
IN3070/4070 – Logic – Autumn 2020
Lecture 12: Description Logics and Termination

Egor V. Kostylev

5th November 2019

Department of
Informatics

University of
Oslo

Today’s Plan

I Motivation and Examples

I ALC Syntax and Semantics

I Calculus for ALC Terminological Reasoning

I Discussion

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 2 / 46

Motivation and Examples

Outline

I Motivation and Examples

I ALC Syntax and Semantics

I Calculus for ALC Terminological Reasoning

I Discussion

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 3 / 46

Motivation and Examples

Motivation

Undecidable

Non-Elementary decidable

. . .

ExpTime

PSpace

NP

P

first-order reasoning

. . .

. . .

. . .

. . .

propositional reasoning

. . .
What are Description (and Modal) Logics?

I Fragments of first-order with decidable reasoning

I Typically ‘in-between’ propositional and first-order

I Complexity typically between PSpace and 2NExpTime
I Some lightweight DLs have polynomial reasoning

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 4 / 46



Motivation and Examples

Motivation

Many applications (e.g., in Knowledge Representation, the Semantic Web)
do not require full power of first-order

What can we leave out?

I Key reasoning problems should become decidable

I Sufficient expressive power to model application domain

Description Logics are a family of first-order fragments that meet these
requirements for many applications:

I Underlying formalisms of modern ontology languages

I Widely-used in information systems (bio-medical, oil and gas, etc.)

I Core component of the Semantic Web

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 5 / 46

Motivation and Examples

Motivation

Consider an example from the bio-medical domain:

I A juvenile disease affects only children or teens

I Children and teens are not adults

I A person is a child, a teen, or an adult

I Juvenile arthritis is a kind of arthritis and a juvenile disease

I Every kind of arthritis damages some joint

The types of objects given by unary first-order predicates:

juvenile disease, child, teen, adult, . . .

The types of relationships given by binary first-order predicates:

affects, damages, . . .

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 6 / 46

Motivation and Examples

Motivation

The vocabulary of a Description Logic is composed of

I Unary first-order predicates

Arthritis, Child, . . .

I Binary first-order predicates

Affects, Damages, . . .

I first-order constants

JohnSmith, MaryJones, JRA, . . .

We are already restricting the expressive power of first-order logic

I No function symbols

I No predicates of arity greater than 2

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 7 / 46

Motivation and Examples

Motivation

Now, let’s take a look at the first-order formulas for our example:

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→ Child(y) ∨ Teen(y)))

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))

∀x .(Person(x)→ Child(x) ∨ Teen(x) ∨ Adult(x))

∀x .(JuvArthritis(x)→ Arthritis(x) ∧ JuvDis(x))

∀x .(Arthritis(x)→ ∃y .(Damages(x , y) ∧ Joint(y))

We can find several regularities in these formulas:

I There is an outermost universal quantifier on a single variable x

I They can be split into two parts by the implication symbol

Each part is a formula with one free variable

I Atomic formulas involving a binary predicate occur only quantified in a
syntactically restricted way

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 8 / 46



Motivation and Examples

Motivation

Consider as an example one of our formulas:

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))

Let’s look at all its sub-formulas at each side of the implication

Child(x) Set of all children

Teen(x) Set of all teens

Child(x) ∨ Teen(x) Set of all people that are either children or teens

Adult(x) Set of all adults

¬Adult(x) Set of all objects that are not adult people

Important observations concerning formulas with one free variable:

I Some are atomic (e.g., Child(x))

do not contain other formulas as subformulas

I Others are complex (e.g., Child(x) ∨ Teen(x))

I Variables are redundant!

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 9 / 46

Motivation and Examples

Basic Definitions

Idea: Define operators for constructing complex formulas with one free variable
out of simple building blocks

Atomic concept: Represents an atomic formula with one free variable

Child  Child(x)

Complex concepts (part 1):

I Concept Union (t): applies to two concepts

Child t Teen  Child(x) ∨ Teen(x)

I Concept Intersection (u): applies to two concepts

Arthritis u JuvDis  Arthritis(x) ∧ JuvDis(x)

I Concept Negation (¬): applies to one concept

¬Adult  ¬Adult(x)

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 10 / 46

Motivation and Examples

Motivation

Consider examples with binary predicates:

∀x .(Arthritis(x)→ ∃y .(Damages(x , y) ∧ Joint(y))

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→ Child(y) ∨ Teen(y)))

I We have a concept and a binary predicate (called role) mentioning concept’s
free variable

I The role and the concept are connected via conjunction (existential
quantification) or implication (universal quantification)

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 11 / 46

Motivation and Examples

Basic Definitions

Atomic role: Represents an atom with two free variables

Affects  Affects(x , y)

Complex concepts (part 2): apply to an atomic role and a concept

I Existential Restriction:

∃Damages.Joint  ∃y .(Damages(x , y) ∧ Joint(y))

I Universal Restriction:

∀Affects.(Child t Teen)  ∀y .(Affects(x , y)→ Child(y) ∨ Teen(y))

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 12 / 46



ALC Syntax and Semantics

Outline

I Motivation and Examples

I ALC Syntax and Semantics

I Calculus for ALC Terminological Reasoning

I Discussion

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 13 / 46

ALC Syntax and Semantics

ALC Concepts

ALC is the basic description logic (Attributive Language with Complements)

ALC concepts inductively defined from atomic concepts and roles:

I Every atomic concept is a concept

I > and ⊥ are concepts

I If C is a concept, then ¬C is a concept

I If C and D are concepts, then so are C u D and C t D

I If C a concept and R a role, then ∀R.C and ∃R.C are concepts

Concepts describe sets of objects with certain common features:

Woman u ∃hasChild .(∃hasChild .Person) Women with a grandchild

Disease u ∀Affects.Child Diseases affecting only children

Person u ¬∃owns.DetHouse People not owning a detached house

Man u ∃hasChild .> u ∀hasChild .Man Fathers having only sons

Very useful idea for Knowledge Representation!

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 14 / 46

ALC Syntax and Semantics

General Concept Inclusion Axioms

Recall our example formulas:

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→ Child(y) ∨ Teen(y)))

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))

∀x .(Person(x)→ Child(x) ∨ Teen(x) ∨ Adult(x))

∀x .(JuvArthritis(x)→ Arthritis(x) ∧ JuvDis(x))

∀x .(Arthritis(x)→ ∃y .(Damages(x , y) ∧ Joint(y))

They are of the following form, with αC (x) and αD(x) corresponding to ALC
concepts C and D

∀x .(αC (x)→ αD(x))

Such closed formulas (sentences) are ALC General Concept Inclusions (GCIs)

C v D

Where C and D are ALC-concepts
IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 15 / 46

ALC Syntax and Semantics

General Concept Inclusion Axioms

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→
Child(y) ∨ Teen(y)))  JuvDis v ∀Affects.(Child t Teen)

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))  Child t Teen v ¬Adult

∀x .(Person(x)→ Child(x)∨
∨Teen(x) ∨ Adult(x))  Person v Child t Teen t Adult

∀x .(JuvArth(x)→ Arth(x) ∧ JuvDis(x))  JuvArth v Arth u JuvDis

∀x .(Arth(x)→ ∃y .(Damages(x , y)∧
∧Joint(y))  Arth v ∃Damages.Joint

Why call C v D a concept inclusion axiom?

I Intuitively, every object belonging to C should belong also to D

I States that C is more specific than D

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 16 / 46



ALC Syntax and Semantics

Terminological Statements

GCIs allow us to represent a surprising variety of terminological statements

I Sub-type statements

∀x .(JuvArth(x)→Arth(x))  JuvArth v Arth

I Full definitions:

∀x .(JuvArth(x)↔Arth(x)∧JuvDis(x))  JuvArth v Arth u JuvDis

Arth u JuvDis v JuvArth

I Disjointness statements:

∀x .(Child(x)→¬Adult(x))  Child v ¬Adult

I Covering statements:

∀x .(Person(x)→Adult(x)∨Child(x))  Person v Adult t Child

I Type restrictions:

∀x .(∀y .(Affects(x , y)→Arth(x)∧Person(y)))  ∃Affects.> v Arth

> v ∀Affects.Person

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 17 / 46

ALC Syntax and Semantics

Data Assertions

In description logics, we can also represent data:

Child(JohnSmith) John Smith is a child

JuvenileArthritis(JRA) JRA is a juvenile arthritis

Affects(JRA,MaryJones) Mary Jones is affected by JRA

Usually data assertions correspond to first-order ground (variable-free) atoms

In ALC, we have two types of data assertions, for a,b constants:

C(a)  C is an ALC concept

R(a, b)  R is an atomic role

Examples of acceptable data assertions in ALC:

∃hasChild .Teacher(John)  ∃y .(hasChild(John, y) ∧ Teacher(y))

HistorySt t ClassicsSt(John)  HistorySt(John) ∨ ClassicsSt(John)

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 18 / 46

ALC Syntax and Semantics

DL Knowledge Base: TBox + ABox

An ALC knowledge base K = 〈T ,A〉 is composed of

I a TBox T (Terminological component):

Finite set of GCIs

I an ABox A (Assertional component):

Finite set of assertions

TBox:

JuvArthritis v Arthritis u JuvDisease

Arthritis u JuvDisease v JuvArthritis

Arthritis v ∃Damages.Joint

JuvDisease v ∀Affects.(Child t Teen)

Child t Teen v ¬Adult

ABox:

Child(JohnSmith)

JuvArthritis(JRA)

Affects(JRA,MaryJones)

Child t Teen(MaryJones)

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 19 / 46

ALC Syntax and Semantics

Semantics via First-Order Translation

Semantics of ALC can be defined via translation into first-order logic:

I Concepts translated as formulas with one free variable

πx(A) = A(x) πy (A) = A(y)

πx(¬C) = ¬πx(C) πy (¬C) = ¬πy (C)

πx(C u D) = πx(C) ∧ πx(D) πy (C u D) = πy (C) ∧ πy (D)

πx(C t D) = πx(C) ∨ πx(D) πy (C t D) = πy (C) ∨ πy (D)

πx(∃R.C) = ∃y .(R(x , y) ∧ πy (C)) πy (∃R.C) = ∃x .(R(y , x) ∧ πx(C))

πx(∀R.C) = ∀y .(R(x , y)→ πy (C)) πy (∀R.C) = ∀x .(R(y , x)→ πx(C))

I GCIs and assertions translated as closed formulas

π(C v D) = ∀x .(πx(C)→ πx(D))

π(R(a, b)) = R(a, b)

π(C(a)) = πx/a(C)

I TBoxes, ABoxes and KBs are translated in the obvious way

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 20 / 46



ALC Syntax and Semantics

Semantics via First-Order Translation

Note that concept-forming operators are not independent:

⊥  ¬>
C t D  ¬(¬C u ¬D)

∀R.C  ¬(∃R.¬C )

These equivalences can be proved using first-order semantics:

πx(¬∃R.¬C ) = ¬∃y .(R(x , y) ∧ ¬πy (C ))

≡ ∀y .(¬(R(x , y) ∧ ¬πy (C )))

≡ ∀y .(¬R(x , y) ∨ πy (C ))

≡ ∀y .(R(x , y)→ πy (C ))

= πx(∀R.C )

We can define syntax of ALC using only conjunction and negation operators and
the existential role operator

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 21 / 46

ALC Syntax and Semantics

Direct (Model-Theoretic) Semantics

Direct semantics: An alternative (and convenient) way of specifying semantics

DL interpretation I = 〈D, ·I〉 is a first-order interpretation over the DL vocabulary:

I each constant a interpreted as an object aI ∈ D

I each atomic concept A interpreted as a set AI ⊆ D

I each atomic role R interpreted as a binary relation RI ⊆ D× D

We specify a mechanism for interpreting concepts:

>I = D

⊥I = ∅
(¬C)I = D \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∃R.C)I = {u ∈ D | ∃w ∈ D s.t. 〈u,w〉 ∈ RI and w ∈ CI}
(∀R.C)I = {u ∈ D | ∀w ∈ D, 〈u,w〉 ∈ RI implies w ∈ CI}

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 22 / 46

ALC Syntax and Semantics

Direct (Model-Theoretic) Semantics

Consider the interpretation I = 〈D, ·I〉

D = {u, v ,w}
JuvDisI = {u}

ChildI = {w}
TeenI = ∅

AffectsI = {〈u,w〉}

We can then interpret any concept as a subset of D:

(JuvDis u Child)I = ∅
(Child t Teen)I = {w}

(∃Affects.(Child t Teen))I = {u}
(¬Child)I = {u, v}

(∀Affects.Teen)I = {v ,w}

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 23 / 46

ALC Syntax and Semantics

Direct (Model-Theoretic) Semantics

We can now determine whether I is a model of . . .

I A General Concept Inclusion Axiom C v D:

I |= (C v D) iff CI ⊆ DI

I An assertion C (a):

I |= C (a) iff aI ∈ CI

I An assertion R(a, b):

I |= R(a, b) iff 〈aI , bI〉 ∈ RI

I A TBox T , ABox A, and knowledge base:

I |= T iff I |= α for each α ∈ T
I |= A iff I |= α for each α ∈ A
I |= K iff I |= T and I |= A

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 24 / 46



ALC Syntax and Semantics

Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

D = {u, v ,w} AffectsI = {〈u,w〉}
JuvDisI = {u} ChildI = {w} TeenI = ∅

I is a model of the following axioms:

JuvDis v ∃Affects.Child  {u} ⊆ {u}
Child v ¬Teen  {w} ⊆ {u, v ,w}

JuvDisease v ∀Affects.Child  {u} ⊆ {u, v ,w}

However I is not a model of the following axioms:

JuvDis v ∃Affects.(Child u Teen)  {u} 6⊆ ∅
¬Teen v Child  {u, v ,w} 6⊆ {w}

∃Affects.> v Teen  {u} 6⊆ ∅

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 25 / 46

ALC Syntax and Semantics

Observations

I The ‘square’ syntax of DLs looks odd at first, but it is less verbose than that
of first-order logic (and may even be more intuitive for engineers not biased
towards theoretical CS)

I ALC (and other DLs) underlies OWL ontology language with its own
‘serialisation’ syntax using RDF triples

I Modal Logic K formulas are essentially ALC concepts with a single role R:

3A  ∃R.A

2A  ∀R.A

I Other Modal Logics also have corresponding DLs

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 26 / 46

Calculus for ALC Terminological Reasoning

Outline

I Motivation and Examples

I ALC Syntax and Semantics

I Calculus for ALC Terminological Reasoning

I Discussion

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 27 / 46

Calculus for ALC Terminological Reasoning

Ontology Design

Scenario: Ontology design

I We are building a conceptual model (a TBox) for our domain

I At this design stage we have not included the data (no ABox)

Our TBox should be

I Error-free:

No unintended logical consequences

I Sufficiently detailed:

Contain all relevant knowledge for our application

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 28 / 46



Calculus for ALC Terminological Reasoning

Ontology Design

JuvArthritis v Arthritis u JuvDisease

JuvDisease v Disease

Arthritis v ∃Damages.Joint u ∀Damages.Joint

JuvDisease v ∀Affects.(Child t Teen)

Child t Teen v ¬Adult

Arthritis v ∃Affects.Adult

Disease u ∃Damages.Joint v JointDisease

This TBox contains modeling errors:

Juvenile arthritis is a kind of juvenile disease

Juvenile disease affects only children or teens, which are not adults

A juvenile arthritis cannot affect any adult

Juvenile arthritis is a kind of arthitis

Each arthritis affects some adult

Each juvenile arthritis affects some adult

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 29 / 46

Calculus for ALC Terminological Reasoning

Concept Satisfiability

What is the impact of the error?

All models I of T must be such that JuvArthritisI = ∅

A juvenile arthritis cannot exist!

We cannot add data concerning juvenile arthritis

Such errors can be detected by solving the following problem:

Concept satisfiability w.r.t. a TBox:
An instance is a pair 〈C , T 〉 with C a concept and T a TBox.
The answer is true iff a model I |= T exists such that CI 6= ∅.

In a first-order setting, C is satisfiable w.r.t. T if and only if

π(T ) ∧ ∃x .(πx(C )) is satisfiable

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 30 / 46

Calculus for ALC Terminological Reasoning

Concept Subsumption

Parts of our arthritis TBox, however, do conform to our intuitions

JuvArthritis v Arthritis u JuvDisease

JuvDisease v Disease

Arthritis v ∃Damages.Joint u ∀Damages.Joint

JuvDisease v ∀Affects.(Child t Teen)

Child t Teen v ¬Adult

Arthritis v ∃Affects.Adult

Disease u ∃Damages.Joint v JointDisease

Juvenile arthritis is a kind of juvenile disease

Juvenile disease is a kind of disease

Juvenile arthritis is a kind of disease

Juvenile arthritis is a kind of arthitis

Each arthritis damages some joint

Each juvenile arthritis affects some joint

Juvenile arthritis is a joint disease.

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 31 / 46

Calculus for ALC Terminological Reasoning

Concept Subsumption

We have discovered new interesting information

All models I of T must be such that JuvArthritisI ⊆ JointDiseaseI

Juvenile arthritis is a sub-type of joint disease

All instances of juvenile arthitis are also joint diseases

Such implicit information detectable by solving the following problem:

Concept subsumption w.r.t. a TBox:
An instance is a triple 〈C ,D, T 〉 with C ,D concepts, T a TBox.
The answer is true iff CI ⊆ DI for each I |= T (written T |= C v D).

In the first-order setting, C is subsumed by D w.r.t. T if and only if

π(T ) |= ∀x .(πx(C )→ πx(D))

In the Modal Logic setting, subsumption is local logical consequence

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 32 / 46



Calculus for ALC Terminological Reasoning

TBox Classification

Problem of finding all subsumptions between atomic concepts in T

Allows us to organise atomic concepts in a subsumption hierarchy

>

Disease Joint Person

JuvDis JointDis

Arthritis

JuvArthritis

Child Teen Adult

⊥
IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 33 / 46

Calculus for ALC Terminological Reasoning

Reductions and Special Cases

In ALC, concept subsumption reducible to concept satisfiability:

T |= C v D iff (C u ¬D) is unsatisfiable w.r.t. T

In ALC, concept satisfiability is reducible to subsumption:

C satisfiable w.r.t. T iff T 6|= (C v ⊥)

Interesting particular cases:

I C v ⊥ with T = ∅: Can a concept be instantiated at all?

I > v ⊥: Does T have a model?

Validity, etc. can be defined and reduced in a similar way

We focus on algorithms for ALC concept subsumption w.r.t. TBox

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 34 / 46

Calculus for ALC Terminological Reasoning

Sequent Calculus for ALC Subsumption (Empty TBox)

We start with concept subsumption w.r.t. empty TBox (T = ∅)
We can reuse the calculus for consequence for K (generalised to several roles)

I A labelled formula is a pair u : A where u is a label and A a concept,
an accessibility formula is uRv for two labels u, v and R a role

I Propositional rules for labelled formulas (‘square’ version): e.g.
Γ ⇒ u : A,∆ Γ ⇒ u : B,∆

∧-right
Γ ⇒ u : A u B,∆

I The ∃R-left rule, for each role R, creates a new label:
Γ, uRv , v : A ⇒ ∆

∃R-left for a fresh label v
Γ, u : ∃R.A ⇒ ∆

I The ∀R-left rule, for each role R, transfers info to other labels:
Γ, uRv , v : A, u : ∀R.A ⇒ ∆

∀R-left
Γ, uRv , u : ∀R.A ⇒ ∆

I Axioms for > and ⊥ (or get rid of them using A t ¬A for >, etc.):
axiom

Γ, u : ⊥ ⇒ ∆
axiom

Γ ⇒ u : >,∆
I The ∃R- and ∀R-right rules, other axioms: the same as for K

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 35 / 46

Calculus for ALC Terminological Reasoning

Sequent Calculus for ALC Subsumption (Empty TBox)

I The calculi are sound and complete

I Termination is guaranteed

I Proof by structural induction: along each branch, the formulas become
simpler and simpler

I May take quite long time (exponential, in fact PSpace-complete)

I A non-closed branch can be used for extracting counter-model

I the domain is the set of labels, labelled formulas u : A define concept
interpretations, accessibility formulas uRv define role interpretations

I this counter-model is always finite and tree-shaped

I What about the general case with non-empty TBox?

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 36 / 46



Calculus for ALC Terminological Reasoning

Sequent Calculus for ALC Subsumption (with TBox)

A TBox contains GCIs of the form C v D

Each GCI equivalent to > v ¬C t D

We can ‘compile’ the whole TBox

T = {Ci v Di | 1 ≤ i ≤ n}

into a single, equivalent GCI:

> v
l

1≤i≤n

¬Ci t Di

Let’s call CT the concept on the right-hand side of this GCI

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 37 / 46

Calculus for ALC Terminological Reasoning

Sequent Calculus for ALC Subsumption (with TBox)

I Check concept subsumption C v D w.r.t. T

I Intuitively, CT should hold in all labels, so add CT to Γ when creating new v

I The ∃R-left rule w.r.t. T , for each role R:

Γ, uRv , v : A, v : CT ⇒ ∆
∃R-left for a fresh label v

Γ, u : ∃R.A ⇒ ∆

I The 2-right rule w.r.t. T , for each role R:

Γ, uRv , v : CT ⇒ v : A, ∆ ∀R-right for a fresh label v
Γ ⇒ u : ∀R.A,∆

I Start with 1 : CT ⇒ 1 : ¬C t D

I The rest as in the T = ∅ case

I Soundness and completeness as before, but termination is not guaranteed:
no decrease in the formula size along branches

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 38 / 46

Calculus for ALC Terminological Reasoning

Sequent Calculus for ALC Subsumption (with TBox)

Example: A v ⊥ w.r.t. T = {A v ∃R.A}

Essentially, (un)satisfiability of concept A w.r.t. T

1 : A ⇒ 1 : A, 1 : ⊥
1 : ¬A, 1 : A ⇒ 1 : ⊥

· · ·
· · ·

1 : ∃R.A, 1 : A, 1R2, 2 : ∃R.A, 2 : A ⇒ 1 : ⊥
1 : ∃R.A, 1 : A, 1R2, 2 : ¬A t ∃R.A, 2 : A ⇒ 1 : ⊥

1 : ∃R.A, 1 : A ⇒ 1 : ⊥
t-left

1 : ¬A t ∃R.A, 1 : A ⇒ 1 : ⊥
¬-right

1 : ¬A t ∃R.A ⇒ 1 : ¬A, 1 : ⊥
t-right

1 : ¬A t ∃R.A ⇒ 1 : ¬A t ⊥

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 39 / 46

Calculus for ALC Terminological Reasoning

Sequent Calculus for ALC Subsumption (with TBox)

Solution: Regain termination with cycle detection

Definition 3.1.

Label v ′ is reachable from label v in Γ ⇒ ∆ if there are v0R1v1, . . . , vn−1Rnvn in
Γ with v ′ = v0 and v = vn.

A label v ′ is directly blocked by a label v (in Γ and ∆) if
I v ′ is reachable from v
I v : C ∈ Γ if and only if v ′ : C ∈ Γ, and v : C ∈ ∆ if and only if v ′ : C ∈ ∆

for every concept C .

A label v ′ is blocked if either
I it is directly blocked by some v or
I there exists a directly blocked v such that v ′ is reachable from v .

Restrict application of ∃R-left and ∀R-right rules to labels that are not blocked

Intuitively, a branch where everything is blocked is a finite representation of an
infinite branch

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 40 / 46



Calculus for ALC Terminological Reasoning

Sequent Calculus for ALC Subsumption (with TBox)

Example: A v ⊥ w.r.t. T = {A v ∃R.A}

Essentially, (un)satisfiability of concept A w.r.t. T

1 : A ⇒ 1 : A, 1 : ⊥
1 : ¬A, 1 : A ⇒ 1 : ⊥

· · · 1 : ∃R.A, 1 : A, 1R2, 2 : ∃R.A, 2 : A ⇒ 1 : ⊥
1 : ∃R.A, 1 : A, 1R2, 2 : ¬A t ∃R.A, 2 : A ⇒ 1 : ⊥

1 : ∃R.A, 1 : A ⇒ 1 : ⊥
t-left

1 : ¬A t ∃R.A, 1 : A ⇒ 1 : ⊥
¬-right

1 : ¬A t ∃R.A ⇒ 1 : ¬A, 1 : ⊥
t-right

1 : ¬A t ∃R.A ⇒ 1 : ¬A t ⊥

Label 2 is directly blocked by label 1

Label 2 is blocked

∃R-left does not apply to 2

Other rules can apply, and even can ‘unblock’ ∃R-left for 2!

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 41 / 46

Calculus for ALC Terminological Reasoning

Sequent Calculus for ALC Subsumption (with TBox)

Theorem 3.1.

Calculus for ALC subsumption with blocking is sound, complete and terminating.

Proof idea.

I Soundness as before
I Completeness since every block can be ‘infinitely unrolled’ to a

counter-model
I Termination is guaranteed since there are finite number of (sets of) labelled

formulae

Corollary: reasoning in ALC is decidable (in fact ExpTime-complete)

Observation: The ‘unrolled’ counter-model is tree-shaped (but may be infinite)

A general reason for decidability

Comment: adding ABox (assertions as A(a), R(a, b)) does not change anything
conceptually

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 42 / 46

Calculus for ALC Terminological Reasoning

The Picture

Undecidable

Non-Elementary decidable

. . .

ExpTime

PSpace

NP

P

first-order

. . .

. . .

ALC w.r.t. TBox

ALC w.r.t. ∅ (and K)

propositional

. . .

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 43 / 46

Discussion

Outline

I Motivation and Examples

I ALC Syntax and Semantics

I Calculus for ALC Terminological Reasoning

I Discussion

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 44 / 46



Discussion

Other Description Logics

I This was ALC, the Attributive Language with Complements.

I The C actually denotes an extension of a more restrictive language AL.

I In a similar way, we have the following possible extensions of our logic:

I H: Role hierarchies;
I R: Complex role hierarchies;
I N : Cardinality restrictions;
I Q: Qualified cardinality restrictions;
I O: Closed classes;
I I: Inverse roles;
I ...

I We name the languages by adding the letters of the features to ALC. So
e.g. ALCN is ALC extended with cardinality restrictions and ALCHI is
ALC extended with role hierarchies and inverse roles.

I It is common to shorten ALC (extended with transitive roles) to just S for
more advanced languages, so e.g. SHOIN is ALC +H+O + I +N .

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 45 / 46

Discussion

Description Logic Applications

I Description logics are decidable

I Can be used to describe large vocabularies (>100 000 concepts)

I E.g., in medicine, engineering, . . .

I Reasoning helps to find mistakes when authoring

I Can be used in domain modelling, data integration, etc.

I Interested? Take IN3060/IN4060 – Semantic Technologies next semester!

IN3070/4070 :: Autumn 2020 Lecture 12 :: 5th November 46 / 46


	Motivation and Examples
	ALC Syntax and Semantics
	Calculus for ALC Terminological Reasoning
	Discussion

