
IN3070/4070 – Logic – Autumn 2020
Lecture 10: DPLL

Martin Giese

22nd October 2020

Department of
Informatics

University of
Oslo

Today’s Plan

I Motivation

I Simplification Rules

I Atomic Cut

I The DPLL Algorithm

I Other Tricks

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 2 / 27

Motivation

Outline

I Motivation

I Simplification Rules

I Atomic Cut

I The DPLL Algorithm

I Other Tricks

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 3 / 27

Motivation

Smullyan’s categories: α/β/γ/δ

I Many similar cases in proofs and implementations

I Categorise rules, rule applications, and formulae

α-rules

Propositional, one branch, e.g.

Γ,A,B ⇒ ∆
∧-left

Γ,A ∧ B ⇒ ∆

β-rules

Propositional, splitting, e.g.

Γ ⇒ A,∆ Γ,B ⇒ ∆

Γ,A→ B ⇒ ∆

γ-rules

Apply for all terms t, e.g.

Γ,A[x\t],∀x A ⇒ ∆
∀-left

Γ,∀x A ⇒ ∆

δ-rules

Introduce new constant c , e.g.

Γ,A[x\c], ⇒ ∆
∃-left

Γ,∃x A ⇒ ∆

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 4 / 27

Motivation

A Näıve SAT Solver at Work

¬p, p ⇒

¬p, p, q, p ⇒ ¬q, p, q, p ⇒
p, q, p ⇒ ¬q, q, p ⇒

q, p ⇒
p ⇒

p,¬p, q ⇒ ¬q,¬p, q ⇒
¬p, q ⇒

¬p, p, q, q ⇒ ¬q, p, q, q ⇒
p, q, q ⇒ ¬q, q, q ⇒

q, q ⇒
q ⇒

p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q ⇒

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 5 / 27

Motivation

Problems

¬p, p ⇒

¬p, p, q, p ⇒ ¬q, p, q, p ⇒
p, q, p ⇒ ¬q, q, p ⇒

q, p ⇒
p ⇒

p,¬p, q ⇒ ¬q,¬p, q ⇒
¬p, q ⇒

¬p, p, q, q ⇒ ¬q, p, q, q ⇒
p, q, q ⇒ ¬q, q, q ⇒

q, q ⇒
q ⇒

p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q ⇒

I Costly repetitions of identical proof trees

I 9 Branches

I Can often be avoided by using β rules in the “right” order

I But finding the best order is harder (!) than finding a proof

I Better: avoid using β (i.e. splitting) rules

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 6 / 27

Simplification Rules

Outline

I Motivation

I Simplification Rules

I Atomic Cut

I The DPLL Algorithm

I Other Tricks

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 7 / 27

Simplification Rules

Simplification Rules: Motivation

I Given two formulas p and q ∧ (r → s ∧ p)

I And an interpretation I with I |= p

I vI(q ∧ (r → s ∧ p)) = vI(q ∧ (r → s ∧ true)) = vI(q ∧ (r → s))

I An interpretation I falsifies a sequent

p, q ∧ (r → s ∧ p), Γ ` ∆

if and only if I falsifies the sequent

p, q ∧ (r → s), Γ ` ∆

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 8 / 27

Simplification Rules

Simplification

Definition 2.1 (Simplification).

Given two formulas A and B,where B does not have ¬ as top-symbol, the
simplification of A with B, written A[B], is the result of

I Replacing all occurrences of B in A by true, and

I Simplifying subformulae as long as possible using the rewritings

A ∨ true 7→ true A ∨ false 7→ A
A ∧ true 7→ A A ∧ false 7→ false

A→ true 7→ true A→ false 7→ ¬A
true → A 7→ A false → A 7→ true
¬true 7→ false ¬false 7→ true

The simplification of A with ¬B, written A[¬B], is the result of

I Replacing all occurrences of B in A by false, and

I Applying the same rewritings.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 9 / 27

Simplification Rules

Simplification Examples

I To compute (q ∧ (r → s ∧ p))[p]

I Do the replacement: q ∧ (r → s ∧ true)
I Then simplify q ∧ (r → s ∧ true) 7→ q ∧ (r → s)

I So (q ∧ (r → s ∧ p))[p] = q ∧ (r → s)

I To compute (q ∧ (r → s ∧ p))[¬p]

I Do the replacement: q ∧ (r → s ∧ false)
I Then simplify q ∧ (r → s ∧ false) 7→ q ∧ (r → false) 7→ q ∧ ¬r

I So (q ∧ (r → s ∧ p))[¬p] = q ∧ ¬r

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 10 / 27

Simplification Rules

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let B ≡ B ′. Then A
is logically equivalent to the result of replacing B by B ′ in A.

Proof.

Easily shown by structural induction over A.

Theorem 2.1.

Given formulas A and B and an interpretation I with I |= B.
Then I |= A if and only if I |= A[B]

Proof.

For the first step (replacing B by true or false), the proof is by structural
induction on A. For the simplification steps, each formula is logicaly
equivalent to the next, due to the preceding lemma.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 11 / 27

Simplification Rules

Simplification Rules

We add the following four “simplification rules” to LK:

B, A[B], Γ ⇒ ∆

B, A, Γ ⇒ ∆

A[¬B], Γ ⇒ B, ∆

A, Γ ⇒ B, ∆

B, Γ ⇒ A[B], ∆

B, Γ ⇒ A, ∆

Γ ⇒ B, A[¬B], ∆

Γ ⇒ B, A, ∆

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 12 / 27

Simplification Rules

Example: (one-sided) LK with Simplification Rules

p, q, true, (¬p ∨ ¬q)[p]¬q ⇒
p, q, (p ∨ ¬q)[p]true,¬p ∨ ¬q ⇒

p, (¬p ∨ q)[p]q, p ∨ ¬q,¬p ∨ ¬q ⇒
p,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q ⇒

q, true, p,¬p ⇒
q, true, p,¬p ∨ ¬q ⇒

q, true, p ∨ ¬q,¬p ∨ ¬q ⇒
q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q ⇒

p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q ⇒

I Strategy: Apply simplification as much as possible, before β rules

I In this case: from 9 branches down to 2.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 13 / 27

Simplification Rules

Simplification for Clauses

I Simplify a clause C with a literal L

I Case 1: C contains L, C = A1 ∨ · · · ∨ Ak ∨ L

I Then C [L] = true
I In refutation (left of sequent, resolution), true is useless and can be

removed
I Removing C because L ∈ C is called unit subsumption

I Case 2: C contains L̄, C = A1 ∨ · · · ∨ Ak ∨ L̄

I Then C [L] = A1 ∨ · · · ∨ Ak

I C [L] is the resolvent of C and L!
I Replacing C by A1 ∨ · · · ∨ Ak is called unit resolution
I Note that C is subsumed by A1 ∨ · · · ∨ Ak

I Unit subsumption and unit resolution together: unit propagation

I Given a literal L, every clause can be either removed completely, or
shortened by removing L̄, unit propagation can be used to remove L
from every other clause containing L or L̄.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 14 / 27

Atomic Cut

Outline

I Motivation

I Simplification Rules

I Atomic Cut

I The DPLL Algorithm

I Other Tricks

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 15 / 27

Atomic Cut

Atomic Cut: Motivation

I For a sequent with n different β-formulas,

I each of them has to be expanded on every branch. . .

I . . . which gives 2n branches. . .

I even though there might be only k < n propositional variables,

I and therefore only 2k different interpretations!

I E.g. in the motivating example:

9 branches for 4 interpretations for 2 prop. variables.

I Idea: max. 1 split per propositional variable

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 16 / 27

Atomic Cut

The Cut Rule

I The cut rule for LK:

Γ ⇒ A,∆ A, Γ ⇒ ∆

Γ ⇒ ∆

I The rule is sound (exercise) but not needed for completeness.

I It is a bit like proving a lemma A and then using it.

I Using cut can make proofs non-elementarily shorter (in first order
logic)

I I.e. size O(k) with cut but O(22·
·2︸︷︷︸

k

) without.

I Not useful for automated proof search, because A has to be guessed.

I The essence of human theorem proving: introducing the right
lemmas!

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 17 / 27

Atomic Cut

Atomic Cut

I The atomic cut rule is just the cut rule

Γ ⇒ A,∆ A, Γ ⇒ ∆

Γ ⇒ ∆

I Where A is resricted to be an atomic formula.

I No nonelementary speedup :-(

I But we don’t need more atomic cuts than we have prop. variables :-)

I We can replace β rules in LK by atomic cut. . .

I . . . if we add the simplification rules to deal with β formulas.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 18 / 27

Atomic Cut

Atomic Cut + Unit Propagation

q, p, ¬p ⇒
q, p, ¬p ∨ ¬q ⇒

q, p ∨ ¬q,¬p ∨ ¬q ⇒
q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q ⇒

q, p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q ⇒

¬q, p, ¬p, p ∨ ¬q,¬p ∨ ¬q ⇒
¬q, p, ¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q ⇒

¬q, p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q ⇒
p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q ⇒

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 19 / 27

The DPLL Algorithm

Outline

I Motivation

I Simplification Rules

I Atomic Cut

I The DPLL Algorithm

I Other Tricks

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 20 / 27

The DPLL Algorithm

The DPLL Algorithm

I DPLL stands for Davis-Putnam-Logemann-Loveland

I Introduced in 1962 by Martin Davis, George Logemann and Donald
W. Loveland

I A refinement of an earlier algorithm, invented by Martin Davis and
Hilary Putnam in (1960)

I Made propositional theorem proving (“SAT solving”) practically viable

I After almost 60 years, still the basis of most efficient SAT solvers

I DPLL works on a set of propositional clauses

I DPLL Consists of

I Atomic Cut (with a heuristic for choosing the atom)
I Unit Propagation
I Pure Literal Elimination (exercise!)

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 21 / 27

Other Tricks

Outline

I Motivation

I Simplification Rules

I Atomic Cut

I The DPLL Algorithm

I Other Tricks

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 22 / 27

Other Tricks

Lemma Generation

I Remember the exercise sheet 2?

Γ ⇒ A, ∆ Γ, A ⇒ B, ∆ ∧-lg
Γ ⇒ A ∧ B, ∆

I Closing the left branch, we “learnt the Lemma A”

I With single-sided sequents:

A, Γ ⇒ ¬A,B, Γ ⇒ ∨-lg
A ∨ B, Γ ⇒

I We refuted A, so now we may assume ¬A.

I Whenever we close a branch, we learn that a certain combination of
literals L1, . . . , Lk leads to a contradiction

I We can add a clause L1 ∨ · · · ∨ Lk to caputre this.

I “Clause Learning”

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 23 / 27

Other Tricks

Pruning

I Pruning ≡ Backjumping ≡ Intelligent Backtracking ≡
Non-chronological Backtracking

I Consider the following derivation

needed B and G
p, q,¬p,¬r ⇒

needed G
p, q, r ,¬r ⇒

Gp, q,¬p ∨ r ,¬r ⇒ p, s, . . . ⇒
Rp, q ∨ s,¬p ∨ r ,¬r ⇒ q, . . . ⇒

Bp ∨ q, q ∨ s,¬p ∨ r ,¬r ⇒
I No formulae introduced by R needed to close the two left branches

I Could have closed the branch without applying R

I Pruning: after closing the left two branches, continue with

needed B and G
p,¬p,¬r ⇒

needed G
p, r ,¬r ⇒

Gp,¬p ∨ r ,¬r ⇒ q, . . . ⇒
Bp ∨ q, q ∨ s,¬p ∨ r ,¬r ⇒

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 24 / 27

Other Tricks

Conflict-driven clause learning (CDCL)

I The modern take on DPLL

I See e.g. the successful MiniSat implementation http://minisat.se/

I A combination of

I Atomic cut
I Unit propagation
I Clause learning
I Pruning

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 25 / 27

http://minisat.se/

Other Tricks

St̊almarck’s Method

I Devised by Gunnar St̊almarck, applied for patent 1989

I The Dilemma Rule:
Γ1 ∩ Γ2 ⇒

Γ1 ⇒ Γ2 ⇒
...

...

A, Γ ⇒ ¬A, Γ ⇒
Γ ⇒

I After unit propagation, join branches generated by cut

I St̊almarck’s discovery: often enough to consider max two branches

I Not always. Why?

I In general: nesting of Dilemma Rule.

I Still: deep nesting rarely needed.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 26 / 27

Other Tricks

Summary

I Efficient theorem provers combine formulas instead of just
decomposing

I The resolution rule is an example
I The simplification rules are another

I For propositional logic, unit propagation is very effective

I Atomic cut and unit propagation are the main ingredients of DPLL

I DPLL has been refined to CDCL

I CDCL incorporates clause learning and pruning

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 27 / 27

	Motivation
	Simplification Rules
	Atomic Cut
	The DPLL Algorithm
	Other Tricks

