IN3070/4070 - Logic - Autumn 2020
 Lecture 10: DPLL

Martin Giese

22nd October 2020

ifj
Department of Informatics

University of
Oslo

Today's Plan

- Motivation
- Simplification Rules
- Atomic Cut
- The DPLL Algorithm
- Other Tricks

Outline

- Motivation

- Simplification Rules

- Atomic Cut

- The DPLL Algorithm

- Other Tricks

Smullyan's categories: $\alpha / \beta / \gamma / \delta$

- Many similar cases in proofs and implementations

Smullyan's categories: $\alpha / \beta / \gamma / \delta$

- Many similar cases in proofs and implementations
- Categorise rules, rule applications, and formulae

Smullyan's categories: $\alpha / \beta / \gamma / \delta$

- Many similar cases in proofs and implementations
- Categorise rules, rule applications, and formulae

α-rules

Propositional, one branch, e.g.

$$
\frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \wedge B \Rightarrow \Delta} \wedge \text {-left }
$$

Smullyan's categories: $\alpha / \beta / \gamma / \delta$

- Many similar cases in proofs and implementations
- Categorise rules, rule applications, and formulae

α-rules

Propositional, one branch, e.g.

$$
\frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \wedge B \Rightarrow \Delta} \wedge \text {-left }
$$

β-rules

Propositional, splitting, e.g.

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \rightarrow B \Rightarrow \Delta}
$$

Smullyan's categories: $\alpha / \beta / \gamma / \delta$

- Many similar cases in proofs and implementations
- Categorise rules, rule applications, and formulae

α-rules

Propositional, one branch, e.g.

$$
\frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \wedge B \Rightarrow \Delta} \wedge \text {-left }
$$

γ-rules

Apply for all terms t, e.g.

$$
\frac{\Gamma, A[x \backslash t], \forall x A \Rightarrow \Delta}{\Gamma, \forall x A \Rightarrow \Delta} \forall \text {-left }
$$

β-rules

Propositional, splitting, e.g.

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \rightarrow B \Rightarrow \Delta}
$$

Smullyan's categories: $\alpha / \beta / \gamma / \delta$

- Many similar cases in proofs and implementations
- Categorise rules, rule applications, and formulae

α-rules

Propositional, one branch, e.g.

$$
\frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \wedge B \Rightarrow \Delta} \wedge \text {-left }
$$

γ-rules

Apply for all terms t, e.g.

$$
\frac{\Gamma, A[x \backslash t], \forall x A \Rightarrow \Delta}{\Gamma, \forall x A \Rightarrow \Delta} \forall \text {-left }
$$

β-rules

Propositional, splitting, e.g.

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \rightarrow B \Rightarrow \Delta}
$$

δ-rules

Introduce new constant c, e.g.

$$
\frac{\Gamma, A[x \backslash c], \Rightarrow \Delta}{\Gamma, \exists x A} \Rightarrow \exists \text {-left }
$$

A Naïve SAT Solver at Work

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

A Naïve SAT Solver at Work

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

A Naïve SAT Solver at Work

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

A Naïve SAT Solver at Work

$$
p \Rightarrow
$$

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

A Naïve SAT Solver at Work

$\neg p, p \Rightarrow$	$q, p \Rightarrow$
$p \Rightarrow$	$p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow$

A Naïve SAT Solver at Work

$\overline{\neg p, p \Rightarrow} \quad q, p \Rightarrow$
$p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow$

A Naïve SAT Solver at Work

$\overline{\neg p, p \Rightarrow} \quad q, p \Rightarrow$
$p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow$

A Naïve SAT Solver at Work

A Naïve SAT Solver at Work

$\frac{\neg p, p \Rightarrow}{\frac{p, q, p \Rightarrow}{\Rightarrow \quad q, p \Rightarrow} \neg q, q, p \Rightarrow}$

A Naïve SAT Solver at Work

$\neg q, q, p \Rightarrow$

$$
q \Rightarrow
$$

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

A Naïve SAT Solver at Work

$\neg q, q, p \Rightarrow$

$$
q \Rightarrow
$$

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

A Naïve SAT Solver at Work

$\neg q, q, p \Rightarrow$

$$
\neg p, q \Rightarrow
$$

$$
q \Rightarrow
$$

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

A Naïve SAT Solver at Work

$\neg q, q, p \Rightarrow$

$$
\neg p, q \Rightarrow
$$

$$
q \Rightarrow
$$

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

A Naïve SAT Solver at Work

$$
\begin{gathered}
\frac{\neg q, q, p \Rightarrow}{\square} \quad \frac{p, \neg p, q \Rightarrow}{\neg p, q \Rightarrow q, \neg p, q \Rightarrow} \\
\hline p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered}
$$

A Naïve SAT Solver at Work

$$
\begin{aligned}
& \frac{\neg q, q, p \Rightarrow}{\square} \stackrel{\neg, \neg p, q \Rightarrow}{\neg p, q \Rightarrow q, \neg p, q \Rightarrow} \\
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

A Naïve SAT Solver at Work

$$
\begin{aligned}
& \stackrel{\neg q, q, p \Rightarrow}{\frac{p, \neg p, q \Rightarrow}{\neg p, q \Rightarrow, \neg p, q \Rightarrow}} \begin{array}{l}
\Rightarrow p, q \Rightarrow \\
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{array} \\
& \hline q \Rightarrow
\end{aligned}
$$

A Naïve SAT Solver at Work

A Naïve SAT Solver at Work

$$
\begin{aligned}
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

A Naïve SAT Solver at Work

$$
\begin{aligned}
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

A Naïve SAT Solver at Work

$$
\begin{aligned}
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

A Naïve SAT Solver at Work

$$
\begin{aligned}
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

A Naïve SAT Solver at Work

$$
\begin{aligned}
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

A Naïve SAT Solver at Work

$$
\begin{aligned}
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

Problems

Problems

- Costly repetitions of identical proof trees

Problems

- Costly repetitions of identical proof trees
- 9 Branches

Problems

- Costly repetitions of identical proof trees
- 9 Branches
- Can often be avoided by using β rules in the "right" order

Problems

- Costly repetitions of identical proof trees
- 9 Branches
- Can often be avoided by using β rules in the "right" order
- But finding the best order is harder (!) than finding a proof

Problems

- Costly repetitions of identical proof trees
- 9 Branches
- Can often be avoided by using β rules in the "right" order
- But finding the best order is harder (!) than finding a proof
- Better: avoid using β (i.e. splitting) rules

Outline

- Motivation

- Simplification Rules
- Atomic Cut
- The DPLL Algorithm
- Other Tricks

Simplification Rules: Motivation

- Given two formulas p and $q \wedge(r \rightarrow s \wedge p)$

Simplification Rules: Motivation

- Given two formulas p and $q \wedge(r \rightarrow s \wedge p)$
- And an interpretation \mathcal{I} with $\mathcal{I} \models p$

Simplification Rules: Motivation

- Given two formulas p and $q \wedge(r \rightarrow s \wedge p)$
- And an interpretation \mathcal{I} with $\mathcal{I} \models p$
- $v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge p))$

Simplification Rules: Motivation

- Given two formulas p and $q \wedge(r \rightarrow s \wedge p)$
- And an interpretation \mathcal{I} with $\mathcal{I} \models p$
- $v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge p))=v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge t r u e))$

Simplification Rules: Motivation

- Given two formulas p and $q \wedge(r \rightarrow s \wedge p)$
- And an interpretation \mathcal{I} with $\mathcal{I} \models p$
- $v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge p))=v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge t r u e))=v_{\mathcal{I}}(q \wedge(r \rightarrow s))$

Simplification Rules: Motivation

- Given two formulas p and $q \wedge(r \rightarrow s \wedge p)$
- And an interpretation \mathcal{I} with $\mathcal{I} \models p$
$-v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge p))=v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge t r u e))=v_{\mathcal{I}}(q \wedge(r \rightarrow s))$
- An interpretation \mathcal{I} falsifies a sequent

$$
p, q \wedge(r \rightarrow s \wedge p), \Gamma \vdash \Delta
$$

Simplification Rules: Motivation

- Given two formulas p and $q \wedge(r \rightarrow s \wedge p)$
- And an interpretation \mathcal{I} with $\mathcal{I} \models p$
- $v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge p))=v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge t r u e))=v_{\mathcal{I}}(q \wedge(r \rightarrow s))$
- An interpretation \mathcal{I} falsifies a sequent

$$
p, q \wedge(r \rightarrow s \wedge p), \Gamma \vdash \Delta
$$

if and only if

Simplification Rules: Motivation

- Given two formulas p and $q \wedge(r \rightarrow s \wedge p)$
- And an interpretation \mathcal{I} with $\mathcal{I} \models p$
$-v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge p))=v_{\mathcal{I}}(q \wedge(r \rightarrow s \wedge t r u e))=v_{\mathcal{I}}(q \wedge(r \rightarrow s))$
- An interpretation \mathcal{I} falsifies a sequent

$$
p, q \wedge(r \rightarrow s \wedge p), \Gamma \vdash \Delta
$$

if and only if \mathcal{I} falsifies the sequent

$$
p, q \wedge(r \rightarrow s), \Gamma \vdash \Delta
$$

Simplification

Definition 2.1 (Simplification).
Given two formulas A and B,

Simplification

Definition 2.1 (Simplification).

Given two formulas A and B, where B does not have \neg as top-symbol,

Simplification

Definition 2.1 (Simplification).

Given two formulas A and B, where B does not have \neg as top-symbol, the simplification of A with B, written $A[B]$, is the result of

Simplification

Definition 2.1 (Simplification).

Given two formulas A and B, where B does not have \neg as top-symbol, the simplification of A with B, written $A[B]$, is the result of

- Replacing all occurrences of B in A by true, and

Simplification

Definition 2.1 (Simplification).

Given two formulas A and B, where B does not have \neg as top-symbol, the simplification of A with B, written $A[B]$, is the result of

- Replacing all occurrences of B in A by true, and
- Simplifying subformulae as long as possible using the rewritings

$$
\begin{array}{cc}
A \vee \text { true } \mapsto \text { true } & A \vee \text { false } \mapsto A \\
A \wedge \text { true } \mapsto A & A \wedge \text { false } \mapsto \text { false } \\
A \rightarrow \text { true } \mapsto \text { true } & A \rightarrow \text { false } \mapsto \neg A \\
\text { true } \rightarrow A \mapsto A & \text { false } \rightarrow A \mapsto \text { true } \\
\neg \text { true } \mapsto \text { false } & \neg \text { false } \mapsto \text { true }
\end{array}
$$

Simplification

Definition 2.1 (Simplification).

Given two formulas A and B, where B does not have \neg as top-symbol, the simplification of A with B, written $A[B]$, is the result of

- Replacing all occurrences of B in A by true, and
- Simplifying subformulae as long as possible using the rewritings

$$
\begin{array}{cc}
A \vee \text { true } \mapsto \text { true } & A \vee \text { false } \mapsto A \\
A \wedge \text { true } \mapsto A & A \wedge \text { false } \mapsto \text { false } \\
A \rightarrow \text { true } \mapsto \text { true } & A \rightarrow \text { false } \mapsto \neg A \\
\text { true } \rightarrow A \mapsto A & \text { false } \rightarrow A \mapsto \text { true } \\
\neg \text { true } \mapsto \text { false } & \neg \text { false } \mapsto \text { true }
\end{array}
$$

The simplification of A with $\neg B$, written $A[\neg B]$, is the result of

Simplification

Definition 2.1 (Simplification).

Given two formulas A and B, where B does not have \neg as top-symbol, the simplification of A with B, written $A[B]$, is the result of

- Replacing all occurrences of B in A by true, and
- Simplifying subformulae as long as possible using the rewritings

$$
\begin{array}{cc}
A \vee \text { true } \mapsto \text { true } & A \vee \text { false } \mapsto A \\
A \wedge \text { true } \mapsto A & A \wedge \text { false } \mapsto \text { false } \\
A \rightarrow \text { true } \mapsto \text { true } & A \rightarrow \text { false } \mapsto \neg A \\
\text { true } \rightarrow A \mapsto A & \text { false } \rightarrow A \mapsto \text { true } \\
\neg \text { true } \mapsto \text { false } & \neg \text { false } \mapsto \text { true }
\end{array}
$$

The simplification of A with $\neg B$, written $A[\neg B]$, is the result of

- Replacing all occurrences of B in A by false, and

Simplification

Definition 2.1 (Simplification).

Given two formulas A and B, where B does not have \neg as top-symbol, the simplification of A with B, written $A[B]$, is the result of

- Replacing all occurrences of B in A by true, and
- Simplifying subformulae as long as possible using the rewritings

$$
\begin{array}{cc}
A \vee \text { true } \mapsto \text { true } & A \vee \text { false } \mapsto A \\
A \wedge \text { true } \mapsto A & A \wedge \text { false } \mapsto \text { false } \\
A \rightarrow \text { true } \mapsto \text { true } & A \rightarrow \text { false } \mapsto \neg A \\
\text { true } \rightarrow A \mapsto A & \text { false } \rightarrow A \mapsto \text { true } \\
\neg \text { true } \mapsto \text { false } & \neg \text { false } \mapsto \text { true }
\end{array}
$$

The simplification of A with $\neg B$, written $A[\neg B]$, is the result of

- Replacing all occurrences of B in A by false, and
- Applying the same rewritings.

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ true $)$

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ true $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ true $) \mapsto$

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ true $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ true $) \mapsto q \wedge(r \rightarrow s)$

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ true $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ true $) \mapsto q \wedge(r \rightarrow s)$
- So $(q \wedge(r \rightarrow s \wedge p))[p]=q \wedge(r \rightarrow s)$

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ true $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ true $) \mapsto q \wedge(r \rightarrow s)$
- So $(q \wedge(r \rightarrow s \wedge p))[p]=q \wedge(r \rightarrow s)$
- To compute $(q \wedge(r \rightarrow s \wedge p))[\neg p]$

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ true $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ true $) \mapsto q \wedge(r \rightarrow s)$
- So $(q \wedge(r \rightarrow s \wedge p))[p]=q \wedge(r \rightarrow s)$
- To compute $(q \wedge(r \rightarrow s \wedge p))[\neg p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ false $)$

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ true $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ true $) \mapsto q \wedge(r \rightarrow s)$
- So $(q \wedge(r \rightarrow s \wedge p))[p]=q \wedge(r \rightarrow s)$
- To compute $(q \wedge(r \rightarrow s \wedge p))[\neg p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ false $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ false $) \mapsto$

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ true $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ true $) \mapsto q \wedge(r \rightarrow s)$
- So $(q \wedge(r \rightarrow s \wedge p))[p]=q \wedge(r \rightarrow s)$
- To compute $(q \wedge(r \rightarrow s \wedge p))[\neg p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ false $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ false $) \mapsto q \wedge(r \rightarrow$ false $) \mapsto$

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ true $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ true $) \mapsto q \wedge(r \rightarrow s)$
- So $(q \wedge(r \rightarrow s \wedge p))[p]=q \wedge(r \rightarrow s)$
- To compute $(q \wedge(r \rightarrow s \wedge p))[\neg p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ false $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ false $) \mapsto q \wedge(r \rightarrow$ false $) \mapsto q \wedge \neg r$

Simplification Examples

- To compute $(q \wedge(r \rightarrow s \wedge p))[p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ true $)$
- Then simplify $q \wedge(r \rightarrow s \wedge$ true $) \mapsto q \wedge(r \rightarrow s)$
- So $(q \wedge(r \rightarrow s \wedge p))[p]=q \wedge(r \rightarrow s)$
- To compute $(q \wedge(r \rightarrow s \wedge p))[\neg p]$
- Do the replacement: $q \wedge(r \rightarrow s \wedge$ false $)$
- Then simplify $q \wedge(r \rightarrow s \wedge f a l s e) \mapsto q \wedge(r \rightarrow f a l s e) \mapsto q \wedge \neg r$
- So $(q \wedge(r \rightarrow s \wedge p))[\neg p]=q \wedge \neg r$

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let $B \equiv B^{\prime}$. Then A is logically equivalent to the result of replacing B by B^{\prime} in A.

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let $B \equiv B^{\prime}$. Then A is logically equivalent to the result of replacing B by B^{\prime} in A.

Proof.
Easily shown by structural induction over A.

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let $B \equiv B^{\prime}$. Then A is logically equivalent to the result of replacing B by B^{\prime} in A.

Proof.

Easily shown by structural induction over A.
Theorem 2.1.
Given formulas A and B

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let $B \equiv B^{\prime}$. Then A is logically equivalent to the result of replacing B by B^{\prime} in A.

Proof.

Easily shown by structural induction over A.
Theorem 2.1.
Given formulas A and B and an interpretation \mathcal{I} with $\mathcal{I} \models B$.

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let $B \equiv B^{\prime}$. Then A is logically equivalent to the result of replacing B by B^{\prime} in A.

Proof.

Easily shown by structural induction over A.
Theorem 2.1.
Given formulas A and B and an interpretation \mathcal{I} with $\mathcal{I} \models B$. Then $\mathcal{I} \models A$ if and only if $\mathcal{I} \models A[B]$

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let $B \equiv B^{\prime}$. Then A is logically equivalent to the result of replacing B by B^{\prime} in A.

Proof.

Easily shown by structural induction over A.
Theorem 2.1.
Given formulas A and B and an interpretation \mathcal{I} with $\mathcal{I} \models B$. Then $\mathcal{I} \models A$ if and only if $\mathcal{I} \models A[B]$

Proof.

For the first step (replacing B by true or false), the proof is by structural induction on A.

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let $B \equiv B^{\prime}$. Then A is logically equivalent to the result of replacing B by B^{\prime} in A.

Proof.

Easily shown by structural induction over A.
Theorem 2.1.
Given formulas A and B and an interpretation \mathcal{I} with $\mathcal{I} \models B$. Then $\mathcal{I} \models A$ if and only if $\mathcal{I} \models A[B]$

Proof.

For the first step (replacing B by true or false), the proof is by structural induction on A. For the simplification steps, each formula is logicaly equivalent to the next,

Main property of Simplification

Lemma 2.1.

Given a formula A that contains a subformula B, and let $B \equiv B^{\prime}$. Then A is logically equivalent to the result of replacing B by B^{\prime} in A.

Proof.

Easily shown by structural induction over A.
Theorem 2.1.
Given formulas A and B and an interpretation \mathcal{I} with $\mathcal{I} \models B$. Then $\mathcal{I} \models A$ if and only if $\mathcal{I} \models A[B]$

Proof.

For the first step (replacing B by true or false), the proof is by structural induction on A. For the simplification steps, each formula is logicaly equivalent to the next, due to the preceding lemma.

Simplification Rules

We add the following four "simplification rules" to LK:

$$
\begin{array}{cc}
\frac{B, A[B], \Gamma \Rightarrow \Delta}{B, A, \Gamma \Rightarrow \Delta} \\
\frac{B, \Gamma \Rightarrow A[B], \Delta}{B, \Gamma \Rightarrow A, \Delta} & \frac{A[\neg B], \Gamma \Rightarrow B, \Delta}{A, \Gamma \Rightarrow B, \Delta} \\
\hline \Gamma \Rightarrow B, A, \Delta
\end{array}
$$

Example: (one-sided) LK with Simplification Rules

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

Example: (one-sided) LK with Simplification Rules

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

Example: (one-sided) LK with Simplification Rules

$$
\begin{gathered}
p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered}
$$

Example: (one-sided) LK with Simplification Rules

$$
\begin{gathered}
p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered}
$$

Example: (one-sided) LK with Simplification Rules

$$
\frac{p,(\neg p \vee q)[p], p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

Example: (one-sided) LK with Simplification Rules

$p, \quad q, p \vee \neg q, \neg p \vee \neg q \Rightarrow$
$\frac{p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow$

Example: (one-sided) LK with Simplification Rules

$p, \quad q, p \vee \neg q, \neg p \vee \neg q \Rightarrow$
$\frac{p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow$

Example: (one-sided) LK with Simplification Rules

$$
\begin{aligned}
& \frac{p, q,(p \vee \neg q)[p], \neg p \vee \neg q \Rightarrow}{p, \quad q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
& \frac{p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

Example: (one-sided) LK with Simplification Rules

$$
\begin{array}{rr}
\frac{p, q, \quad t r u e, \neg p \vee \neg q \Rightarrow}{p, \quad q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
\frac{p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}
\end{array} \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

Example: (one-sided) LK with Simplification Rules

$$
\begin{array}{rr}
p, q, \quad \text { true }, \neg p \vee \neg q \Rightarrow \\
\hline p, \quad q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
\frac{p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}
\end{array}
$$

Example: (one-sided) LK with Simplification Rules

$$
\begin{aligned}
& \frac{p, q, \operatorname{true},(\neg p \vee \neg q)[p] \Rightarrow}{p, q, \quad \operatorname{true}, \neg p \vee \neg q \Rightarrow} \\
& \hline p, \quad q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
& \frac{p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p,} \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
& \hline
\end{aligned}
$$

Example: (one-sided) LK with Simplification Rules

$$
\begin{aligned}
\frac{p, q, \text { true }, \quad \neg q}{} \Rightarrow \\
\hline p, q, \quad \text { true, } \neg p \vee \neg q \Rightarrow \\
p, \quad q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned} \quad q \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

Example: (one-sided) LK with Simplification Rules

$$
\begin{aligned}
\frac{p, q, \text { true }, \quad \neg q}{} \Rightarrow \\
\hline p, q, \quad \text { true }, \neg p \vee \neg q \Rightarrow \\
p, \quad q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned} \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

Example: (one-sided) LK with Simplification Rules

$$
\begin{aligned}
& \begin{aligned}
& \quad p, q, \text { true, } \Rightarrow q \\
& \quad \begin{aligned}
p, q, \quad \text { true, } \neg p \vee \neg q & \Rightarrow \\
p, \quad q, p \vee \neg q, \neg p \vee \neg q & \Rightarrow \\
\hline p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q & \Rightarrow
\end{aligned} \quad q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned} \\
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

Example: (one-sided) LK with Simplification Rules

$$
\begin{aligned}
& q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

Example: (one-sided) LK with Simplification Rules

$$
\begin{array}{rr}
\begin{aligned}
& p, q, \text { true }, \neg q \\
& p, q, \quad \text { true }, \neg p \vee \neg q \Rightarrow \\
& p, \quad q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
& \hline p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned} & \frac{q, \text { true, } p, \neg p \Rightarrow}{q, \text { true, } p, \neg p \vee \neg q \Rightarrow} \\
\frac{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}
\end{array}
$$

Example: (one-sided) LK with Simplification Rules

Example: (one-sided) LK with Simplification Rules

$$
\begin{aligned}
& \begin{aligned}
\begin{aligned}
& p, q, \text { true }, \Rightarrow q \\
& \hline p, q, \quad \text { true }, \neg p \vee \neg q \Rightarrow \\
& p, \quad q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
& \hline p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned} & \begin{array}{r}
q, \text { true, } p, \neg p \Rightarrow \\
q, \text { true, } p, \neg p \vee \neg q \Rightarrow \\
q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{array}
\end{aligned} \\
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

- Strategy: Apply simplification as much as possible, before β rules

Example: (one-sided) LK with Simplification Rules

- Strategy: Apply simplification as much as possible, before β rules
- In this case: from 9 branches down to 2 .

Simplification for Clauses

- Simplify a clause C with a literal L

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains L,

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed
- Removing C because $L \in C$ is called unit subsumption

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed
- Removing C because $L \in C$ is called unit subsumption
- Case 2: C contains \bar{L},

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed
- Removing C because $L \in C$ is called unit subsumption
- Case 2: C contains $\bar{L}, C=A_{1} \vee \cdots \vee A_{k} \vee \bar{L}$

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed
- Removing C because $L \in C$ is called unit subsumption
- Case 2: C contains $\bar{L}, C=A_{1} \vee \cdots \vee A_{k} \vee \bar{L}$
- Then $C[L]=$

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed
- Removing C because $L \in C$ is called unit subsumption
- Case 2: C contains $\bar{L}, C=A_{1} \vee \cdots \vee A_{k} \vee \bar{L}$
- Then $C[L]=A_{1} \vee \cdots \vee A_{k}$

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed
- Removing C because $L \in C$ is called unit subsumption
- Case 2: C contains $\bar{L}, C=A_{1} \vee \cdots \vee A_{k} \vee \bar{L}$
- Then $C[L]=A_{1} \vee \cdots \vee A_{k}$
- $C[L]$ is the resolvent of C and L !

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed
- Removing C because $L \in C$ is called unit subsumption
- Case 2: C contains $\bar{L}, C=A_{1} \vee \cdots \vee A_{k} \vee \bar{L}$
- Then $C[L]=A_{1} \vee \cdots \vee A_{k}$
- $C[L]$ is the resolvent of C and L !
- Replacing C by $A_{1} \vee \cdots \vee A_{k}$ is called unit resolution

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed
- Removing C because $L \in C$ is called unit subsumption
- Case 2: C contains $\bar{L}, C=A_{1} \vee \cdots \vee A_{k} \vee \bar{L}$
- Then $C[L]=A_{1} \vee \cdots \vee A_{k}$
- $C[L]$ is the resolvent of C and L !
- Replacing C by $A_{1} \vee \cdots \vee A_{k}$ is called unit resolution
- Note that C is subsumed by $A_{1} \vee \cdots \vee A_{k}$

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed
- Removing C because $L \in C$ is called unit subsumption
- Case 2: C contains $\bar{L}, C=A_{1} \vee \cdots \vee A_{k} \vee \bar{L}$
- Then $C[L]=A_{1} \vee \cdots \vee A_{k}$
- $C[L]$ is the resolvent of C and L !
- Replacing C by $A_{1} \vee \cdots \vee A_{k}$ is called unit resolution
- Note that C is subsumed by $A_{1} \vee \cdots \vee A_{k}$
- Unit subsumption and unit resolution together: unit propagation

Simplification for Clauses

- Simplify a clause C with a literal L
- Case 1: C contains $L, C=A_{1} \vee \cdots \vee A_{k} \vee L$
- Then $C[L]=$ true
- In refutation (left of sequent, resolution), true is useless and can be removed
- Removing C because $L \in C$ is called unit subsumption
- Case 2: C contains $\bar{L}, C=A_{1} \vee \cdots \vee A_{k} \vee \bar{L}$
- Then $C[L]=A_{1} \vee \cdots \vee A_{k}$
- $C[L]$ is the resolvent of C and L !
- Replacing C by $A_{1} \vee \cdots \vee A_{k}$ is called unit resolution
- Note that C is subsumed by $A_{1} \vee \cdots \vee A_{k}$
- Unit subsumption and unit resolution together: unit propagation
- Given a literal L, every clause can be either removed completely, or shortened by removing \bar{L}, unit propagation can be used to remove L from every other clause containing L or \bar{L}.

Outline

- Motivation

- Simplification Rules

- Atomic Cut

- The DPLL Algorithm

- Other Tricks

Atomic Cut: Motivation

- For a sequent with n different β-formulas,

Atomic Cut: Motivation

- For a sequent with n different β-formulas,
- each of them has to be expanded on every branch...

Atomic Cut: Motivation

- For a sequent with n different β-formulas,
- each of them has to be expanded on every branch...
- ... which gives 2^{n} branches...

Atomic Cut: Motivation

- For a sequent with n different β-formulas,
- each of them has to be expanded on every branch...
- ... which gives 2^{n} branches...
- even though there might be only $k<n$ propositional variables,

Atomic Cut: Motivation

- For a sequent with n different β-formulas,
- each of them has to be expanded on every branch...
- ... which gives 2^{n} branches...
- even though there might be only $k<n$ propositional variables,
- and therefore only 2^{k} different interpretations!

Atomic Cut: Motivation

- For a sequent with n different β-formulas,
- each of them has to be expanded on every branch...
- ... which gives 2^{n} branches...
- even though there might be only $k<n$ propositional variables,
- and therefore only 2^{k} different interpretations!
- E.g. in the motivating example:

9 branches for 4 interpretations for 2 prop. variables.

Atomic Cut: Motivation

- For a sequent with n different β-formulas,
- each of them has to be expanded on every branch...
- ... which gives 2^{n} branches...
- even though there might be only $k<n$ propositional variables,
- and therefore only 2^{k} different interpretations!
- E.g. in the motivating example:

9 branches for 4 interpretations for 2 prop. variables.

- Idea: max. 1 split per propositional variable

The Cut Rule

- The cut rule for LK:

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

The Cut Rule

- The cut rule for LK:

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- The rule is sound (exercise) but not needed for completeness.

The Cut Rule

- The cut rule for LK:

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- The rule is sound (exercise) but not needed for completeness.
- It is a bit like proving a lemma A and then using it.

The Cut Rule

- The cut rule for LK:

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- The rule is sound (exercise) but not needed for completeness.
- It is a bit like proving a lemma A and then using it.
- Using cut can make proofs non-elementarily shorter (in first order logic)

The Cut Rule

- The cut rule for LK:

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- The rule is sound (exercise) but not needed for completeness.
- It is a bit like proving a lemma A and then using it.
- Using cut can make proofs non-elementarily shorter (in first order logic)
- I.e. size $O(k)$ with cut but $O(\underbrace{2^{2 \cdot 2}}_{k})$ without.

The Cut Rule

- The cut rule for LK:

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- The rule is sound (exercise) but not needed for completeness.
- It is a bit like proving a lemma A and then using it.
- Using cut can make proofs non-elementarily shorter (in first order logic)
- I.e. size $O(k)$ with cut but $O(\underbrace{2^{2}}_{k})$ without.
- Not useful for automated proof search, because A has to be guessed.

The Cut Rule

- The cut rule for LK:

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- The rule is sound (exercise) but not needed for completeness.
- It is a bit like proving a lemma A and then using it.
- Using cut can make proofs non-elementarily shorter (in first order logic)
- I.e. size $O(k)$ with cut but $O(\underbrace{2^{2}}_{k})$ without.
- Not useful for automated proof search, because A has to be guessed.
- The essence of human theorem proving: introducing the right lemmas!

Atomic Cut

- The atomic cut rule is just the cut rule

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

Atomic Cut

- The atomic cut rule is just the cut rule

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- Where A is resricted to be an atomic formula.

Atomic Cut

- The atomic cut rule is just the cut rule

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- Where A is resricted to be an atomic formula.
- No nonelementary speedup :-(

Atomic Cut

- The atomic cut rule is just the cut rule

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- Where A is resricted to be an atomic formula.
- No nonelementary speedup :-(
- But we don't need more atomic cuts than we have prop. variables :-)

Atomic Cut

- The atomic cut rule is just the cut rule

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- Where A is resricted to be an atomic formula.
- No nonelementary speedup :-(
- But we don't need more atomic cuts than we have prop. variables :-)
- We can replace β rules in LK by atomic cut. . .

Atomic Cut

- The atomic cut rule is just the cut rule

$$
\frac{\Gamma \Rightarrow A, \Delta \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

- Where A is resricted to be an atomic formula.
- No nonelementary speedup :-(
- But we don't need more atomic cuts than we have prop. variables :-)
- We can replace β rules in LK by atomic cut. . .
- ... if we add the simplification rules to deal with β formulas.

Atomic Cut + Unit Propagation

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

Atomic Cut + Unit Propagation

$$
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

Atomic Cut + Unit Propagation

$$
\frac{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \quad \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}
$$

Atomic Cut + Unit Propagation

$$
\frac{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \quad \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}
$$

Atomic Cut + Unit Propagation

$$
\frac{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
$$

Atomic Cut + Unit Propagation

$$
\begin{gathered}
\frac{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered}
$$

Atomic Cut + Unit Propagation

$\frac{q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}$
$\frac{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow$

Atomic Cut + Unit Propagation

$\frac{q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}$
$\frac{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow$

Atomic Cut + Unit Propagation

$$
\begin{gathered}
\frac{q, p, \neg p \vee \neg q \Rightarrow}{q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
\frac{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad \neg \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered}
$$

Atomic Cut + Unit Propagation

$$
\begin{gathered}
\frac{q, p, \neg p \vee \neg q \Rightarrow}{q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
\frac{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad \neg \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
\hline p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered}
$$

Atomic Cut + Unit Propagation

$$
\begin{gathered}
\frac{q, p, \neg p \Rightarrow}{\frac{q, p, \neg p \vee \neg q}{} \Rightarrow} \\
\frac{q, p \vee \neg q, \neg p \vee \neg q}{\frac{q, p}{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q}} \begin{array}{r}
q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{array} \quad \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered}
$$

Atomic Cut + Unit Propagation

$$
\begin{gathered}
\frac{q, p, \neg p \Rightarrow}{\frac{q, p, \neg p \vee \neg q}{} \Rightarrow} \\
\frac{q}{q, p \vee \neg q, \neg p \vee \neg q} \overrightarrow{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q} \overline{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q} \Rightarrow \\
p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered}
$$

Atomic Cut + Unit Propagation

$$
\begin{gathered}
\frac{q, p, \neg p \Rightarrow}{\frac{q, p, \neg p \vee \neg q \Rightarrow}{}} \\
\frac{q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
\frac{p \vee \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \quad \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered}
$$

Atomic Cut + Unit Propagation

$$
\begin{aligned}
& \begin{array}{c}
\frac{q, p, \neg p \Rightarrow}{q, p, \neg p \vee \neg q \Rightarrow} \\
\frac{q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{array} \neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow \\
& p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{aligned}
$$

Atomic Cut + Unit Propagation

$$
\begin{gathered}
\frac{q, p, \neg p \Rightarrow}{q, p, \neg p \vee \neg q \Rightarrow} \\
\frac{q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
\hline p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered}
$$

Atomic Cut + Unit Propagation

$$
\begin{gathered}
\frac{q, p, \neg p \Rightarrow}{q, p, \neg p \vee \neg q \Rightarrow} \\
\frac{q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{\frac{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}} \underset{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{\neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}
\end{gathered}
$$

Atomic Cut + Unit Propagation

$$
\begin{gathered}
\frac{q, p, \neg p \Rightarrow}{q, p, \neg p \vee \neg q \Rightarrow} \\
\frac{q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
p, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered} \quad \begin{gathered}
\frac{\neg q, p, \neg p, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{\neg q, p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
\frac{\neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{}
\end{gathered}
$$

Atomic Cut + Unit Propagation

$$
\begin{gathered}
\frac{q, p, \neg p \Rightarrow}{q, p, \neg p \vee \neg q \Rightarrow} \\
\frac{q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
p, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow
\end{gathered} \quad \begin{gathered}
\frac{\neg q, p, \neg p, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{\neg q, p, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow} \\
\frac{\neg q, p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q \Rightarrow}{}
\end{gathered}
$$

Atomic Cut + Unit Propagation

Outline

- Motivation

- Simplification Rules
- Atomic Cut
- The DPLL Algorithm
- Other Tricks

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland
- Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland
- Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland
- A refinement of an earlier algorithm, invented by Martin Davis and Hilary Putnam in (1960)

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland
- Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland
- A refinement of an earlier algorithm, invented by Martin Davis and Hilary Putnam in (1960)
- Made propositional theorem proving ("SAT solving") practically viable

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland
- Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland
- A refinement of an earlier algorithm, invented by Martin Davis and Hilary Putnam in (1960)
- Made propositional theorem proving ("SAT solving") practically viable
- After almost 60 years, still the basis of most efficient SAT solvers

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland
- Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland
- A refinement of an earlier algorithm, invented by Martin Davis and Hilary Putnam in (1960)
- Made propositional theorem proving ("SAT solving") practically viable
- After almost 60 years, still the basis of most efficient SAT solvers
- DPLL works on a set of propositional clauses

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland
- Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland
- A refinement of an earlier algorithm, invented by Martin Davis and Hilary Putnam in (1960)
- Made propositional theorem proving ("SAT solving") practically viable
- After almost 60 years, still the basis of most efficient SAT solvers
- DPLL works on a set of propositional clauses
- DPLL Consists of

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland
- Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland
- A refinement of an earlier algorithm, invented by Martin Davis and Hilary Putnam in (1960)
- Made propositional theorem proving ("SAT solving") practically viable
- After almost 60 years, still the basis of most efficient SAT solvers
- DPLL works on a set of propositional clauses
- DPLL Consists of
- Atomic Cut (with a heuristic for choosing the atom)

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland
- Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland
- A refinement of an earlier algorithm, invented by Martin Davis and Hilary Putnam in (1960)
- Made propositional theorem proving ("SAT solving") practically viable
- After almost 60 years, still the basis of most efficient SAT solvers
- DPLL works on a set of propositional clauses
- DPLL Consists of
- Atomic Cut (with a heuristic for choosing the atom)
- Unit Propagation

The DPLL Algorithm

- DPLL stands for Davis-Putnam-Logemann-Loveland
- Introduced in 1962 by Martin Davis, George Logemann and Donald W. Loveland
- A refinement of an earlier algorithm, invented by Martin Davis and Hilary Putnam in (1960)
- Made propositional theorem proving ("SAT solving") practically viable
- After almost 60 years, still the basis of most efficient SAT solvers
- DPLL works on a set of propositional clauses
- DPLL Consists of
- Atomic Cut (with a heuristic for choosing the atom)
- Unit Propagation
- Pure Literal Elimination (exercise!)

Outline

- Motivation

- Simplification Rules

- Atomic Cut
- The DPLL Algorithm
- Other Tricks

Lemma Generation

- Remember the exercise sheet 2 ?

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \wedge B, \Delta} \wedge-\lg
$$

Lemma Generation

- Remember the exercise sheet 2 ?

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \wedge B, \Delta} \wedge-\lg
$$

- Closing the left branch, we "learnt the Lemma A "

Lemma Generation

- Remember the exercise sheet 2 ?

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \wedge B, \Delta} \wedge-\lg
$$

- Closing the left branch, we "learnt the Lemma A "
- With single-sided sequents:

$$
\frac{A, \Gamma \Rightarrow \quad \neg A, B, \Gamma \Rightarrow}{A \vee B, \Gamma \Rightarrow} \vee-\lg
$$

Lemma Generation

- Remember the exercise sheet 2 ?

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \wedge B, \Delta} \wedge-\lg
$$

- Closing the left branch, we "learnt the Lemma A "
- With single-sided sequents:

$$
\frac{A, \Gamma \Rightarrow \quad \neg A, B, \Gamma \Rightarrow}{A \vee B, \Gamma \Rightarrow} \vee-\lg
$$

- We refuted A, so now we may assume $\neg A$.

Lemma Generation

- Remember the exercise sheet 2 ?

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \wedge B, \Delta} \wedge-\lg
$$

- Closing the left branch, we "learnt the Lemma A "
- With single-sided sequents:

$$
\frac{A, \Gamma \Rightarrow \quad \neg A, B, \Gamma \Rightarrow}{A \vee B, \Gamma \Rightarrow} \vee-\lg
$$

- We refuted A, so now we may assume $\neg A$.
- Whenever we close a branch, we learn that a certain combination of literals L_{1}, \ldots, L_{k} leads to a contradiction

Lemma Generation

- Remember the exercise sheet 2 ?

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \wedge B, \Delta} \wedge-\lg
$$

- Closing the left branch, we "learnt the Lemma A "
- With single-sided sequents:

$$
\frac{A, \Gamma \Rightarrow \quad \neg A, B, \Gamma \Rightarrow}{A \vee B, \Gamma \Rightarrow} \vee-\lg
$$

- We refuted A, so now we may assume $\neg A$.
- Whenever we close a branch, we learn that a certain combination of literals L_{1}, \ldots, L_{k} leads to a contradiction
- We can add a clause $\overline{L_{1}} \vee \cdots \vee \overline{L_{k}}$ to caputre this.

Lemma Generation

- Remember the exercise sheet 2 ?

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \wedge B, \Delta} \wedge-\lg
$$

- Closing the left branch, we "learnt the Lemma A^{\prime}
- With single-sided sequents:

$$
\frac{A, \Gamma \Rightarrow \quad \neg A, B, \Gamma \Rightarrow}{A \vee B, \Gamma \Rightarrow} \vee-\lg
$$

- We refuted A, so now we may assume $\neg A$.
- Whenever we close a branch, we learn that a certain combination of literals L_{1}, \ldots, L_{k} leads to a contradiction
- We can add a clause $\overline{L_{1}} \vee \cdots \vee \overline{L_{k}}$ to caputre this.
- "Clause Learning"

Pruning

- Pruning

Pruning

- Pruning \equiv Backjumping

Pruning

- Pruning \equiv Backjumping \equiv Intelligent Backtracking

Pruning

- Pruning \equiv Backjumping \equiv Intelligent Backtracking \equiv Non-chronological Backtracking

Pruning

- Pruning \equiv Backjumping \equiv Intelligent Backtracking \equiv Non-chronological Backtracking
- Consider the following derivation

$$
\begin{aligned}
& \frac{\frac{\text { needed } \mathrm{B} \text { and } \mathrm{G}}{p, q, \neg p, \neg r \Rightarrow} \quad \frac{\text { needed } \mathrm{G}}{p, q, r, \neg r \Rightarrow}}{\frac{p, q, \neg p \vee r, \neg r \Rightarrow}{p} \mathrm{G}} \quad \mathrm{p,s,} \mathrm{\ldots} \mathrm{\Rightarrow} \mathrm{R} \text { R } \mathrm{R} \quad q, \ldots \Rightarrow \\
& \frac{p, q \vee s, \neg p \vee r, \neg r \Rightarrow}{p \vee q, q \vee s, \neg p \vee r, \neg r \Rightarrow} \mathrm{~B}
\end{aligned}
$$

Pruning

- Pruning \equiv Backjumping \equiv Intelligent Backtracking \equiv Non-chronological Backtracking
- Consider the following derivation

$$
\begin{aligned}
& \text { needed } B \text { and } G \quad \text { needed } G \\
& \begin{array}{r}
\frac{\overline{p, q, \neg p, \neg r \Rightarrow} \quad \frac{p, q, r, \neg r \Rightarrow}{p, q, \neg p \vee r, \neg r \Rightarrow} G \quad p, s, \ldots \Rightarrow}{\frac{p, q \vee s, \neg p \vee r, \neg r \Rightarrow}{p \vee q, q \vee s, \neg p \vee r, \neg r \Rightarrow} \mathrm{R} \quad q, \ldots \Rightarrow} \mathrm{~B}
\end{array}
\end{aligned}
$$

- No formulae introduced by R needed to close the two left branches

Pruning

- Pruning \equiv Backjumping \equiv Intelligent Backtracking \equiv Non-chronological Backtracking
- Consider the following derivation

$$
\begin{aligned}
& \frac{\frac{\text { needed } \mathrm{B} \text { and } \mathrm{G}}{p, q, \neg p, \neg r \Rightarrow} \quad \frac{\text { needed } \mathrm{G}}{p, q, r, \neg r \Rightarrow}}{\frac{p, q, \neg p \vee r, \neg r \Rightarrow}{\Rightarrow}} \mathrm{G} \quad p, s, \ldots \Rightarrow \\
& \frac{p, q \vee s, \neg p \vee r, \neg r \Rightarrow}{p \vee q, q \vee s, \neg p \vee r, \neg r \Rightarrow} \mathrm{R} \quad q, \ldots \Rightarrow \\
&
\end{aligned}
$$

- No formulae introduced by R needed to close the two left branches
- Could have closed the branch without applying R

Pruning

- Pruning \equiv Backjumping \equiv Intelligent Backtracking \equiv Non-chronological Backtracking
- Consider the following derivation

$$
\begin{aligned}
& \frac{\frac{\text { needed } \mathrm{B} \text { and } \mathrm{G}}{p, q, \neg p, \neg r \Rightarrow} \quad \frac{\text { needed } \mathrm{G}}{p, q, r, \neg r \Rightarrow}}{\frac{p, q, \neg p \vee r, \neg r \Rightarrow}{p, ~} \mathrm{G} \quad p, s, \ldots \Rightarrow} \mathrm{R} \quad q, \ldots \Rightarrow \\
& \frac{p, q \vee s, \neg p \vee r, \neg r \Rightarrow}{p \vee q, q \vee s, \neg p \vee r, \neg r \Rightarrow} \mathrm{~B}
\end{aligned}
$$

- No formulae introduced by R needed to close the two left branches
- Could have closed the branch without applying R
- Pruning: after closing the left two branches, continue with

$$
\frac{\frac{\text { needed } \mathrm{B} \text { and } \mathrm{G}}{p, \neg p, \neg r \Rightarrow} \frac{\text { needed } \mathrm{G}}{p, r, \neg r \Rightarrow}}{\frac{p, \neg p \vee r, \neg r \Rightarrow}{p \vee q, q \vee s, \neg p \vee r, \neg r \Rightarrow} \mathrm{q} \Rightarrow \ldots \Rightarrow} \mathrm{~B}
$$

Conflict-driven clause learning (CDCL)

- The modern take on DPLL

Conflict-driven clause learning (CDCL)

- The modern take on DPLL
- See e.g. the successful MiniSat implementation http://minisat.se/

Conflict-driven clause learning (CDCL)

- The modern take on DPLL
- See e.g. the successful MiniSat implementation http://minisat.se/
- A combination of

Conflict-driven clause learning (CDCL)

- The modern take on DPLL
- See e.g. the successful MiniSat implementation http://minisat.se/
- A combination of
- Atomic cut

Conflict-driven clause learning (CDCL)

- The modern take on DPLL
- See e.g. the successful MiniSat implementation http://minisat.se/
- A combination of
- Atomic cut
- Unit propagation

Conflict-driven clause learning (CDCL)

- The modern take on DPLL
- See e.g. the successful MiniSat implementation http://minisat.se/
- A combination of
- Atomic cut
- Unit propagation
- Clause learning

Conflict-driven clause learning (CDCL)

- The modern take on DPLL
- See e.g. the successful MiniSat implementation http://minisat.se/
- A combination of
- Atomic cut
- Unit propagation
- Clause learning
- Pruning

Stålmarck's Method

- Devised by Gunnar Stålmarck, applied for patent 1989

Stålmarck's Method

- Devised by Gunnar Stålmarck, applied for patent 1989
- The Dilemma Rule:

Stålmarck's Method

- Devised by Gunnar Stålmarck, applied for patent 1989
- The Dilemma Rule:

\[

\]

- After unit propagation, join branches generated by cut

Stålmarck's Method

- Devised by Gunnar Stålmarck, applied for patent 1989
- The Dilemma Rule:

\[

\]

- After unit propagation, join branches generated by cut
- Stålmarck's discovery: often enough to consider max two branches

Stålmarck's Method

- Devised by Gunnar Stålmarck, applied for patent 1989
- The Dilemma Rule:

\[

\]

- After unit propagation, join branches generated by cut
- Stålmarck's discovery: often enough to consider max two branches
- Not always.

Stålmarck's Method

- Devised by Gunnar Stålmarck, applied for patent 1989
- The Dilemma Rule:

\[

\]

- After unit propagation, join branches generated by cut
- Stålmarck's discovery: often enough to consider max two branches
- Not always. Why?

Stålmarck's Method

- Devised by Gunnar Stålmarck, applied for patent 1989
- The Dilemma Rule:

\[

\]

- After unit propagation, join branches generated by cut
- Stålmarck's discovery: often enough to consider max two branches
- Not always. Why?
- In general: nesting of Dilemma Rule.

Stålmarck's Method

- Devised by Gunnar Stålmarck, applied for patent 1989
- The Dilemma Rule:

\[

\]

- After unit propagation, join branches generated by cut
- Stålmarck's discovery: often enough to consider max two branches
- Not always. Why?
- In general: nesting of Dilemma Rule.
- Still: deep nesting rarely needed.

Summary

- Efficient theorem provers combine formulas instead of just decomposing

Summary

- Efficient theorem provers combine formulas instead of just decomposing
- The resolution rule is an example

Summary

- Efficient theorem provers combine formulas instead of just decomposing
- The resolution rule is an example
- The simplification rules are another

Summary

- Efficient theorem provers combine formulas instead of just decomposing
- The resolution rule is an example
- The simplification rules are another
- For propositional logic, unit propagation is very effective

Summary

- Efficient theorem provers combine formulas instead of just decomposing
- The resolution rule is an example
- The simplification rules are another
- For propositional logic, unit propagation is very effective
- Atomic cut and unit propagation are the main ingredients of DPLL

Summary

- Efficient theorem provers combine formulas instead of just decomposing
- The resolution rule is an example
- The simplification rules are another
- For propositional logic, unit propagation is very effective
- Atomic cut and unit propagation are the main ingredients of DPLL
- DPLL has been refined to CDCL

Summary

- Efficient theorem provers combine formulas instead of just decomposing
- The resolution rule is an example
- The simplification rules are another
- For propositional logic, unit propagation is very effective
- Atomic cut and unit propagation are the main ingredients of DPLL
- DPLL has been refined to CDCL
- CDCL incorporates clause learning and pruning

