T
Today's Plan

IN3070/4070 — Logic — Autumn 2020 » Motivation

Lecture 10: DPLL
» Simplification Rules

Martin Giese :
» Atomic Cut

22nd October 2020
» The DPLL Algorithm

) UNIVERSITY OF)
OsLo » Other Tricks

DEPARTMENT OF

c INFORMATICS

Lecture 10 :: 22nd October

IN3070/4070 :: Autumn 2020

Outline Smullyan's categories: «/3/v/d

» Many similar cases in proofs and implementations

» Motivation » Categorise rules, rule applications, and formulae

a-rules [-rules

Propositional, one branch, e.g. Propositional, splitting, e.g.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Apply for all terms t, e.g.
MA[X\t],VxA = A
NvxA = A

V-left

IN3070/4070 :: Autumn 2020 Lecture 10 ::

AB = A r= AA T,B= A
LANB = A /¢ ASB = A
~-rules d-rules

Introduce new constant c, e.g.
MAx\c, = A
MdxA = A

F-left

22nd October

A Naive SAT Solver at Work Problems

—hpap S amar = hmad = apdd =

pap = —q.a.p = PP a = —4, P a = pa.q = ~q.4.9 =
5P = TP = =pq = 9q =
P = 7=

PV, -pPVa,pV-a,-pV g >

Costly repetitions of identical proof trees

9 Branches

>

>

» Can often be avoided by using 3 rules in the “right” order
» But finding the best order is harder (!) than finding a proof
>

Better: avoid using [(i.e. splitting) rules

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October / IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Outline Simplification Rules: Motivation

» Given two formulas p and g A (r — s A p)
And an interpretation Z with Z = p
> vi(gNA(r—=sAp))=vr(gA(r— sAtrue)) =vz(gA(r—s))

v

» Simplification Rules
» An interpretation 7 falsifies a sequent
p,gN(r—=sAp),TEA
if and only if Z falsifies the sequent

p,gA(r—s),l-A

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Simplification Rules Simplification Rules

Simplification Simplification Examples

Definition 2.1 (Simplification).

Given two formulas A and B,where B does not have — as top-symbol, the

simplification of A with B, written A[B], is the result of > To compute (g A (r — s A p))[p]

» Replacing all occurrences of B in A by true, and > Do the, repl.acement: q A (r—sAtrue)
» Then simplify g A (r — s A true) — g A (r — s)

» Simplifying subformulae as long as possible using the rewritings
prIE &b ¢ ¢ > So (A (r—sAp)lpl = A (r—s)

AV true — true AV false — A
AN true — A AN false — false

A — true — true A — false — —A
true - A A false — A+ true
—true — false —false — true

» To compute (g A (r = s A p))[—p]

» Do the replacement: g A (r — s A false)
» Then simplify g A (r — s A false) — g A (r — false) — q A —r

> So (gA(r—=sAp))[-p] = gA-r
The simplification of A with =B, written A[—B], is the result of
» Replacing all occurrences of B in A by false, and
» Applying the same rewritings.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Main property of Simplification Simplification Rules

Lemma 2.1.

Given a formula A that contains a subformula B, and let B = B'. Then A

is logically equivalent to the result of replacing B by B’ in A.
We add the following four “simplification rules” to LK:

Proof.
Easily shown by structural induction over A. [B,ABL I = A A-BL,T = B, A
B,AT = A AT = B, A
Th 2.1.
.eorem . . i B, = A[B], A = B, A[-B], A
Given formulas A and B and an interpretation 7 with T = B. B.T = AA F= B AA

9

Then T |= A if and only if T |= A[B]

Proof.

For the first step (replacing B by true or false), the proof is by structural
induction on A. For the simplification steps, each formula is logicaly
equivalent to the next, due to the preceding lemma.]

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Example: (one-sided) LK with Simplification Rules Simplification for Clauses

» Simplify a clause C with a literal L
» Case 1: Ccontains L, C=A;VvV---VAVL

p, q, true, (—pV —q){p] = q, true,p,—p = » Then C[L] = true
» In refutation (left of sequent, resolution), true is useless and can be
P, q, (PV gl pV g = q, trué, p,=pV q = removed () :
p,(—pV @), pV—q,-pV-qg = q,true,p\ —q,—=pV ~q = » Removing C because L € C is called unit subsumption
p,—pV q,pV =g, —pV g = q,-pV g, pV—g,—pV g = » Case 2: C contains L, C=A;1V---VAVL
> Then C[L] = A V--- VA,
pVa=pVapV=gopVoqg = » CJ[L] is the resolvent of C and L!
» Replacing C by A; V---V Ag is called unit resolution
» Strategy: Apply simplification as much as possible, before 5 rules » Note that C is subsumed by A; V- - -V Ag
» In this case: from 9 branches down to 2. » Unit subsumption and unit resolution together: unit propagation

» Given a literal L, every clause can be either removed completely, or
shortened by removing L, unit propagation can be used to remove L
from every other clause containing L or L.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Outline Atomic Cut: Motivation

For a sequent with n different S-formulas,
each of them has to be expanded on every branch. ..
... which gives 2" branches. ..

even though there might be only k < n propositional variables,

vVvyvyyvyy

» Atomic Cut and therefore only 2% different interpretations!

v

E.g. in the motivating example:
9 branches for 4 interpretations for 2 prop. variables.

» Idea: max. 1 split per propositional variable

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October / IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

The Cut Rule Atomic Cut

» The cut rule for LK:

r= AA Al = A >
r= A

The atomic cut rule is just the cut rule

M= AA AT = A

» The rule is sound (exercise) but not needed for completeness.

M= A
» It is a bit like proving a lemma A and then using it. . . .
) P &) & o » Where A is resricted to be an atomic formula.
» Using cut can make proofs non-elementarily shorter (in first order
logic) » No nonelementary speedup :-(
2 » But we don't need more atomic cuts than we have prop. variables :-)
. . 2 .

> le. size O(k) with cut but 0(2\/) without. » We can replace §3 rules in LK by atomic cut. ..

k . TP .

» ...if we add the simplification rules to deal with 5 formulas.

» Not useful for automated proof search, because A has to be guessed.

» The essence of human theorem proving: introducing the right
lemmas!

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October / IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Atomic Cut + Unit Propagation Outline
q, p, p =
g, p, PV g =
q,pV —q,pVq = —q, p, 7p,pV 7q,7pV q =
q,~pVq,pV g, pV g = =g, p, PV q,pV-oq,-pV-qg =
9PV q,=pVq,pVog,pV g = =q.pV q,mpVq,pV-q,-pV-oq =
pV g, —pVag,pV g, -pV-og = » The DPLL Algorithm

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

The DPLL Algorithm

» DPLL stands for Davis-Putnam-Logemann-Loveland

» Introduced in 1962 by Martin Davis, George Logemann and Donald
W. Loveland

> A refinement of an earlier algorithm, invented by Martin Davis and
Hilary Putnam in (1960)

» Made propositional theorem proving (“SAT solving”) practically viable
After almost 60 years, still the basis of most efficient SAT solvers

v

» DPLL works on a set of propositional clauses
» DPLL Consists of
» Atomic Cut (with a heuristic for choosing the atom)

» Unit Propagation
» Pure Literal Elimination (exercise!)

Lecture 10 :: 22nd October

Outline

» Other Tricks

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

IN3070/4070 :: Autumn 2020

Lemma Generation

» Remember the exercise sheet 27
r= A A NnRA= B A
= AAB, A
» Closing the left branch, we “learnt the Lemma A”

N-g

» With single-sided sequents:
AT = -AB, T =
AVB, T =
» We refuted A, so now we may assume —A.

V-lg

» Whenever we close a branch, we learn that a certain combination of
literals Lq,..., L leads to a contradiction

» We can add a clause L1 V- - -V L to caputre this.

» “Clause Learning”

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Pruning

» Pruning = Backjumping = Intelligent Backtracking =
Non-chronological Backtracking
» Consider the following derivation

needed B and G needed G
p,q, p,r = p,q,r,r = G
p,q,pVr,—r = p,S,... = R
p,qVs,—pVr,or = qg,... =

PV aq,qVs,—pVr,or =
» No formulae introduced by R needed to close the two left branches

» Could have closed the branch without applying R

» Pruning: after closing the left two branches, continue with

needed B and G needed G
p, p,r = p,r,r =
p,mpVr,nr = G q,... =

B

pVa,qVs,—pVr,or =

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Conflict-driven clause learning (CDCL) Stalmarck’s Method

» Devised by Gunnar Stalmarck, applied for patent 1989
» The Dilemma Rule:

Nl =
» The modern take on DPLL M - M, —
> See e.g. the successful MiniSat implementation http://minisat.se/
» A combination of : :
» Atomic cut Al = AT =
Unit propagation r —

>
» Clause learning After unit propagation, join branches generated by cut
>

Prunin 2 e d ;
& Stdlmarck’s discovery: often enough to consider max two branches

>

| 2

» Not always. Why?

» In general: nesting of Dilemma Rule.
>

Still: deep nesting rarely needed.

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

Other Tricks

Summary

» Efficient theorem provers combine formulas instead of just
decomposing

» The resolution rule is an example
» The simplification rules are another

» For propositional logic, unit propagation is very effective
» Atomic cut and unit propagation are the main ingredients of DPLL
» DPLL has been refined to CDCL
>

CDCL incorporates clause learning and pruning

IN3070/4070 :: Autumn 2020 Lecture 10 :: 22nd October

http://minisat.se/

	Motivation
	Simplification Rules
	Atomic Cut
	The DPLL Algorithm
	Other Tricks

