

Motivation

Intuitionistic Logic – Overview

- ▶ has applications in, e.g., program synthesis and verification
- ► formalizing computation, "proofs as programs" (NuPRL, Coq)

Syntax and Semantics

- same syntax as classical logic, but different semantics
- standard connectives and quantifiers (¬, ∧, ∨, →, ∀, ∃), predicates, functions, variables

Examples

- ▶ $p \lor \neg p$ (law of excluded middle) is not valid in intuitionistic logic
- $(\neg \forall x \neg p(x)) \rightarrow \exists x \ p(x)$ is not valid in intuitionistic logic

Proof search calculi

natural deduction, sequent, tableau and connection calculi

A Non-Constructive Proof

Theorem 1.1 ($x^{y} = z$ **)**.

There exist a solution of $x^y = z$ such that x and y are irrational numbers and z is a rational number.

Proof.

We know that $\sqrt{2}$ is irrational. We distinguish two cases: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.

a. If
$$\sqrt{2}^{\sqrt{2}}$$
 is rational, then $x = \sqrt{2}$ and $y = \sqrt{2}$ are irrational and $z = \sqrt{2}^{\sqrt{2}}$ is rational.

b. If
$$\sqrt{2}^{\sqrt{2}}$$
 is irrational, then $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$ are irrational and $z = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$ is rational.

Theorem (classically) proven, but we don't know which case holds.

IN3070/4070 :: Autumn 2020

Lecture 13 :: 12th November

Motivation

Intuitionistic Logic

▶ in Brouwer's opinion a proof of A or B must consist of either a proof of A or a proof of B; a proof of $\exists x p(x)$ must consist of a construction of an element c and a proof of p(c)

Intuitionistic (or constructive) logic

- ▶ first formal system/logic that attempts to capture Brouwer's logic was given 1930 by his student Arend Heyting
- ▶ later Saul Kripke's "possible worlds" semantics gave a "state of knowledge" interpretation of Heyting's formalism

Constructive definition of computability

- ▶ write a "logical" specification of a program: if there is a proof for the specification, the program that satisfies the specification can be extracted from the proof ("proof as programs")
- ▶ for example the proof of $\forall x \exists y p(x, y)$ contains the construction of an algorithm for computing a value of y from one for x

Intuitionism

- \blacktriangleright is it reasonable to claim the existence of a number *n* with some property without being able to produce n? (e.g. prove $\exists x p(x)$ by showing that its negation $\forall x \neg p(x)$ leads to a contradiction)
- \blacktriangleright is it reasonable to accept the validity of $A \lor B$ without knowing whether A or B is valid? – is it reasonable to claim the existence of function fwithout providing a way to calculate f?

The mathematician L.E.J. Brouwer

- rejected much of early twentieth century mathematics (dominated by, e.g., Frege and Hilbert)
- ▶ in his paper "The untrustworthiness of the principles of logic" he challenged the belief that the rules of classical logic are valid

Syntax and Semantics

N3070/4070 :: Autumn 2020

Semantics – Classical Logic

Let \mathcal{F}^n be a set of function symbols with arity *n* for every $n \in \mathbb{N}_0$, and \mathcal{P}^n be a set of predicate symbols with arity *n* for every $n \in \mathbb{N}_0$.

Definition 2.1 (Classical Interpretation).

A classical interpretation (or structure) is a tuple $\mathcal{I}_{C} = (D, \iota)$ where

- ► D is a non-empty set, the domain
- \blacktriangleright ι ("iota") is a function, the interpretation, which assigns every
 - **constant** $a \in \mathcal{F}^0$ an element $a^{\iota} \in D$
 - function symbol $f \in \mathcal{F}^n$ with n > 0 a function $f^i: D^n \to D$
 - **•** propositional variable $p \in \mathcal{P}^0$ a truth value $p^{\iota} \in \{T, F\}$
 - **•** predicate symbol $p \in \mathcal{P}^n$ with n > 0 a relation $p^{\iota} \subseteq D^n$

Syntax and Semantics

Intuitionistic Frame – Example

Example: $F'_{1} = (W', R')$ with $W' = \{w_1, w_2, w_3, w_4, w_5\}$ and

 $R' = \{(w_1, w_1), (w_2, w_2), (w_3, w_3), (w_4, w_4), (w_5, w_5), (w_4, w_4), (w_5, w_5), (w_6, w_6), (w_8, w_8), (w_8, w_8)$ $(w_1, w_2), (w_2, w_3), (w_1, w_4), (w_4, w_5), (w_2, w_5)$ $(w_1, w_3), (w_1, w_5)$

Kripke Semantics

▶ is a formal semantics created in the late 1950s and early 1960s by Saul Kripke and André Joyal; was first used for modal logics, later adapted to intuitionistic logic and other non-classical logics

Definition 2.2 (Kripke Frame).

- A (Kripke) frame F = (W, R) consists of a
- ► a non-empty set of worlds W
- ▶ a binary accessibility relation $R \subseteq W \times W$ on the worlds in W

Definition 2.3 (Intuitionistic Frame).

An intuitionistic frame $F_1 = (W, R)$ is a Kripke frame (W, R) with a reflexive and transitive accessibility relation R.

 $(R \subseteq W \times W \text{ is reflexive iff } (w_1, w_1) \in R \text{ for all } w_1 \in W; R \text{ is transitive iff for all}$ $w_1, w_2, w_3 \in W$: if $(w_1, w_2) \in R$ and $(w_2, w_3) \in R$ then $(w_1, w_3) \in R$)

```
8070/4070 ·· Autumn 2020
```

Lecture 13 :: 12th Noven

Syntax and Semantics

Intuitionistic Interpretation

Definition 2.4 (Intuitionistic Interpretation).

An intuitionistic interpretation (J-structure) $\mathcal{I}_J := (F_J, \{\mathcal{I}_C(w)\}_{w \in W})$ consists of

- \blacktriangleright an intuitionistic frame $F_1 = (W, R)$
- ▶ a set of class. interpretations $\{\mathcal{I}_{C}(w)\}_{w \in W}$ with $\mathcal{I}_{C}(w):=(D^{w}, \iota^{w})$ assigning a domain D^w and an interpretation ι^w to every $w \in W$

Furthermore, the following holds:

- 1. cumulative domains, i.e. for all $w, v \in W$ with $(w, v) \in R$: $D^w \subseteq D^v$
- 2. interpretations only "increase", i.e. for all $w, v \in W$ with $(w, v) \in R$:
 - a. $a^{\iota^{w}} = a^{\iota^{v}}$ for every constant a
 - b. $f^{\iota^{w}} \subseteq f^{\iota^{v}}$ for every function f
 - c. $p^{\iota^w} = T$ implies $p^{\iota^v} = T$ for every $p \in \mathcal{P}^0$
 - d. $p^{\iota^w} \subseteq p^{\iota^v}$ for every predicate $p \in \mathcal{P}^n$ with n > 0
 - $(g \subseteq h \text{ holds for } g \text{ and } h \text{ iff } g(x) = h(x) \text{ for all } x \text{ of the domain of } g)$

12/31

Syntax and Semantics

Intuitionistic Truth Value

Definition 2.5 (Intuitionistic Truth Value).

Let $\mathcal{I}_J = ((W, R), \{(D^w, \iota^w)\}_{w \in W})$ be a J-structure. The intuitionistic truth value $v_{\mathcal{I}_J}(w, G)$ of a formula G in the world w under the structure \mathcal{I}_J is T (true) if "w forces G under \mathcal{I}_J ", denoted $w \Vdash G$, and F (false), otherwise. $v_{\mathcal{I}_J}(w, t)$ is the (classic) evaluation of the term t in world w.

The forcing relation $w \Vdash G$ is defined as follows:

- ▶ $w \Vdash p$ for $p \in \mathcal{P}^0$ iff $p^{\iota^w} = T$
- ▶ $w \Vdash p(t_1,...,t_n)$ for $p \in \mathcal{P}^n$, n > 0, iff $(v_{\mathcal{I}_J}(w,t_1),...,v_{\mathcal{I}_J}(w,t_n)) \in P^{\iota^w}$
- ▶ $w \Vdash \neg A$ iff $v \not\vDash A$ for all $v \in W$ with $(w, v) \in R$
- $\blacktriangleright w \Vdash A \land B \quad iff \quad w \Vdash A \text{ and } w \Vdash B$
- ▶ $w \Vdash A \lor B$ iff $w \Vdash A$ or $w \Vdash B$
- ▶ $w \Vdash A \rightarrow B$ iff $v \Vdash A$ implies $v \Vdash B$ for all $v \in W$ with $(w, v) \in R$
- ▶ $w \Vdash \exists x A$ iff $w \Vdash A[x \setminus d]$ for some $d \in D^w$
- ▶ $w \Vdash \forall xA$ iff $v \Vdash A[x \setminus d]$ for all $d \in D^v$ for all $v \in W$ with $(w, v) \in R$

N3070/4070 :: Autumn 2020

Lecture 13 :: 12th November

Satisfiability & Validity

Satisfiability and Validity

In intuitionistic logic a formula G is valid, if it evaluates to *true* in all worlds and for all intuitionistic interpretations.

Definition 3.1 (Satisfiable, Model, Unsatisfiable, Valid, Invalid).

Let G be a closed (first-order) formula.

- ▶ Let \mathcal{I}_J be an intuitionistic interpretation. \mathcal{I}_J is an intuitionistic model for *G*, denoted $\mathcal{I}_J \models G$, iff $v_{\mathcal{I}_I}(w, G) = T$ for all $w \in W$.
- *G* is intuitionistically satisfiable iff $\mathcal{I}_{\mathcal{J}} \models G$ for some intuitionistic interpretation $\mathcal{I}_{\mathcal{J}}$.
- ► F is intuitionistically unsatisfiable iff G is not intuit. satisfiable.
- *G* is intuitionistically valid, denoted \models *G*, iff $\mathcal{I}_J \models$ *G* for all intuitionistic interpretations \mathcal{I}_J .
- ► *G* is intuitionistically invalid/falsifiable iff *G* is not intuit. valid.

Satisfiability & Validity

Satisfiability & Validity

Satisfiability and Validity – More Examples

Example: $(p \rightarrow q) \lor (q \rightarrow p)$ is not intuitionistically valid

See [Nerode & Shore 1997] (page 269).

Satisfiability & Validity

Satisfiability and Validity – More Examples

Example: $\neg(p \land \neg p)$ is intuitionistically valid

Let u be an arbitrary world. We have to show that $v \not\Vdash p \land \neg p$ for all v with $(u, v) \in R$.

Assume that $v \Vdash p \land \neg p$ for the sake of contradiction. I.e. $v \Vdash p$ and $v \Vdash \neg p$.

Then $w \not\Vdash p$ for all w with $(v, w) \in R$. Due to reflexivity, $(v, v) \in R$, so $v \not\Vdash p$.

Contradiction!

isfiability & Validi

Satisfiability and Validity – More Examples

Example: $\neg \forall x \ p(x) \rightarrow \exists x \ \neg p(x)$ is not intuitionistically valid

See [Nerode & Shore 1997] (page 269).

Satisfiability & Validity

Theorems on Intuitionistic Logic

Theorem 3.1 (Intuitionistic Disjunction/Existential Unifier).

- If A ∨ B is intuitionistically valid, then either A or B is intuitionistically valid.
- ▶ If $\exists x p(x)$ is intuitionistically valid, then so is p(c) for some constant c.

Theorem 3.2 (Intuitionistic and Classical Validity).

If a formula F is valid in intuitionistic logic, then F is also valid in classical logic.

Theorem 3.3 ("Monotonicity").

For every formula F and for all worlds w, v, if $w \Vdash F$ and R(w, v), then $v \Vdash F$.

Sequent Calculus	
Outline	
 Motivation 	
 Syntax and Semantics 	
 Satisfiability & Validity 	
 Sequent Calculus 	
► Summary	
IN3070/4070 :: Autumn 2020 Lecture 13 :: 12th November 21 / 3	31

Sequent Calculu LJ — Rules for Conjunction and Disjunction \blacktriangleright rules for \land (conjunction) $\frac{\Gamma, A, B \Rightarrow D}{\Gamma \land A \land B \Rightarrow D} \land \text{-left} \qquad \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \land B} \land \text{-right}$ \blacktriangleright rules for \lor (disjunction) $\frac{\Gamma, A \Rightarrow D \qquad \Gamma, B \Rightarrow D}{\Gamma, A \lor B \Rightarrow D} \lor \text{-left}$ $\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \lor B} \lor -\mathsf{right}_1 \qquad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \lor B} \lor -\mathsf{right}_2$ IN3070/4070 :: Autumn 2020 Lecture 13 :: 12th Nove

Gentzen's Original Sequent Calculus for Intuitionistic Logic

Gentzen's orignal sequent calculus LJ for first-order intuitionistic logic [Gentzen 1935] is obtained from the classical one by restricting the succedent (right side) of all sequents to at most one formula.

▶ rules for disjunction of the classical calculus LK:

$$\frac{A,\Gamma \Rightarrow \Delta \qquad B,\Gamma \Rightarrow \Delta}{A \lor B,\Gamma \Rightarrow \Delta} \lor -\text{left}$$

$$\frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A \lor B} \lor -\text{right}$$

corresponding rules in Genten's original intuitionistic calculus LJ:

$$\frac{A, \Gamma \Rightarrow C \qquad B, \Gamma \Rightarrow C}{A \lor B, \Gamma \Rightarrow C} \lor -\text{left}
\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \lor B} \lor -\text{right} \qquad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \lor B} \lor -\text{right}$$

IN3070/4070 :: Autumn 2020

Sequent Calculus

LJ — Rules for Implication and Negation, Axiom \blacktriangleright rules for \rightarrow (implication) $\frac{\Gamma, A \to B \Rightarrow A \qquad \Gamma, B \Rightarrow D}{\Gamma, A \to B \Rightarrow D} \to -\text{left} \quad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \to B} \to -\text{right}$ \blacktriangleright rules for \neg (negation) $\frac{\Gamma, \neg A \Rightarrow A}{\Gamma, \neg A \Rightarrow D} \neg \text{-left} \qquad \frac{\Gamma, A \Rightarrow}{\Gamma \Rightarrow \neg A} \neg \text{-right}$ ► the axiom $\overline{\Gamma, A \Rightarrow A}$ axiom 24 / 31 IN3070/4070 :: Autumn 2020

Sequent Calculus

- LK Rules for Universal and Existential Quantifier
- ▶ rules for ∀ (universal quantifier)

$$\frac{\Gamma, A[x \setminus t], \forall x A \Rightarrow D}{\Gamma, \forall x A \Rightarrow D} \forall \text{-left} \quad \frac{\Gamma \Rightarrow A[x \setminus a]}{\Gamma \Rightarrow \forall x A} \forall \text{-right}$$

- ► *t* is an arbitrary closed term
- ► Eigenvariable condition for the rule ∀-right: a must not occur in the conclusion, i.e. in Γ or A
- ▶ the formula $\forall x A$ is preserved in the premise of the rule \forall -left
- \blacktriangleright rules for \exists (existential quantifier)

$$\frac{[\Gamma, A[x \setminus a] \Rightarrow D]}{[\Gamma, \exists x A \Rightarrow D]} \exists \text{-left} \quad \frac{[\Gamma]{\Rightarrow} A[x \setminus t]}{[\Gamma]{\Rightarrow} \exists x A} \exists \text{-right}$$

- ► *t* is an arbitrary closed term
- Eigenvariable condition for the rule ∃-left: a must not occur in the conclusion, i.e. in Γ, D, or A
- ▶ the formula $\exists x A$ is not preserved in the premise of the rule \exists -right

```
IN3070/4070 :: Autumn 2020
```

Lecture 13 :: 12th November

Sequent Calculus

Intuitionistic Sequent Calculus – Examples

Example 3: $\neg\neg(p \lor \neg p)$

$$\frac{\overline{p, \neg(p \lor \neg p) \Rightarrow p}^{\text{ax}} \lor \text{-right}_{1}}{p, \neg(p \lor \neg p) \Rightarrow p \lor \neg p} \lor \text{-right}_{1} \neg \text{-left}} \\
\frac{\overline{p, \neg(p \lor \neg p) \Rightarrow}^{\neg(p \lor \neg p) \Rightarrow \neg p} \neg \text{-right}}{\neg(p \lor \neg p) \Rightarrow p \lor \neg p} \lor \text{-right}_{2} \\
\frac{\overline{\neg(p \lor \neg p) \Rightarrow} p \lor \neg p}^{\neg(p \lor \neg p) \Rightarrow \neg -\text{left}} \neg \text{-left}}{\Rightarrow \neg \neg(p \lor \neg p)} \neg \text{-right}}$$

Sequent Calc

Intuitionistic Sequent Calculus – Examples

Example 1: $q \rightarrow (p \lor q)$

Example 2: $p \lor \neg p$

$$\xrightarrow{\Rightarrow} p \\ \xrightarrow{\Rightarrow} p \lor \neg p \lor \neg right_1$$

70/4070 :: Autumn 2020

ıre 13 :: 12th November

 $\frac{\rho \Rightarrow}{\Rightarrow \neg p} \neg \text{-left} \\ \frac{\neg p}{\Rightarrow \neg p} \lor \text{-right}_2$

26 / 31

Sequent Calculus

Intuitionistic Sequent Calculus – More Examples Example: $(p \rightarrow q) \lor (q \rightarrow p)$ is not intuitionistically valid $\frac{\Rightarrow p \rightarrow q}{\Rightarrow (p \rightarrow q) \lor (q \rightarrow p)} \lor$ -right₁ $\frac{\Rightarrow q \rightarrow p}{\Rightarrow (p \rightarrow q) \lor (q \rightarrow p)} \lor$ -right₂ Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid $\frac{p(c), \neg \forall x p(x) \Rightarrow p(a)}{p(c), \neg \forall x p(x) \Rightarrow \forall x p(x)} \lor$ -right $\frac{\neg \forall x p(x) \Rightarrow \neg p(c)}{\neg \neg right} \xrightarrow{\neg \forall x p(x) \Rightarrow \exists x \neg p(x)} \rightarrow$ -right $\frac{\neg \forall x p(x) \Rightarrow \exists x \neg p(x)}{\Rightarrow \neg \forall x p(x) \Rightarrow \exists x \neg p(x)} \rightarrow$ -right

25 / 31

Sequent Calculus

Gödel's Translation from Intuitionistic to Modal Logic

Definition 4.1 (Gödel's Translation).

Gödel's translation T_G for embedding propositional intuitionistic logic into the modal logic S4 is defined as follows.

- 1. $T_G(p) = \Box p$ iff p is an atomic formula
- 2. $T_G(A \wedge B) = T_G(A) \wedge T_G(B)$
- 3. $T_G(A \lor B) = T_G(A) \lor T_G(B)$
- 4. $T_G(A \rightarrow B) = \Box(T_G(A) \rightarrow T_G(B))$
- 5. $T_G(\neg A) = \Box(\neg T_G(A))$

Theorem 4.1 (Gödel's Translation).

A formula F is valid in propositional intuitionistic logic iff the formula $T_G(F)$ is valid in the modal logic S4.

N3070/4070 :: Autumn 2020

Lecture 13 :: 12th Novembe

29 / 3

Summary

- in intuitionistic logic the law of excluded middle is not valid; non-constructive existence proofs are also not allowed
- ▶ intuit. logic has applications in program synthesis and verification
- the Kripke semantics of intuitionistic logic uses a set of worlds and an accessibility relation between these worlds
- ▶ in each world the classical semantics holds, but the semantics of ¬, → and \forall is defined with respect to the set of worlds
- validity in propositional intuitionistic logic is decidable, but *PSPACE*-complete [Statman 1979] (*PSPACE*: polynomial space)

