IN3070/4070 – Logic – Autumn 2020 Lecture 10: DPLL

Martin Giese

22nd October 2020

Motivation

Outline

- Motivation
- ► Simplification Rules
- ► Atomic Cut
- ► The DPLL Algorithm
- ▶ Other Tricks

Today's Plan

- ► Motivation
- ► Simplification Rules
- ► Atomic Cut
- ► The DPLL Algorithm
- ▶ Other Tricks

IN3070/4070 :: Autumn 2020

_ecture 10 :: 22nd Octobe

2 / 2

Motivatio

Smullyan's categories: $\alpha/\beta/\gamma/\delta$

- ▶ Many similar cases in proofs and implementations
- ► Categorise rules, rule applications, and formulae

α -rules

Propositional, one branch, e.g.

$$\frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} \land \text{-left}$$

γ -rules

Apply for all terms t, e.g.

$$\frac{\Gamma, A[x \setminus t], \forall x A \Rightarrow \Delta}{\Gamma, \forall x A \Rightarrow \Delta} \forall \text{-left}$$

β -rules

Propositional, splitting, e.g.

$$\frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma, B \Rightarrow \Delta}{\Gamma, A \to B \Rightarrow \Delta}$$

δ -rules

Introduce new constant c, e.g.

$$\frac{\Gamma, A[x \setminus c], \Rightarrow \Delta}{\Gamma, \exists x A \Rightarrow \Delta} \exists -\mathsf{left}$$

070/4070 ·· Autumn 2020 | Lecture 10 ·· 22nd October 3 / 27 | IN3070/4070 ·· Autumn 2020 | Lecture 10 ·· 22nd October 4 / 2

Motivation

A Naïve SAT Solver at Work

IN3070/4070 :: Autumn 2020

Lecture 10 :: 22nd October 5 / 27

Simplification Rules

Outline

- Motivation
- ► Simplification Rules
- ► Atomic Cut
- ► The DPLL Algorithm
- ▶ Other Tricks

Motivatio

Problems

- ► Costly repetitions of identical proof trees
- ▶ 9 Branches
- ightharpoonup Can often be avoided by using eta rules in the "right" order
- ▶ But finding the best order is harder (!) than finding a proof
- ▶ Better: avoid using β (i.e. splitting) rules

IN3070/4070 :: Autumn 2020

cture 10 :: 22nd October

6 / 27

Simplification Rul

Simplification Rules: Motivation

- ▶ Given two formulas p and $q \land (r \rightarrow s \land p)$
- ▶ And an interpretation \mathcal{I} with $\mathcal{I} \models p$
- lacktriangle An interpretation ${\mathcal I}$ falsifies a sequent

$$p, q \wedge (r \rightarrow s \wedge p), \Gamma \vdash \Delta$$

if and only if ${\mathcal I}$ falsifies the sequent

$$p, q \land (r \rightarrow s), \Gamma \vdash \Delta$$

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October 7 / 27

IN3070 /4070 ·· Autumn 2020

ecture 10 ·· 22nd October

3 / 27

Simplification

Definition 2.1 (Simplification).

Given two formulas A and B, where B does not have \neg as top-symbol, the simplification of A with B, written A[B], is the result of

- ▶ Replacing all occurrences of B in A by true, and
- ▶ Simplifying subformulae as long as possible using the rewritings

$$\begin{array}{lll} A \lor true \mapsto true & A \lor false \mapsto A \\ A \land true \mapsto A & A \land false \mapsto false \\ A \to true \mapsto true & A \to false \mapsto \neg A \\ true \to A \mapsto A & false \to A \mapsto true \\ \neg true \mapsto false & \neg false \mapsto true \\ \end{array}$$

The simplification of A with $\neg B$, written $A[\neg B]$, is the result of

- ▶ Replacing all occurrences of B in A by false, and
- Applying the same rewritings.

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let $B \equiv B'$. Then A is logically equivalent to the result of replacing B by B' in A.

Proof.

Easily shown by structural induction over A.

Theorem 2.1.

Given formulas A and B and an interpretation \mathcal{I} with $\mathcal{I} \models B$. Then $\mathcal{I} \models A$ if and only if $\mathcal{I} \models A[B]$

Proof.

For the first step (replacing B by true or false), the proof is by structural induction on A. For the simplification steps, each formula is logicaly equivalent to the next, due to the preceding lemma.

Simplification Examples

- ▶ To compute $(g \land (r \rightarrow s \land p))[p]$
 - ▶ Do the replacement: $q \land (r \rightarrow s \land true)$
 - ▶ Then simplify $q \land (r \rightarrow s \land true) \mapsto q \land (r \rightarrow s)$
- ightharpoonup So $(a \land (r \rightarrow s \land p))[p] = a \land (r \rightarrow s)$
- ▶ To compute $(a \land (r \rightarrow s \land p))[\neg p]$
 - ▶ Do the replacement: $q \land (r \rightarrow s \land false)$
 - ▶ Then simplify $q \land (r \rightarrow s \land false) \mapsto q \land (r \rightarrow false) \mapsto q \land \neg r$
- ightharpoonup So $(q \wedge (r \rightarrow s \wedge p))[\neg p] = q \wedge \neg r$

Simplification Rules

We add the following four "simplification rules" to LK:

$$\frac{B, A[B], \Gamma \Rightarrow \Delta}{B, A, \Gamma \Rightarrow \Delta}$$

$$\frac{B, A[B], \Gamma \Rightarrow \Delta}{B, A, \Gamma \Rightarrow \Delta} \qquad \frac{A[\neg B], \Gamma \Rightarrow B, \Delta}{A, \Gamma \Rightarrow B, \Delta}$$

$$\begin{array}{ccc} B, \Gamma \Rightarrow A[B], \Delta \\ \hline B, \Gamma \Rightarrow A, \Delta \end{array}$$

$$\frac{B, \Gamma \Rightarrow A[B], \Delta}{B, \Gamma \Rightarrow A, \Delta} \qquad \frac{\Gamma \Rightarrow B, A[\neg B], \Delta}{\Gamma \Rightarrow B, A, \Delta}$$

 $p, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow q, p \lor \neg q, \neg p \lor \neg q \Rightarrow$

 $p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow$

- \triangleright Strategy: Apply simplification as much as possible, before β rules
- ▶ In this case: from 9 branches down to 2.

Atomic Cut

Outline

- Motivation
- ► Simplification Rules
- ► Atomic Cut
- ► The DPLL Algorithm
- ▶ Other Tricks

Simplification for Clauses

- ► Simplify a clause C with a literal L
- ▶ Case 1: C contains L, $C = A_1 \lor \cdots \lor A_k \lor L$
 - ▶ Then C[L] = true
 - ▶ In refutation (left of sequent, resolution), true is useless and can be
 - ightharpoonup Removing C because $L \in C$ is called unit subsumption
- ▶ Case 2: C contains \bar{L} , $C = A_1 \lor \cdots \lor A_k \lor \bar{L}$
 - ▶ Then $C[L] = A_1 \lor \cdots \lor A_k$
 - ► C[L] is the resolvent of C and L!
 - ▶ Replacing C by $A_1 \lor \cdots \lor A_k$ is called unit resolution
 - ▶ Note that C is subsumed by $A_1 \lor \cdots \lor A_k$
- ▶ Unit subsumption and unit resolution together: unit propagation
- ▶ Given a literal L, every clause can be either removed completely, or shortened by removing \bar{L} , unit propagation can be used to remove Lfrom every other clause containing L or \bar{L} .

Atomic Cut: Motivation

- \triangleright For a sequent with *n* different β -formulas,
- ▶ each of them has to be expanded on every branch...
- \triangleright ... which gives 2^n branches...
- \triangleright even though there might be only k < n propositional variables,
- \triangleright and therefore only 2^k different interpretations!
- ► E.g. in the motivating example:
 - 9 branches for 4 interpretations for 2 prop. variables.
- ▶ Idea: max. 1 split per propositional variable

$$\frac{\Gamma \Rightarrow A, \Delta \qquad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$

- ▶ The rule is sound (exercise) but not needed for completeness.
- ▶ It is a bit like proving a lemma A and then using it.
- ▶ Using cut can make proofs non-elementarily shorter (in first order logic)
- ▶ I.e. size O(k) with cut but $O(2^{2^{k-1}})$ without.
- ▶ Not useful for automated proof search, because *A* has to be guessed.
- ▶ The essence of human theorem proving: introducing the right lemmas!

Atomic Cut

Atomic Cut + Unit Propagation

$$\frac{q, p, \neg p \Rightarrow}{q, p, \neg p \lor \neg q \Rightarrow}$$

$$\frac{q, p, \neg p \lor \neg q \Rightarrow}{q, p, \neg p, \neg p, \neg p, p, \neg p, \neg p, \neg p, \neg p, p, \neg p$$

$$q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow$$

$$\frac{q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q}{\neg q, p, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q} \Rightarrow$$

$$q, p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow \qquad \neg q, p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow$$

$$p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \Rightarrow$$

Atomic Cut

▶ The atomic cut rule is just the cut rule

$$\frac{\Gamma \Rightarrow A, \Delta \qquad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$

- ▶ Where A is resricted to be an atomic formula.
- ▶ No nonelementary speedup :-(
- ▶ But we don't need more atomic cuts than we have prop. variables :-)
- ▶ We can replace β rules in LK by atomic cut...
- \blacktriangleright ... if we add the simplification rules to deal with β formulas.

The DPLL Algorithm

Outline

- Motivation
- ► Simplification Rules
- ► Atomic Cut
- ► The DPLL Algorithm
- ▶ Other Tricks

The DPLL Algorithm

The DPLL Algorithm

- ▶ DPLL stands for Davis-Putnam-Logemann-Loveland
- ► Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland
- ► A refinement of an earlier algorithm, invented by Martin Davis and Hilary Putnam in (1960)
- ▶ Made propositional theorem proving ("SAT solving") practically viable
- ▶ After almost 60 years, still the basis of most efficient SAT solvers
- ▶ DPLL works on a set of propositional clauses
- ▶ DPLL Consists of
 - ▶ Atomic Cut (with a heuristic for choosing the atom)
 - ▶ Unit Propagation
 - ▶ Pure Literal Elimination (exercise!)

N3070/4070 :: Autumn 2020

Lecture 10 :: 22nd October

21 / 27

Other Tricks

Lemma Generation

▶ Remember the exercise sheet 2?

$$\frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta} \land -\lg$$

- ▶ Closing the left branch, we "learnt the Lemma A"
- ▶ With single-sided sequents:

$$\frac{A, \Gamma \Rightarrow \neg A, B, \Gamma \Rightarrow}{A \lor B, \Gamma \Rightarrow} \lor - \lg$$

- ▶ We refuted A, so now we may assume $\neg A$.
- ▶ Whenever we close a branch, we learn that a certain combination of literals L_1, \ldots, L_k leads to a contradiction
- ▶ We can add a clause $\overline{L_1} \lor \cdots \lor \overline{L_k}$ to caputre this.
- "Clause Learning"

Outline

- Motivation
- ► Simplification Rules
- ► Atomic Cut
- ► The DPLL Algorithm
- Other Tricks

IN3070/4070 :: Autumn 2020

Lecture 10 :: 22nd Octobe

22 / 2

Other Tricks

Pruning

- ▶ Pruning ≡ Backjumping ≡ Intelligent Backtracking ≡ Non-chronological Backtracking
- ▶ Consider the following derivation

needed B and G
$$\frac{p, q, \neg p, \neg r \Rightarrow}{p, q, r, \neg r \Rightarrow} G$$

$$\frac{p, q, \neg p \lor r, \neg r \Rightarrow}{p, q \lor s, \neg p \lor r, \neg r \Rightarrow} R$$

$$\frac{p, q \lor s, \neg p \lor r, \neg r \Rightarrow}{p \lor q, q \lor s, \neg p \lor r, \neg r \Rightarrow} B$$

- ▶ No formulae introduced by R needed to close the two left branches
- Could have closed the branch without applying R
- ▶ Pruning: after closing the left two branches, continue with

needed B and G needed G
$$\frac{p, \neg p, \neg r \Rightarrow}{p, \neg p, \neg r \Rightarrow} G \qquad q, \dots \Rightarrow \\
\frac{p, \neg p \lor r, \neg r \Rightarrow}{p \lor q, q \lor s, \neg p \lor r, \neg r \Rightarrow}$$

3070 /4070 · Autumn 2020 Lecture 10 · · 22nd October

Other Tricks

Conflict-driven clause learning (CDCL)

- ► The modern take on DPLL
- ▶ See e.g. the successful MiniSat implementation http://minisat.se/
- A combination of
 - ► Atomic cut
 - ▶ Unit propagation
 - ► Clause learning
 - Pruning

IN3070/4070 :: Autumn 2020

Lecture 10 :: 22nd October

25 / 2

Other Tricks

Summary

- ► Efficient theorem provers *combine* formulas instead of just decomposing
 - ► The resolution rule is an example
 - ▶ The simplification rules are another
- ▶ For propositional logic, unit propagation is very effective
- ▶ Atomic cut and unit propagation are the main ingredients of DPLL
- ▶ DPLL has been refined to CDCL
- ► CDCL incorporates clause learning and pruning

Other Tric

Stålmarck's Method

- ▶ Devised by Gunnar Stålmarck, applied for patent 1989
- ► The Dilemma Rule:

$$\begin{array}{c|c} \Gamma_1 \cap \Gamma_2 \Rightarrow \\ \hline \Gamma_1 \Rightarrow & \Gamma_2 \Rightarrow \\ \vdots & \vdots \\ A, \Gamma \Rightarrow & \neg A, \Gamma \Rightarrow \\ \hline \Gamma \Rightarrow \end{array}$$

- ▶ After unit propagation, join branches generated by cut
- ▶ Stålmarck's discovery: often enough to consider max two branches
- ▶ Not always. Why?
- ▶ In general: nesting of Dilemma Rule.
- ► Still: deep nesting rarely needed.

N3070/4070 :: Autumn 2020

_ecture 10 :: 22nd Octobe

26 / 2

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October