A, \Delta$	$\Gamma \Rightarrow B, A, \Delta$

Example: (one-sided) LK with Simplification Rules

$$\begin{array}{c|c}
\hline p, q, true, (\neg p \lor \neg q)[p] \Rightarrow \\
\hline p, q, (p \lor \neg q)[p], \neg p \lor \neg q \Rightarrow \\
\hline p, (\neg p \lor q)[p], p \lor \neg q, \neg p \lor \neg q \Rightarrow \\
\hline p, (\neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow \\
\hline p, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow \\
\hline p, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor q, p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor q, p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor q, p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q, \neg p \lor \neg q \Rightarrow \\
\hline p \lor q \lor p \lor \neg q \rightarrow \\
\hline p \lor q \lor q \rightarrow \neg q \Rightarrow \\
\hline p \lor q \lor q \lor q \lor q \rightarrow \neg q \Rightarrow \\
\hline p \lor q \lor q \lor q \lor q \lor q \Rightarrow \\
\hline p \lor q \lor q \lor q \lor q \Rightarrow \\
\hline p \lor q \lor q \lor q \lor q \lor q \lor q \Rightarrow$$

Strategy: Apply simplification as much as possible, before β rules
 In this case: from 9 branches down to 2.

Simplification for Clauses

- ▶ Simplify a clause *C* with a literal *L*
- ▶ Case 1: C contains L, $C = A_1 \lor \cdots \lor A_k \lor L$
 - Then C[L] = true
 - In refutation (left of sequent, resolution), true is useless and can be removed
 - Removing C because $L \in C$ is called unit subsumption
- Case 2: C contains \overline{L} , $C = A_1 \lor \cdots \lor A_k \lor \overline{L}$
 - Then $C[L] = A_1 \vee \cdots \vee A_k$
 - ▶ *C*[*L*] is the resolvent of *C* and *L*!
 - ▶ Replacing C by $A_1 \lor \cdots \lor A_k$ is called unit resolution
 - ▶ Note that *C* is subsumed by $A_1 \lor \cdots \lor A_k$
- Unit subsumption and unit resolution together: unit propagation
- Given a literal L, every clause can be either removed completely, or shortened by removing \overline{L} , unit propagation can be used to remove L from every other clause containing L or \overline{L} .

Outline

- Motivation
- ► Simplification Rules
- Atomic Cut
- ► The DPLL Algorithm
- Other Tricks

Atomic Cut: Motivation

- For a sequent with *n* different β -formulas,
- each of them has to be expanded on every branch...
- which gives 2ⁿ branches...
- even though there might be only k < n propositional variables,
- ▶ and therefore only 2^k different interpretations!
- E.g. in the motivating example:
 9 branches for 4 interpretations for 2 prop. variables.
- Idea: max. 1 split per propositional variable

Atomic Cut

The Cut Rule

The cut rule for LK:

$$\frac{\Gamma \Rightarrow A, \Delta \qquad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$

- ▶ The rule is sound (exercise) but not needed for completeness.
- ▶ It is a bit like proving a lemma A and then using it.
- Using cut can make proofs non-elementarily shorter (in first order logic)
- I.e. size O(k) with cut but $O(2^{2^{1/2}})$ without.
- ▶ Not useful for automated proof search, because *A* has to be guessed.
- The essence of human theorem proving: introducing the right lemmas!

Atomic Cut

The atomic cut rule is just the cut rule

$$\frac{\Gamma \Rightarrow A, \Delta \qquad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$

- ▶ Where *A* is resricted to be an atomic formula.
- No nonelementary speedup :-(
- But we don't need more atomic cuts than we have prop. variables :-)
- We can replace β rules in LK by atomic cut...
- ... if we add the simplification rules to deal with β formulas.

Atomic Cut

Atomic Cut + Unit Propagation

$$\frac{q, p, \neg p \Rightarrow}{q, p, \neg p \lor \neg q \Rightarrow} = \frac{q, p, \neg p \lor \neg q \Rightarrow}{q, p, \neg p \lor \neg q, \neg p \lor \neg q \Rightarrow} = \frac{\neg q, p, \neg p, p \lor \neg q, \neg p \lor \neg q \Rightarrow}{\neg q, p, \neg p \lor q, \neg p \lor \neg q \Rightarrow} = \frac{\neg q, p, \neg p \lor q, \neg p \lor \neg q \Rightarrow}{\neg q, p, \neg p \lor q, \neg p \lor \neg q \Rightarrow} = \frac{\neg q, p, \neg p \lor q, \neg p \lor \neg q \Rightarrow}{\neg q, p, \neg p \lor q, \neg p \lor \neg q \Rightarrow} = \frac{\neg q, p, \neg p \lor q, \neg p \lor \neg q \Rightarrow}{\neg q, p \lor q, \neg p \lor q, \neg p \lor \neg q \Rightarrow}$$

Outline

- Motivation
- Simplification Rules
- ► Atomic Cut
- ► The DPLL Algorithm

Other Tricks

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland
- Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland
- ► A refinement of an earlier algorithm, invented by Martin Davis and Hilary Putnam in (1960)
- ► Made propositional theorem proving ("SAT solving") practically viable
- After almost 60 years, still the basis of most efficient SAT solvers
- DPLL works on a set of propositional clauses
- DPLL Consists of
 - Atomic Cut (with a heuristic for choosing the atom)
 - Unit Propagation
 - Pure Literal Elimination (exercise!)

Outline

- Motivation
- Simplification Rules
- ► Atomic Cut
- ▶ The DPLL Algorithm
- Other Tricks

Other Tricks

Lemma Generation

Remember the exercise sheet 2?

$$\frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta} \land - \mathsf{Ig}$$

Closing the left branch, we "learnt the Lemma A"

With single-sided sequents:

$$\frac{A, \ \Gamma \ \Rightarrow \ \neg A, B, \ \Gamma \ \Rightarrow}{A \lor B, \ \Gamma \ \Rightarrow} \lor - \mathsf{Ig}$$

- We refuted A, so now we may assume $\neg A$.
- ▶ Whenever we close a branch, we learn that a certain combination of literals L₁,..., L_k leads to a contradiction
- We can add a clause $\overline{L_1} \lor \cdots \lor \overline{L_k}$ to caputre this.
- "Clause Learning"

Pruning

- Pruning ≡ Backjumping ≡ Intelligent Backtracking ≡ Non-chronological Backtracking
- Consider the following derivation

- No formulae introduced by R needed to close the two left branches
- Could have closed the branch without applying R
- Pruning: after closing the left two branches, continue with

$$\frac{\begin{array}{c} \text{needed B and G} \\ \hline p, \neg p, \neg r \Rightarrow \\ \hline p, \neg p \lor r, \neg r \Rightarrow \\ \hline \hline p, \neg p \lor r, \neg r \Rightarrow \\ \hline \hline p \lor q, q \lor s, \neg p \lor r, \neg r \Rightarrow \\ \hline \end{array} } G \qquad q, \dots \Rightarrow \\ B$$

Conflict-driven clause learning (CDCL)

- The modern take on DPLL
- See e.g. the successful MiniSat implementation http://minisat.se/
- A combination of
 - Atomic cut
 - Unit propagation
 - Clause learning
 - Pruning

Stålmarck's Method

- Devised by Gunnar Stålmarck, applied for patent 1989
- The Dilemma Rule:

${\sf \Gamma}_1 \cap$	$\Gamma_2 \Rightarrow$
$\Gamma_1 \; \Rightarrow \;$	$\Gamma_2 \; \Rightarrow \;$
÷	÷
$A, \Gamma \Rightarrow$	$ eg A, \Gamma \Rightarrow$
$\Gamma \Rightarrow$	

- ► After unit propagation, join branches generated by cut
- Stålmarck's discovery: often enough to consider max two branches
- ► Not always. Why?
- ▶ In general: nesting of Dilemma Rule.
- Still: deep nesting rarely needed.

Summary

- Efficient theorem provers *combine* formulas instead of just decomposing
 - ▶ The resolution rule is an example
 - ► The simplification rules are another
- ▶ For propositional logic, unit propagation is very effective
- Atomic cut and unit propagation are the main ingredients of DPLL
- DPLL has been refined to CDCL
- CDCL incorporates clause learning and pruning