IN3070/4070 - Logic - Autumn 2020

Lecture 13: Intuitionistic Logic

Martin Giese

12th November 2020
ifj
University of
Oslo

Today's Plan

- Motivation
- Syntax and Semantics
- Satisfiability \& Validity
- Sequent Calculus
- Summary

Outline

- Motivation
- Syntax and Semantics
- Satisfiability \& Validity
- Sequent Calculus
- Summary

Intuitionistic Logic - Overview

- has applications in, e.g., program synthesis and verification
- formalizing computation, "proofs as programs" (NuPRL, Coq)

Intuitionistic Logic - Overview

- has applications in, e.g., program synthesis and verification
- formalizing computation, "proofs as programs" (NuPRL, Coq)

Syntax and Semantics

- same syntax as classical logic, but different semantics

Intuitionistic Logic - Overview

- has applications in, e.g., program synthesis and verification
- formalizing computation, "proofs as programs" (NuPRL, Coq)

Syntax and Semantics

- same syntax as classical logic, but different semantics
- standard connectives and quantifiers $(\neg, \wedge, \vee, \rightarrow, \forall, \exists)$, predicates, functions, variables

Intuitionistic Logic - Overview

- has applications in, e.g., program synthesis and verification
- formalizing computation, "proofs as programs" (NuPRL, Coq)

Syntax and Semantics

- same syntax as classical logic, but different semantics
- standard connectives and quantifiers $(\neg, \wedge, \vee, \rightarrow, \forall, \exists)$, predicates, functions, variables

Examples

- $p \vee \neg p$ (law of excluded middle) is not valid in intuitionistic logic

Intuitionistic Logic - Overview

- has applications in, e.g., program synthesis and verification
- formalizing computation, "proofs as programs" (NuPRL, Coq)

Syntax and Semantics

- same syntax as classical logic, but different semantics
- standard connectives and quantifiers $(\neg, \wedge, \vee, \rightarrow, \forall, \exists)$, predicates, functions, variables

Examples

- $p \vee \neg p$ (law of excluded middle) is not valid in intuitionistic logic
- $(\neg \forall x \neg p(x)) \rightarrow \exists x p(x)$ is not valid in intuitionistic logic

Intuitionistic Logic - Overview

- has applications in, e.g., program synthesis and verification
- formalizing computation, "proofs as programs" (NuPRL, Coq)

Syntax and Semantics

- same syntax as classical logic, but different semantics
- standard connectives and quantifiers $(\neg, \wedge, \vee, \rightarrow, \forall, \exists)$, predicates, functions, variables

Examples

- $p \vee \neg p$ (law of excluded middle) is not valid in intuitionistic logic
- $(\neg \forall x \neg p(x)) \rightarrow \exists x p(x)$ is not valid in intuitionistic logic

Proof search calculi

- natural deduction, sequent, tableau and connection calculi

A Non-Constructive Proof

Theorem $1.1\left(x^{y}=z\right)$.

There exist a solution of $x^{y}=z$ such that x and y are irrational numbers and z is a rational number.

A Non-Constructive Proof

Theorem $1.1\left(x^{y}=z\right)$.
There exist a solution of $x^{y}=z$ such that x and y are irrational numbers and z is a rational number.

Proof.

We know that $\sqrt{2}$ is irrational. We distinguish two cases: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.

A Non-Constructive Proof

Theorem $1.1\left(x^{y}=z\right)$.

There exist a solution of $x^{y}=z$ such that x and y are irrational numbers and z is a rational number.

Proof.

We know that $\sqrt{2}$ is irrational. We distinguish two cases: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.
a. If $\sqrt{2}^{\sqrt{2}}$ is rational, then $x=\sqrt{2}$ and $y=\sqrt{2}$ are irrational and $z=\sqrt{2}^{\sqrt{2}}$ is rational.

A Non-Constructive Proof

Theorem $1.1\left(x^{y}=z\right)$.

There exist a solution of $x^{y}=z$ such that x and y are irrational numbers and z is a rational number.

Proof.

We know that $\sqrt{2}$ is irrational. We distinguish two cases: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.
a. If $\sqrt{2}^{\sqrt{2}}$ is rational, then $x=\sqrt{2}$ and $y=\sqrt{2}$ are irrational and $z=\sqrt{2}^{\sqrt{2}}$ is rational.
b. If $\sqrt{2}^{\sqrt{2}}$ is irrational, then $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$ are irrational and

$$
z=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})}=\sqrt{2}^{2}=2 \text { is rational. }
$$

A Non-Constructive Proof

Theorem $1.1\left(x^{y}=z\right)$.

There exist a solution of $x^{y}=z$ such that x and y are irrational numbers and z is a rational number.

Proof.

We know that $\sqrt{2}$ is irrational. We distinguish two cases: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.
a. If $\sqrt{2}^{\sqrt{2}}$ is rational, then $x=\sqrt{2}$ and $y=\sqrt{2}$ are irrational and $z=\sqrt{2}^{\sqrt{2}}$ is rational.
b. If $\sqrt{2}^{\sqrt{2}}$ is irrational, then $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$ are irrational and

$$
z=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})}=\sqrt{2}^{2}=2 \text { is rational. }
$$

Theorem (classically) proven, but we don't know which case holds.

Intuitionism

- is it reasonable to claim the existence of a number n with some property without being able to produce n ? (e.g. prove $\exists x p(x)$ by showing that its negation $\forall x \neg p(x)$ leads to a contradiction)
- is it reasonable to accept the validity of $A \vee B$ without knowing whether A or B is valid? - is it reasonable to claim the existence of function f without providing a way to calculate f ?

Intuitionism

- is it reasonable to claim the existence of a number n with some property without being able to produce n ? (e.g. prove $\exists x p(x)$ by showing that its negation $\forall x \neg p(x)$ leads to a contradiction)
- is it reasonable to accept the validity of $A \vee B$ without knowing whether A or B is valid? - is it reasonable to claim the existence of function f without providing a way to calculate f ?

The mathematician L.E.J. Brouwer

- rejected much of early twentieth century mathematics (dominated by, e.g., Frege and Hilbert)
- in his paper "The untrustworthiness of the principles of logic" he challenged the belief that the rules of classical logic are valid
- rejected the validity of the "law of excluded middle" $A \vee \neg A$ and non-constructive existence proofs

Intuitionistic Logic

- in Brouwer's opinion a proof of A or B must consist of either a proof of A or a proof of B; a proof of $\exists x p(x)$ must consist of a construction of an element c and a proof of $p(c)$

Intuitionistic Logic

- in Brouwer's opinion a proof of A or B must consist of either a proof of A or a proof of B; a proof of $\exists x p(x)$ must consist of a construction of an element c and a proof of $p(c)$

Intuitionistic (or constructive) logic

- first formal system/logic that attempts to capture Brouwer's logic was given 1930 by his student Arend Heyting
- later Saul Kripke's "possible worlds" semantics gave a "state of knowledge" interpretation of Heyting's formalism

Intuitionistic Logic

- in Brouwer's opinion a proof of A or B must consist of either a proof of A or a proof of B; a proof of $\exists x p(x)$ must consist of a construction of an element c and a proof of $p(c)$

Intuitionistic (or constructive) logic

- first formal system/logic that attempts to capture Brouwer's logic was given 1930 by his student Arend Heyting
- later Saul Kripke's "possible worlds" semantics gave a "state of knowledge" interpretation of Heyting's formalism

Constructive definition of computability

- write a "logical" specification of a program; if there is a proof for the specification, the program that satisfies the specification can be extracted from the proof ("proof as programs")
- for example the proof of $\forall x \exists y p(x, y)$ contains the construction of an algorithm for computing a value of y from one for x

Outline

- Motivation

- Syntax and Semantics
- Satisfiability \& Validity
- Sequent Calculus
- Summary

Semantics - Classical Logic

Let \mathcal{F}^{n} be a set of function symbols with arity n for every $n \in \mathbb{N}_{0}$, and \mathcal{P}^{n} be a set of predicate symbols with arity n for every $n \in \mathbb{N}_{0}$.

Semantics - Classical Logic

Let \mathcal{F}^{n} be a set of function symbols with arity n for every $n \in \mathbb{N}_{0}$, and \mathcal{P}^{n} be a set of predicate symbols with arity n for every $n \in \mathbb{N}_{0}$.

Definition 2.1 (Classical Interpretation).

A classical interpretation (or structure) is a tuple $\mathcal{I}_{C}=(D, \iota)$ where

- D is a non-empty set, the domain
- ι ("iota") is a function, the interpretation, which assigns every

Semantics - Classical Logic

Let \mathcal{F}^{n} be a set of function symbols with arity n for every $n \in \mathbb{N}_{0}$, and \mathcal{P}^{n} be a set of predicate symbols with arity n for every $n \in \mathbb{N}_{0}$.

Definition 2.1 (Classical Interpretation).

A classical interpretation (or structure) is a tuple $\mathcal{I}_{C}=(D, \iota)$ where

- D is a non-empty set, the domain
- ι ("iota") is a function, the interpretation, which assigns every
- constant $a \in \mathcal{F}^{0}$ an element $a^{\iota} \in D$
- function symbol $f \in \mathcal{F}^{n}$ with $n>0$ a function $f^{\iota}: D^{n} \rightarrow D$
- propositional variable $p \in \mathcal{P}^{0}$ a truth value $p^{\iota} \in\{T, F\}$
- predicate symbol $p \in \mathcal{P}^{n}$ with $n>0$ a relation $p^{\iota} \subseteq D^{n}$

Kripke Semantics

- is a formal semantics created in the late 1950s and early 1960s by Saul Kripke and André Joyal; was first used for modal logics, later adapted to intuitionistic logic and other non-classical logics

Kripke Semantics

- is a formal semantics created in the late 1950s and early 1960s by Saul Kripke and André Joyal; was first used for modal logics, later adapted to intuitionistic logic and other non-classical logics

Definition 2.2 (Kripke Frame).
A (Kripke) frame $F=(W, R)$ consists of a

- a non-empty set of worlds W

Kripke Semantics

- is a formal semantics created in the late 1950s and early 1960s by Saul Kripke and André Joyal; was first used for modal logics, later adapted to intuitionistic logic and other non-classical logics

Definition 2.2 (Kripke Frame).

A (Kripke) frame $F=(W, R)$ consists of a

- a non-empty set of worlds W
- a binary accessibility relation $R \subseteq W \times W$ on the worlds in W

Kripke Semantics

- is a formal semantics created in the late 1950s and early 1960s by Saul Kripke and André Joyal; was first used for modal logics, later adapted to intuitionistic logic and other non-classical logics

Definition 2.2 (Kripke Frame).

A (Kripke) frame $F=(W, R)$ consists of a

- a non-empty set of worlds W
- a binary accessibility relation $R \subseteq W \times W$ on the worlds in W

Definition 2.3 (Intuitionistic Frame).

An intuitionistic frame $F_{J}=(W, R)$ is a Kripke frame (W, R) with a reflexive and transitive accessibility relation R.

Kripke Semantics

- is a formal semantics created in the late 1950s and early 1960s by Saul Kripke and André Joyal; was first used for modal logics, later adapted to intuitionistic logic and other non-classical logics

Definition 2.2 (Kripke Frame).

A (Kripke) frame $F=(W, R)$ consists of a

- a non-empty set of worlds W
- a binary accessibility relation $R \subseteq W \times W$ on the worlds in W

Definition 2.3 (Intuitionistic Frame).

An intuitionistic frame $F_{J}=(W, R)$ is a Kripke frame (W, R) with a reflexive and transitive accessibility relation R.
($R \subseteq W \times W$ is reflexive iff $\left(w_{1}, w_{1}\right) \in R$ for all $w_{1} \in W$; R is transitive iff for all $w_{1}, w_{2}, w_{3} \in W$: if $\left(w_{1}, w_{2}\right) \in R$ and $\left(w_{2}, w_{3}\right) \in R$ then $\left.\left(w_{1}, w_{3}\right) \in R\right)$

Intuitionistic Frame - Example

Example: $F_{J}^{\prime}=\left(W^{\prime}, R^{\prime}\right)$ with $W^{\prime}=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}$ and

$$
\begin{aligned}
R^{\prime}= & \left\{\left(w_{1}, w_{1}\right),\left(w_{2}, w_{2}\right),\left(w_{3}, w_{3}\right),\left(w_{4}, w_{4}\right),\left(w_{5}, w_{5}\right),\right. \\
& \left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right),\left(w_{1}, w_{4}\right),\left(w_{4}, w_{5}\right),\left(w_{2}, w_{5}\right) \\
& \left.\left(w_{1}, w_{3}\right),\left(w_{1}, w_{5}\right)\right\}
\end{aligned}
$$

Intuitionistic Interpretation

Definition 2.4 (Intuitionistic Interpretation).

An intuitionistic interpretation (J-structure) $\mathcal{I}_{J}:=\left(F_{J},\left\{\mathcal{I}_{C}(w)\right\}_{w \in W}\right)$ consists of

Intuitionistic Interpretation

Definition 2.4 (Intuitionistic Interpretation).

An intuitionistic interpretation (J-structure) $\mathcal{I}_{J}:=\left(F_{J},\left\{\mathcal{I}_{C}(w)\right\}_{w \in W}\right)$ consists of

- an intuitionistic frame $F_{J}=(W, R)$

Intuitionistic Interpretation

Definition 2.4 (Intuitionistic Interpretation).

An intuitionistic interpretation (J-structure) $\mathcal{I}_{J}:=\left(F_{J},\left\{\mathcal{I}_{C}(w)\right\}_{w \in W}\right)$ consists of

- an intuitionistic frame $F_{J}=(W, R)$
- a set of class. interpretations $\left\{\mathcal{I}_{C}(w)\right\}_{w \in W}$ with $\mathcal{I}_{C}(w):=\left(D^{w}, \iota^{w}\right)$ assigning a domain D^{w} and an interpretation ι^{w} to every $w \in W$

Intuitionistic Interpretation

Definition 2.4 (Intuitionistic Interpretation).

An intuitionistic interpretation (J-structure) $\mathcal{I}_{J}:=\left(F_{J},\left\{\mathcal{I}_{C}(w)\right\}_{w \in W}\right)$ consists of

- an intuitionistic frame $F_{J}=(W, R)$
- a set of class. interpretations $\left\{\mathcal{I}_{C}(w)\right\}_{w \in W}$ with $\mathcal{I}_{C}(w):=\left(D^{w}, \iota^{w}\right)$ assigning a domain D^{w} and an interpretation ι^{w} to every $w \in W$
Furthermore, the following holds:

1. cumulative domains, i.e. for all $w, v \in W$ with $(w, v) \in R: D^{w} \subseteq D^{v}$

Intuitionistic Interpretation

Definition 2.4 (Intuitionistic Interpretation).

An intuitionistic interpretation (J-structure) $\mathcal{I}_{J}:=\left(F_{J},\left\{\mathcal{I}_{C}(w)\right\}_{w \in W}\right)$ consists of

- an intuitionistic frame $F_{J}=(W, R)$
- a set of class. interpretations $\left\{\mathcal{I}_{C}(w)\right\}_{w \in W}$ with $\mathcal{I}_{C}(w):=\left(D^{w}, \iota^{w}\right)$ assigning a domain D^{w} and an interpretation ι^{w} to every $w \in W$

Furthermore, the following holds:

1. cumulative domains, i.e. for all $w, v \in W$ with $(w, v) \in R: D^{w} \subseteq D^{v}$
2. interpretations only "increase", i.e. for all $w, v \in W$ with $(w, v) \in R$:

Intuitionistic Interpretation

Definition 2.4 (Intuitionistic Interpretation).

An intuitionistic interpretation (J-structure) $\mathcal{I}_{J}:=\left(F_{J},\left\{\mathcal{I}_{C}(w)\right\}_{w \in W}\right)$ consists of

- an intuitionistic frame $F_{J}=(W, R)$
- a set of class. interpretations $\left\{\mathcal{I}_{C}(w)\right\}_{w \in W}$ with $\mathcal{I}_{C}(w):=\left(D^{w}, \iota^{w}\right)$ assigning a domain D^{w} and an interpretation ι^{w} to every $w \in W$

Furthermore, the following holds:

1. cumulative domains, i.e. for all $w, v \in W$ with $(w, v) \in R: D^{w} \subseteq D^{v}$
2. interpretations only "increase", i.e. for all $w, v \in W$ with $(w, v) \in R$:
a. $a^{t^{w}}=a^{l^{l}}$ for every constant a
b. $f^{\iota^{w}} \subseteq f^{\iota^{\nu}}$ for every function f
c. $p^{\iota^{w}}=T$ implies ${p^{\iota^{v}}}^{v}=T$ for every $p \in \mathcal{P}^{0}$
d. $p^{\iota^{w}} \subseteq p^{\iota^{\nu}}$ for every predicate $p \in \mathcal{P}^{n}$ with $n>0$
($g \subseteq h$ holds for g and h iff $g(x)=h(x)$ for all x of the domain of g)

Intuitionistic Truth Value

Definition 2.5 (Intuitionistic Truth Value).

Let $\mathcal{I}_{J}=\left((W, R),\left\{\left(D^{w}, \iota^{w}\right)\right\}_{w \in W}\right)$ be a J-structure. The intuitionistic truth value $v_{\mathcal{I}_{J}}(w, G)$ of a formula G in the world w under the structure \mathcal{I}_{J} is T (true) if " w forces G under \mathcal{I}_{J} ", denoted $w \Vdash G$, and F (false), otherwise. $v_{\mathcal{I}_{J}}(w, t)$ is the (classic) evaluation of the term t in world w.

Intuitionistic Truth Value

Definition 2.5 (Intuitionistic Truth Value).

Let $\mathcal{I}_{J}=\left((W, R),\left\{\left(D^{w}, \iota^{w}\right)\right\}_{w \in W}\right)$ be a J-structure. The intuitionistic truth value $v_{\mathcal{I}_{J}}(w, G)$ of a formula G in the world w under the structure \mathcal{I}_{J} is T (true) if " w forces G under \mathcal{I}_{J} ", denoted $w \Vdash$, and F (false), otherwise. $v_{\mathcal{I}_{J}}(w, t)$ is the (classic) evaluation of the term t in world w.

The forcing relation $w \Vdash G$ is defined as follows:

- $w \Vdash p$ for $p \in \mathcal{P}^{0}$ iff $p^{\iota^{w}}=T$

Intuitionistic Truth Value

Definition 2.5 (Intuitionistic Truth Value).

Let $\mathcal{I}_{J}=\left((W, R),\left\{\left(D^{w}, \iota^{w}\right)\right\}_{w \in W}\right)$ be a J-structure. The intuitionistic truth value $v_{\mathcal{I}_{J}}(w, G)$ of a formula G in the world w under the structure \mathcal{I}_{J} is T (true) if " w forces G under \mathcal{I}_{J} ", denoted $w \Vdash G$, and F (false), otherwise. $v_{\mathcal{I}_{J}}(w, t)$ is the (classic) evaluation of the term t in world w.

The forcing relation $w \Vdash G$ is defined as follows:

- $w \Vdash p$ for $p \in \mathcal{P}^{0}$ iff $p^{\iota^{w}}=T$
- $w \Vdash p\left(t_{1}, \ldots, t_{n}\right)$ for $p \in \mathcal{P}^{n}, n>0$, iff $\left(v_{\mathcal{I}_{J}}\left(w, t_{1}\right), \ldots, v_{\mathcal{I}_{J}}\left(w, t_{n}\right)\right) \in P^{\iota^{w}}$

Intuitionistic Truth Value

Definition 2.5 (Intuitionistic Truth Value).

Let $\mathcal{I}_{J}=\left((W, R),\left\{\left(D^{w}, \iota^{w}\right)\right\}_{w \in W}\right)$ be a J-structure. The intuitionistic truth value $v_{\mathcal{I}_{J}}(w, G)$ of a formula G in the world w under the structure \mathcal{I}_{J} is T (true) if " w forces G under \mathcal{I}_{J} ", denoted $w \Vdash G$, and F (false), otherwise. $v_{\mathcal{I}_{J}}(w, t)$ is the (classic) evaluation of the term t in world w.

The forcing relation $w \Vdash G$ is defined as follows:

- $w \Vdash p$ for $p \in \mathcal{P}^{0}$ iff $p^{\iota^{w}}=T$
- $w \Vdash p\left(t_{1}, \ldots, t_{n}\right)$ for $p \in \mathcal{P}^{n}, n>0$, iff $\left(v_{\mathcal{I}_{J}}\left(w, t_{1}\right), \ldots, v_{\mathcal{I}_{J}}\left(w, t_{n}\right)\right) \in P^{\iota^{w}}$
- $w \Vdash \neg A$ iff $v \Vdash A$ for all $v \in W$ with $(w, v) \in R$

Intuitionistic Truth Value

Definition 2.5 (Intuitionistic Truth Value).

Let $\mathcal{I}_{J}=\left((W, R),\left\{\left(D^{w}, \iota^{w}\right)\right\}_{w \in W}\right)$ be a J-structure. The intuitionistic truth value $v_{\mathcal{I}_{J}}(w, G)$ of a formula G in the world w under the structure \mathcal{I}_{J} is T (true) if " w forces G under \mathcal{I}_{J} ", denoted $w \Vdash$, and F (false), otherwise. $v_{\mathcal{I}_{J}}(w, t)$ is the (classic) evaluation of the term t in world w.

The forcing relation $w \Vdash G$ is defined as follows:

- $w \Vdash p$ for $p \in \mathcal{P}^{0}$ iff $p^{\iota^{w}}=T$
- $w \Vdash p\left(t_{1}, \ldots, t_{n}\right)$ for $p \in \mathcal{P}^{n}, n>0$, iff $\left(v_{\mathcal{I}_{J}}\left(w, t_{1}\right), \ldots, v_{\mathcal{I}_{J}}\left(w, t_{n}\right)\right) \in P^{\iota^{w}}$
- $w \Vdash \neg A$ iff $v \Vdash A$ for all $v \in W$ with $(w, v) \in R$
- $w \Vdash A \wedge B$ iff $w \Vdash A$ and $w \Vdash B$

Intuitionistic Truth Value

Definition 2.5 (Intuitionistic Truth Value).

Let $\mathcal{I}_{J}=\left((W, R),\left\{\left(D^{w}, \iota^{w}\right)\right\}_{w \in W}\right)$ be a J-structure. The intuitionistic truth value $v_{\mathcal{I}_{J}}(w, G)$ of a formula G in the world w under the structure \mathcal{I}_{J} is T (true) if " w forces G under \mathcal{I}_{J} ", denoted $w \Vdash$, and F (false), otherwise. $v_{\mathcal{I}_{J}}(w, t)$ is the (classic) evaluation of the term t in world w.

The forcing relation $w \Vdash G$ is defined as follows:

- $w \Vdash p$ for $p \in \mathcal{P}^{0}$ iff $p^{\iota^{w}}=T$
- $w \Vdash p\left(t_{1}, \ldots, t_{n}\right)$ for $p \in \mathcal{P}^{n}, n>0$, iff $\left(v_{\mathcal{I}_{J}}\left(w, t_{1}\right), \ldots, v_{\mathcal{I}_{J}}\left(w, t_{n}\right)\right) \in P^{\iota^{w}}$
- $w \Vdash \neg A$ iff $v \Vdash A$ for all $v \in W$ with $(w, v) \in R$
- $w \Vdash A \wedge B$ iff $w \Vdash A$ and $w \Vdash B$
- $w \Vdash A \vee B$ iff $w \Vdash A$ or $w \Vdash B$

Intuitionistic Truth Value

Definition 2.5 (Intuitionistic Truth Value).

Let $\mathcal{I}_{J}=\left((W, R),\left\{\left(D^{w}, \iota^{w}\right)\right\}_{w \in W}\right)$ be a J-structure. The intuitionistic truth value $v_{\mathcal{I}_{J}}(w, G)$ of a formula G in the world w under the structure \mathcal{I}_{J} is T (true) if " w forces G under \mathcal{I}_{J} ", denoted $w \Vdash$, and F (false), otherwise. $v_{\mathcal{I}_{J}}(w, t)$ is the (classic) evaluation of the term t in world w.

The forcing relation $w \Vdash G$ is defined as follows:

- $w \Vdash p$ for $p \in \mathcal{P}^{0}$ iff $p^{\iota^{w}}=T$
- $w \Vdash p\left(t_{1}, \ldots, t_{n}\right)$ for $p \in \mathcal{P}^{n}, n>0$, iff $\left(v_{\mathcal{I}_{J}}\left(w, t_{1}\right), \ldots, v_{\mathcal{I}_{J}}\left(w, t_{n}\right)\right) \in P^{\iota^{w}}$
- $w \Vdash \neg A$ iff $v \Vdash A$ for all $v \in W$ with $(w, v) \in R$
- $w \Vdash A \wedge B$ iff $w \Vdash A$ and $w \Vdash B$
- $w \Vdash A \vee B$ iff $w \Vdash A$ or $w \Vdash B$
$-w \Vdash A \rightarrow B$ iff $v \Vdash A$ implies $v \Vdash B$ for all $v \in W$ with $(w, v) \in R$

Intuitionistic Truth Value

Definition 2.5 (Intuitionistic Truth Value).

Let $\mathcal{I}_{J}=\left((W, R),\left\{\left(D^{w}, \iota^{w}\right)\right\}_{w \in W}\right)$ be a J-structure. The intuitionistic truth value $v_{\mathcal{I}_{J}}(w, G)$ of a formula G in the world w under the structure \mathcal{I}_{J} is T (true) if " w forces G under \mathcal{I}_{J} ", denoted $w \Vdash$, and F (false), otherwise. $v_{\mathcal{I}_{J}}(w, t)$ is the (classic) evaluation of the term t in world w.

The forcing relation $w \Vdash G$ is defined as follows:

- $w \Vdash p$ for $p \in \mathcal{P}^{0}$ iff $p^{\iota^{w}}=T$
- $w \Vdash p\left(t_{1}, \ldots, t_{n}\right)$ for $p \in \mathcal{P}^{n}, n>0$, iff $\left(v_{\mathcal{I}_{J}}\left(w, t_{1}\right), \ldots, v_{\mathcal{I}_{J}}\left(w, t_{n}\right)\right) \in P^{\iota^{w}}$
- $w \Vdash \neg A$ iff $v \Vdash A$ for all $v \in W$ with $(w, v) \in R$
- $w \Vdash A \wedge B$ iff $w \Vdash A$ and $w \Vdash B$
- $w \Vdash A \vee B$ iff $w \Vdash A$ or $w \Vdash B$
- $w \Vdash A \rightarrow B$ iff $v \Vdash A$ implies $v \Vdash B$ for all $v \in W$ with $(w, v) \in R$
- $w \Vdash \exists x A$ iff $w \Vdash A[x \backslash d]$ for some $d \in D^{w}$

Intuitionistic Truth Value

Definition 2.5 (Intuitionistic Truth Value).

Let $\mathcal{I}_{J}=\left((W, R),\left\{\left(D^{w}, \iota^{w}\right)\right\}_{w \in W}\right)$ be a J-structure. The intuitionistic truth value $v_{\mathcal{I}_{J}}(w, G)$ of a formula G in the world w under the structure \mathcal{I}_{J} is T (true) if " w forces G under \mathcal{I}_{J} ", denoted $w \Vdash G$, and F (false), otherwise. $v_{\mathcal{I}_{J}}(w, t)$ is the (classic) evaluation of the term t in world w.

The forcing relation $w \Vdash G$ is defined as follows:

- $w \Vdash p$ for $p \in \mathcal{P}^{0}$ iff $p^{\iota^{w}}=T$
- $w \Vdash p\left(t_{1}, \ldots, t_{n}\right)$ for $p \in \mathcal{P}^{n}, n>0$, iff $\left(v_{\mathcal{I}_{J}}\left(w, t_{1}\right), \ldots, v_{\mathcal{I}_{J}}\left(w, t_{n}\right)\right) \in P^{\iota^{w}}$
- $w \Vdash \neg A$ iff $v \Vdash A$ for all $v \in W$ with $(w, v) \in R$
- $w \Vdash A \wedge B$ iff $w \Vdash A$ and $w \Vdash B$
- $w \Vdash A \vee B$ iff $w \Vdash A$ or $w \Vdash B$
$-w \Vdash A \rightarrow B$ iff $v \Vdash A$ implies $v \Vdash B$ for all $v \in W$ with $(w, v) \in R$
- $w \Vdash \exists x A$ iff $w \Vdash A[x \backslash d]$ for some $d \in D^{w}$
- $w \Vdash \forall x A$ iff $v \Vdash A[x \backslash d]$ for all $d \in D^{v}$ for all $v \in W$ with $(w, v) \in R$

Outline

- Motivation

- Syntax and Semantics
- Satisfiability \& Validity

Satisfiability and Validity

In intuitionistic logic a formula G is valid, if it evaluates to true in all worlds and for all intuitionistic interpretations.

Satisfiability and Validity

In intuitionistic logic a formula G is valid, if it evaluates to true in all worlds and for all intuitionistic interpretations.

Definition 3.1 (Satisfiable,Model,Unsatisfiable, Valid,Invalid).

Let G be a closed (first-order) formula.

- Let \mathcal{I}_{J} be an intuitionistic interpretation. \mathcal{I}_{J} is an intuitionistic model for G, denoted $\mathcal{I}_{J} \models G$, iff $v_{\mathcal{I}_{J}}(w, G)=T$ for all $w \in W$.

Satisfiability and Validity

In intuitionistic logic a formula G is valid, if it evaluates to true in all worlds and for all intuitionistic interpretations.

Definition 3.1 (Satisfiable,Model,Unsatisfiable, Valid, Invalid).

Let G be a closed (first-order) formula.

- Let \mathcal{I}_{J} be an intuitionistic interpretation. \mathcal{I}_{J} is an intuitionistic model for G, denoted $\mathcal{I}_{J} \models G$, iff $v_{\mathcal{I}_{J}}(w, G)=T$ for all $w \in W$.
- G is intuitionistically satisfiable iff $\mathcal{I}_{J} \models G$ for some intuitionistic interpretation \mathcal{I}_{J}.

Satisfiability and Validity

In intuitionistic logic a formula G is valid, if it evaluates to true in all worlds and for all intuitionistic interpretations.

Definition 3.1 (Satisfiable,Model,Unsatisfiable, Valid,Invalid).

Let G be a closed (first-order) formula.

- Let \mathcal{I}_{J} be an intuitionistic interpretation. \mathcal{I}_{J} is an intuitionistic model for G, denoted $\mathcal{I}_{J} \models G$, iff $v_{\mathcal{I}_{J}}(w, G)=T$ for all $w \in W$.
- G is intuitionistically satisfiable iff $\mathcal{I}_{J} \models G$ for some intuitionistic interpretation \mathcal{I}_{J}.
- F is intuitionistically unsatisfiable iff G is not intuit. satisfiable.

Satisfiability and Validity

In intuitionistic logic a formula G is valid, if it evaluates to true in all worlds and for all intuitionistic interpretations.

Definition 3.1 (Satisfiable,Model,Unsatisfiable, Valid,Invalid).

Let G be a closed (first-order) formula.

- Let \mathcal{I}_{J} be an intuitionistic interpretation. \mathcal{I}_{J} is an intuitionistic model for G, denoted $\mathcal{I}_{J} \models G$, iff $v_{\mathcal{I}_{J}}(w, G)=T$ for all $w \in W$.
- G is intuitionistically satisfiable iff $\mathcal{I}_{J} \models G$ for some intuitionistic interpretation \mathcal{I}_{J}.
- F is intuitionistically unsatisfiable iff G is not intuit. satisfiable.
- G is intuitionistically valid, denoted $\models G$, iff $\mathcal{I}_{J} \models G$ for all intuitionistic interpretations \mathcal{I}_{J}.

Satisfiability and Validity

In intuitionistic logic a formula G is valid, if it evaluates to true in all worlds and for all intuitionistic interpretations.

Definition 3.1 (Satisfiable,Model,Unsatisfiable, Valid,Invalid).

Let G be a closed (first-order) formula.

- Let \mathcal{I}_{J} be an intuitionistic interpretation. \mathcal{I}_{J} is an intuitionistic model for G, denoted $\mathcal{I}_{J} \models G$, iff $v_{\mathcal{I}_{J}}(w, G)=T$ for all $w \in W$.
- G is intuitionistically satisfiable iff $\mathcal{I}_{J} \models G$ for some intuitionistic interpretation \mathcal{I}_{J}.
- F is intuitionistically unsatisfiable iff G is not intuit. satisfiable.
- G is intuitionistically valid, denoted $\models G$, iff $\mathcal{I}_{J} \models G$ for all intuitionistic interpretations \mathcal{I}_{J}.
- G is intuitionistically invalid/falsifiable iff G is not intuit. valid.

Satisfiability and Validity - Examples

- $F_{1} \equiv p \vee \neg p$

Satisfiability and Validity - Examples

- $F_{1} \equiv p \vee \neg p$

$w_{0} \Vdash \neg p$ iff $v \Vdash p$ does not hold for any $v \in W$ with $\left(w_{0}, v\right) \in R$

Satisfiability and Validity - Examples

- $F_{1} \equiv p \vee \neg p$

$w_{0} \Vdash \neg p$ iff $v \Vdash p$ does not hold for any $v \in W$ with $\left(w_{0}, v\right) \in R$ but $\left(w_{0}, w_{1}\right) \in R$ and $w_{1} \Vdash p$ holds

Satisfiability and Validity - Examples

- $F_{1} \equiv p \vee \neg p$

$w_{0} \Vdash \neg p$ iff $v \Vdash p$ does not hold for any $v \in W$ with $\left(w_{0}, v\right) \in R$ but $\left(w_{0}, w_{1}\right) \in R$ and $w_{1} \Vdash p$ holds hence, neither $w_{0} \Vdash p$ nor $w_{0} \Vdash \neg p$

Satisfiability and Validity - Examples

- $F_{1} \equiv p \vee \neg p$

$w_{0} \Vdash \neg p$ iff $v \Vdash p$ does not hold
for any $v \in W$ with $\left(w_{0}, v\right) \in R$
but $\left(w_{0}, w_{1}\right) \in R$ and $w_{1} \Vdash p$ holds
hence, neither $w_{0} \Vdash p$ nor $w_{0} \Vdash \neg p$
$\leadsto F_{1}$ is not true in w_{0}

Satisfiability and Validity - Examples

- $F_{1} \equiv p \vee \neg p$

$$
\begin{aligned}
& w_{0} \Vdash \neg p \text { iff } v \Vdash p \text { does not hold } \\
& \text { for any } v \in W \text { with }\left(w_{0}, v\right) \in R \\
& \text { but }\left(w_{0}, w_{1}\right) \in R \text { and } w_{1} \Vdash p \text { holds } \\
& \text { hence, neither } w_{0} \Vdash p \text { nor } w_{0} \Vdash \neg p
\end{aligned}
$$

$\leadsto F_{1}$ is not true in $w_{0} \leadsto F_{1}$ not valid

Satisfiability and Validity - Examples

- $F_{1} \equiv p \vee \neg p$

$$
\begin{aligned}
& w_{0} \Vdash \neg p \text { iff } v \Vdash p \text { does not hold } \\
& \text { for any } v \in W \text { with }\left(w_{0}, v\right) \in R \\
& \text { but }\left(w_{0}, w_{1}\right) \in R \text { and } w_{1} \Vdash p \text { holds }
\end{aligned}
$$

$$
\text { hence, neither } w_{0} \Vdash p \text { nor } w_{0} \Vdash \neg p
$$

$\leadsto F_{1}$ is not true in $w_{0} \leadsto F_{1}$ not valid

- $F_{2} \equiv p \rightarrow p$

Satisfiability and Validity - Examples

- $F_{1} \equiv p \vee \neg p$

$w_{0} \Vdash \neg p$ iff $v \Vdash p$ does not hold for any $v \in W$ with $\left(w_{0}, v\right) \in R$ but $\left(w_{0}, w_{1}\right) \in R$ and $w_{1} \Vdash p$ holds hence, neither $w_{0} \Vdash p$ nor $w_{0} \Vdash \neg p$
$\leadsto F_{1}$ is not true in $w_{0} \leadsto F_{1}$ not valid
- $F_{2} \equiv p \rightarrow p$
$w_{0} \Vdash p \rightarrow p$ iff $v \Vdash p$ implies $v \Vdash p$ for all $v \in W$ with $\left(w_{0}, v\right) \in R$

Satisfiability and Validity - Examples

- $F_{1} \equiv p \vee \neg p$

$w_{0} \Vdash \neg p$ iff $v \Vdash p$ does not hold for any $v \in W$ with $\left(w_{0}, v\right) \in R$ but $\left(w_{0}, w_{1}\right) \in R$ and $w_{1} \Vdash p$ holds hence, neither $w_{0} \Vdash p$ nor $w_{0} \Vdash \neg p$
$\leadsto F_{1}$ is not true in $w_{0} \leadsto F_{1}$ not valid
- $F_{2} \equiv p \rightarrow p$
$w_{0} \Vdash p \rightarrow p$ iff $v \Vdash p$ implies $v \Vdash p$ for all $v \in W$ with $\left(w_{0}, v\right) \in R$
$\leadsto F_{2}$ is true in $w_{0}\left(\right.$ and $\left.w_{1}\right)$

Satisfiability and Validity - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid

Satisfiability and Validity - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

Satisfiability and Validity - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$w_{1} \Vdash p, w_{1} \Vdash q$

Satisfiability and Validity - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$$
w_{1} \Vdash p, w_{1} \Vdash q \Longrightarrow w_{0} \Vdash p \rightarrow q
$$

Satisfiability and Validity - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$$
\begin{aligned}
& w_{1} \Vdash p, w_{1} \Vdash q \Longrightarrow w_{0} \Vdash p \rightarrow q \\
& w_{2} \Vdash q, w_{1} \Vdash p
\end{aligned}
$$

Satisfiability and Validity - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$$
\begin{aligned}
& w_{1} \Vdash p, w_{1} \Vdash q \Longrightarrow w_{0} \Vdash p \rightarrow q \\
& w_{2} \Vdash q, w_{1} \Vdash p \Longrightarrow w_{0} \Vdash q \rightarrow p
\end{aligned}
$$

Satisfiability and Validity - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$$
\begin{aligned}
& w_{1} \Vdash p, w_{1} \Vdash q \Longrightarrow w_{0} \Vdash p \rightarrow q \\
& w_{2} \Vdash q, w_{1} \Vdash p \Longrightarrow w_{0} \Vdash q \rightarrow p \\
& w_{0} \Vdash(p \rightarrow q) \vee(q \rightarrow p)
\end{aligned}
$$

Satisfiability and Validity - More Examples

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid

Satisfiability and Validity - More Examples

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

Satisfiability and Validity - More Examples

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$w_{1} \nmid p(b)$

Satisfiability and Validity - More Examples

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$w_{1} \Vdash p(b) \Longrightarrow w_{1} \Vdash \forall x p(x)$

Satisfiability and Validity - More Examples

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$w_{1} \Vdash p(b) \Longrightarrow w_{1} \Vdash \forall x p(x)$ and $w_{0} \Vdash \forall x p(x)$

Satisfiability and Validity - More Examples

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$w_{1} \Vdash p(b) \Longrightarrow w_{1} \Vdash \forall x p(x)$ and $w_{0} \Vdash \forall x p(x) \Longrightarrow w_{0} \Vdash \neg \forall x p(x)$

Satisfiability and Validity - More Examples

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$w_{1} \Vdash p(b) \Longrightarrow w_{1} \Vdash \forall x p(x)$ and $w_{0} \Vdash \forall x p(x) \Longrightarrow w_{0} \Vdash \neg \forall x p(x)$ $w_{1} \Vdash p(c)$

Satisfiability and Validity - More Examples

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$w_{1} \Vdash p(b) \Longrightarrow w_{1} \Vdash \forall x p(x)$ and $w_{0} \Vdash \forall x p(x) \Longrightarrow w_{0} \Vdash \neg \forall x p(x)$ $w_{1} \Vdash p(c) \Longrightarrow w_{0} \Vdash \neg p(c)$

Satisfiability and Validity - More Examples

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$w_{1} \Vdash p(b) \Longrightarrow w_{1} \Vdash \forall x p(x)$ and $w_{0} \Vdash \forall x p(x) \Longrightarrow w_{0} \Vdash \neg \forall x p(x)$
$w_{1} \Vdash p(c) \Longrightarrow w_{0} \Vdash \neg p(c) \Longrightarrow w_{0} \Vdash \exists x \neg p(x)$

Satisfiability and Validity - More Examples

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid See [Nerode \& Shore 1997] (page 269).

$w_{1} \Vdash p(b) \Longrightarrow w_{1} \Vdash \forall x p(x)$ and $w_{0} \Vdash \forall x p(x) \Longrightarrow w_{0} \Vdash \neg \forall x p(x)$
$w_{1} \Vdash p(c) \Longrightarrow w_{0} \Vdash \neg p(c) \Longrightarrow w_{0} \Vdash \exists x \neg p(x)$
Together: $w_{0} \| \neg \neg \forall x p(x) \rightarrow \exists x \neg p(x)$

Satisfiability and Validity - More Examples

Example: $\neg(p \wedge \neg p)$ is intuitionistically valid

Satisfiability and Validity - More Examples

Example: $\neg(p \wedge \neg p)$ is intuitionistically valid
Let u be an arbitrary world.
We have to show that $v \Vdash p \wedge \neg p$ for all v with $(u, v) \in R$.

Satisfiability and Validity - More Examples

Example: $\neg(p \wedge \neg p)$ is intuitionistically valid
Let u be an arbitrary world.
We have to show that $v \| \vdash p \wedge \neg p$ for all v with $(u, v) \in R$.
Assume that $v \Vdash p \wedge \neg p$ for the sake of contradiction.

Satisfiability and Validity - More Examples

Example: $\neg(p \wedge \neg p)$ is intuitionistically valid
Let u be an arbitrary world.
We have to show that $v \Vdash p \wedge \neg p$ for all v with $(u, v) \in R$.
Assume that $v \Vdash p \wedge \neg p$ for the sake of contradiction.
I.e. $v \Vdash p$ and $v \Vdash \neg p$.

Satisfiability and Validity - More Examples

Example: $\neg(p \wedge \neg p)$ is intuitionistically valid
Let u be an arbitrary world.
We have to show that $v \Vdash p \wedge \neg p$ for all v with $(u, v) \in R$.
Assume that $v \Vdash p \wedge \neg p$ for the sake of contradiction.
I.e. $v \Vdash p$ and $v \Vdash \neg p$.

Then $w \| f$ for all w with $(v, w) \in R$.

Satisfiability and Validity - More Examples

Example: $\neg(p \wedge \neg p)$ is intuitionistically valid
Let u be an arbitrary world.
We have to show that $v \Vdash p \wedge \neg p$ for all v with $(u, v) \in R$.
Assume that $v \Vdash p \wedge \neg p$ for the sake of contradiction.
I.e. $v \Vdash p$ and $v \Vdash \neg p$.

Then $w \| f$ for all w with $(v, w) \in R$.
Due to reflexivity, $(v, v) \in R$, so $v \Downarrow p$.

Satisfiability and Validity - More Examples

Example: $\neg(p \wedge \neg p)$ is intuitionistically valid
Let u be an arbitrary world.
We have to show that $v \Vdash p \wedge \neg p$ for all v with $(u, v) \in R$.
Assume that $v \Vdash p \wedge \neg p$ for the sake of contradiction.
I.e. $v \Vdash p$ and $v \Vdash \neg p$.

Then $w \| f$ for all w with $(v, w) \in R$.
Due to reflexivity, $(v, v) \in R$, so $v \Vdash p$.
Contradiction!

Theorems on Intuitionistic Logic

Theorem 3.1 (Intuitionistic Disjunction/Existential Unifier).

- If $A \vee B$ is intuitionistically valid, then either A or B is intuitionistically valid.

Theorems on Intuitionistic Logic

Theorem 3.1 (Intuitionistic Disjunction/Existential Unifier).

- If $A \vee B$ is intuitionistically valid, then either A or B is intuitionistically valid.
- If $\exists x p(x)$ is intuitionistically valid, then so is $p(c)$ for some constant c.

Theorems on Intuitionistic Logic

Theorem 3.1 (Intuitionistic Disjunction/Existential Unifier).

- If $A \vee B$ is intuitionistically valid, then either A or B is intuitionistically valid.
- If $\exists x p(x)$ is intuitionistically valid, then so is $p(c)$ for some constant c.

Theorem 3.2 (Intuitionistic and Classical Validity).

If a formula F is valid in intuitionistic logic, then F is also valid in classical logic.

Theorems on Intuitionistic Logic

Theorem 3.1 (Intuitionistic Disjunction/Existential Unifier).

- If $A \vee B$ is intuitionistically valid, then either A or B is intuitionistically valid.
- If $\exists x p(x)$ is intuitionistically valid, then so is $p(c)$ for some constant c.

Theorem 3.2 (Intuitionistic and Classical Validity).

If a formula F is valid in intuitionistic logic, then F is also valid in classical logic.

Theorem 3.3 ("Monotonicity").

For every formula F and for all worlds w, v, if $w \Vdash F$ and $R(w, v)$, then $v \Vdash F$.

Outline

- Motivation

- Syntax and Semantics
- Satisfiability \& Validity
- Sequent Calculus
- Summary

Gentzen's Original Sequent Calculus for Intuitionistic Logic

Gentzen's orignal sequent calculus LJ for first-order intuitionistic logic [Gentzen 1935] is obtained from the classical one by restricting the succedent (right side) of all sequents to at most one formula.

Gentzen's Original Sequent Calculus for Intuitionistic Logic

Gentzen's orignal sequent calculus LJ for first-order intuitionistic logic [Gentzen 1935] is obtained from the classical one by restricting the succedent (right side) of all sequents to at most one formula.

- rules for disjunction of the classical calculus LK:

$$
\begin{gathered}
\frac{A, \Gamma \Rightarrow \Delta \quad B, \Gamma \Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow \Delta} \vee \text {-left } \\
\frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A \vee B} \vee \text {-right }
\end{gathered}
$$

Gentzen's Original Sequent Calculus for Intuitionistic Logic

Gentzen's orignal sequent calculus LJ for first-order intuitionistic logic [Gentzen 1935] is obtained from the classical one by restricting the succedent (right side) of all sequents to at most one formula.

- rules for disjunction of the classical calculus LK:

$$
\begin{gathered}
\frac{A, \Gamma \Rightarrow \Delta \quad B, \Gamma \Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow \Delta} \vee \text {-left } \\
\frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A \vee B} \vee \text {-right }
\end{gathered}
$$

- corresponding rules in Genten's original intuitionistic calculus LJ:

$$
\begin{aligned}
& \frac{A, \Gamma \Rightarrow C}{A \vee B, \Gamma \Rightarrow C} \quad B, \Gamma \Rightarrow C \\
& \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \vee B} \vee \text {-light } \quad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \vee B} \vee \text {-right }
\end{aligned}
$$

LJ - Rules for Conjunction and Disjunction

- rules for \wedge (conjunction)

LJ - Rules for Conjunction and Disjunction

- rules for \wedge (conjunction)

$$
\frac{\Gamma, A, B \Rightarrow D}{\Gamma, A \wedge B \Rightarrow D} \wedge-\mathrm{left}
$$

LJ - Rules for Conjunction and Disjunction

- rules for \wedge (conjunction)

$$
\frac{\Gamma, A, B \Rightarrow D}{\Gamma, A \wedge B \Rightarrow D} \wedge \text {-left } \quad \Gamma \Rightarrow A \quad \Gamma \Rightarrow B \wedge^{\circ} \wedge \text {-right }
$$

LJ - Rules for Conjunction and Disjunction

- rules for \wedge (conjunction)

$$
\frac{\Gamma, A, B \Rightarrow D}{\Gamma, A \wedge B \Rightarrow D} \wedge \text {-left } \quad \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge \text {-right }
$$

- rules for \vee (disjunction)

LJ - Rules for Conjunction and Disjunction

- rules for \wedge (conjunction)

$$
\frac{\Gamma, A, B \Rightarrow D}{\Gamma, A \wedge B \Rightarrow D} \wedge \text {-left } \quad \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge \text {-right }
$$

- rules for \vee (disjunction)

$$
\frac{\Gamma, A \Rightarrow D \quad \Gamma, B \Rightarrow D}{\Gamma, A \vee B \Rightarrow D} \vee \text {-left }
$$

LJ - Rules for Conjunction and Disjunction

- rules for \wedge (conjunction)

$$
\frac{\Gamma, A, B \Rightarrow D}{\Gamma, A \wedge B \Rightarrow D} \wedge \text {-left } \quad \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge \text {-right }
$$

- rules for \vee (disjunction)

$$
\begin{aligned}
& \frac{\Gamma, A \Rightarrow D}{\Gamma, A \vee B \Rightarrow D} \, B \Rightarrow D \\
& \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \vee B} \vee \text {-right }_{1}
\end{aligned}
$$

LJ - Rules for Conjunction and Disjunction

- rules for \wedge (conjunction)

$$
\frac{\Gamma, A, B \Rightarrow D}{\Gamma, A \wedge B \Rightarrow D} \wedge \text {-left } \quad \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge \text {-right }
$$

- rules for \vee (disjunction)

$$
\begin{aligned}
& \frac{\Gamma, A \Rightarrow D \quad \Gamma, B \Rightarrow D}{\Gamma, A \vee B \Rightarrow D} \vee \text {-left } \\
& \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \vee B} \vee \text {-right }_{1} \quad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \vee B} \vee \text {-right } 2
\end{aligned}
$$

LJ - Rules for Implication and Negation, Axiom

- rules for \rightarrow (implication)

LJ - Rules for Implication and Negation, Axiom

- rules for \rightarrow (implication)

$$
\frac{\Gamma, A \rightarrow B \Rightarrow A \quad \Gamma, B \Rightarrow D}{\Gamma, A \rightarrow B \Rightarrow D} \rightarrow \text {-left }
$$

LJ - Rules for Implication and Negation, Axiom

- rules for \rightarrow (implication)

$$
\frac{\Gamma, A \rightarrow B \Rightarrow A \quad \Gamma, B \Rightarrow D}{\Gamma, A \rightarrow B \Rightarrow D} \rightarrow \text {-left } \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow \text {-right }
$$

LJ - Rules for Implication and Negation, Axiom

- rules for \rightarrow (implication)

$$
\frac{\Gamma, A \rightarrow B \Rightarrow A \quad \Gamma, B \Rightarrow D}{\Gamma, A \rightarrow B \Rightarrow D} \rightarrow \text {-left } \quad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow \text {-right }
$$

- rules for \neg (negation)

LJ - Rules for Implication and Negation, Axiom

- rules for \rightarrow (implication)

$$
\frac{\Gamma, A \rightarrow B \Rightarrow A \quad \Gamma, B \Rightarrow D}{\Gamma, A \rightarrow B \Rightarrow D} \rightarrow \text {-left } \quad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow \text {-right }
$$

- rules for \neg (negation)

$$
\frac{\Gamma, \neg A \Rightarrow A}{\Gamma, \neg A \Rightarrow D} \neg-\mathrm{left}
$$

LJ - Rules for Implication and Negation, Axiom

- rules for \rightarrow (implication)

$$
\frac{\Gamma, A \rightarrow B \Rightarrow A \quad \Gamma, B \Rightarrow D}{\Gamma, A \rightarrow B \Rightarrow D} \rightarrow \text {-left } \quad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow \text {-right }
$$

- rules for \neg (negation)

$$
\frac{\Gamma, \neg A \Rightarrow A}{\Gamma, \neg A \Rightarrow D} \neg \text {-left } \quad \frac{\Gamma, A \Rightarrow}{\Gamma \Rightarrow \neg A} \neg-\text { right }
$$

LJ - Rules for Implication and Negation, Axiom

- rules for \rightarrow (implication)

$$
\frac{\Gamma, A \rightarrow B \Rightarrow A \quad \Gamma, B \Rightarrow D}{\Gamma, A \rightarrow B \Rightarrow D} \rightarrow \text {-left } \quad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow \text {-right }
$$

- rules for \neg (negation)

$$
\frac{\Gamma, \neg A \Rightarrow A}{\Gamma, \neg A \Rightarrow D} \neg-\text { left } \quad \frac{\Gamma, A \Rightarrow}{\Gamma \Rightarrow \neg A} \neg-\text { right }
$$

- the axiom

LJ - Rules for Implication and Negation, Axiom

- rules for \rightarrow (implication)

$$
\frac{\Gamma, A \rightarrow B \Rightarrow A \quad \Gamma, B \Rightarrow D}{\Gamma, A \rightarrow B \Rightarrow D} \rightarrow \text {-left } \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow \text {-right }
$$

- rules for \neg (negation)

$$
\frac{\Gamma, \neg A \Rightarrow A}{\Gamma, \neg A \Rightarrow D} \neg-\text { left } \quad \frac{\Gamma, A \Rightarrow}{\Gamma \Rightarrow \neg A} \neg-\text { right }
$$

- the axiom

$$
\overline{\Gamma, A \Rightarrow A} \text { axiom }
$$

LK — Rules for Universal and Existential Quantifier

- rules for \forall (universal quantifier)

LK — Rules for Universal and Existential Quantifier

- rules for \forall (universal quantifier)

$$
\frac{\Gamma, A[x \backslash t], \forall x A \Rightarrow D}{\Gamma, \forall x A \Rightarrow D} \forall-\mathrm{left}
$$

LK - Rules for Universal and Existential Quantifier

- rules for \forall (universal quantifier)

$$
\frac{\Gamma, A[x \backslash t], \forall x A \Rightarrow D}{\Gamma, \forall x A \Rightarrow D} \forall \text {-left } \quad \frac{\Gamma \Rightarrow A[x \backslash a]}{\Gamma \Rightarrow \forall x A} \forall \text {-right }
$$

LK — Rules for Universal and Existential Quantifier

- rules for \forall (universal quantifier)

$$
\frac{\Gamma, A[x \backslash t], \forall x A \Rightarrow D}{\Gamma, \forall x A \Rightarrow D} \forall \text {-left } \quad \frac{\Gamma \Rightarrow A[x \backslash a]}{\Gamma \Rightarrow \forall x A} \forall \text {-right }
$$

- t is an arbitrary closed term
- Eigenvariable condition for the rule \forall-right: a must not occur in the conclusion, i.e. in 「 or A
- the formula $\forall x A$ is preserved in the premise of the rule \forall-left

LK — Rules for Universal and Existential Quantifier

- rules for \forall (universal quantifier)

$$
\frac{\Gamma, A[x \backslash t], \forall x A \Rightarrow D}{\Gamma, \forall x A \Rightarrow D} \forall \text {-left } \frac{\Gamma \Rightarrow A[x \backslash a]}{\Gamma \Rightarrow \forall x A} \forall \text {-right }
$$

- t is an arbitrary closed term
- Eigenvariable condition for the rule \forall-right: a must not occur in the conclusion, i.e. in Γ or A
- the formula $\forall x A$ is preserved in the premise of the rule \forall-left
- rules for \exists (existential quantifier)

LK — Rules for Universal and Existential Quantifier

- rules for \forall (universal quantifier)

$$
\frac{\Gamma, A[x \backslash t], \forall x A \Rightarrow D}{\Gamma, \forall x A \Rightarrow D} \forall \text {-left } \frac{\Gamma \Rightarrow A[x \backslash a]}{\Gamma \Rightarrow \forall x A} \forall \text {-right }
$$

- t is an arbitrary closed term
- Eigenvariable condition for the rule \forall-right: a must not occur in the conclusion, i.e. in Γ or A
- the formula $\forall x A$ is preserved in the premise of the rule \forall-left
- rules for \exists (existential quantifier)

$$
\frac{\Gamma, A[x \backslash a] \Rightarrow D}{\Gamma, \exists x A \Rightarrow D} \exists \exists \text {-left }
$$

LK — Rules for Universal and Existential Quantifier

- rules for \forall (universal quantifier)

$$
\frac{\Gamma, A[x \backslash t], \forall x A \Rightarrow D}{\Gamma, \forall x A \Rightarrow D} \forall \text {-left } \frac{\Gamma \Rightarrow A[x \backslash a]}{\Gamma \Rightarrow \forall x A} \forall \text {-right }
$$

- t is an arbitrary closed term
- Eigenvariable condition for the rule \forall-right: a must not occur in the conclusion, i.e. in Γ or A
- the formula $\forall x A$ is preserved in the premise of the rule \forall-left
- rules for \exists (existential quantifier)

$$
\frac{\Gamma, A[x \backslash a] \Rightarrow D}{\Gamma, \exists x A \Rightarrow D} \exists \text {-left } \quad \frac{\Gamma \Rightarrow A[x \backslash t]}{\Gamma \Rightarrow \exists x A} \exists \text {-right }
$$

LK — Rules for Universal and Existential Quantifier

- rules for \forall (universal quantifier)

$$
\frac{\Gamma, A[x \backslash t], \forall x A \Rightarrow D}{\Gamma, \forall x A \Rightarrow D} \forall \text {-left } \quad \frac{\Gamma \Rightarrow A[x \backslash a]}{\Gamma \Rightarrow \forall x A} \forall \text {-right }
$$

- t is an arbitrary closed term
- Eigenvariable condition for the rule \forall-right: a must not occur in the conclusion, i.e. in 「 or A
- the formula $\forall x A$ is preserved in the premise of the rule \forall-left
- rules for \exists (existential quantifier)
$\frac{\Gamma, A[x \backslash a] \Rightarrow D}{\Gamma, \exists x A \Rightarrow D} \exists$-left $\quad \frac{\Gamma \Rightarrow A[x \backslash t]}{\Gamma \Rightarrow \exists x A} \exists$-right
- t is an arbitrary closed term
- Eigenvariable condition for the rule \exists-left: a must not occur in the conclusion, i.e. in Γ, D, or A
- the formula $\exists x A$ is not preserved in the premise of the rule \exists-right

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\Rightarrow q \rightarrow(p \vee q)
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
q & \Rightarrow p \vee q \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \frac{\Rightarrow}{q} \vee p \vee q \\
& \Rightarrow q \text { right }_{1} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \frac{\Rightarrow}{q} \vee \vee \vee q \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }{ }_{1} \text {-right }
$$

$$
\Rightarrow q \rightarrow(p \vee q)
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \frac{\Rightarrow}{q} \vee p \vee q \\
& \Rightarrow q \rightarrow \text { right }_{1} \\
&\Rightarrow q \vee q)
\end{aligned} \rightarrow \text {-right }
$$

$$
\begin{aligned}
& q \Rightarrow p \vee q \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \frac{\Rightarrow}{q} \vee p \vee q \text {-right }_{1} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

$$
\begin{aligned}
& q \Rightarrow q \\
& \begin{aligned}
q & \Rightarrow p \vee q \vee-\text { right }_{2} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
\end{aligned}
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \begin{array}{l}
q
\end{array} \Rightarrow p \vee q \vee \text {-right }_{1} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

$$
\begin{aligned}
& q \Rightarrow q \mathrm{ax} \\
& \begin{aligned}
q & \Rightarrow p \vee q \vee-\text { right }_{2} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
\end{aligned}
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \frac{\Rightarrow}{q} \vee \vee^{\prime} \text {-right }_{1} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

$$
\begin{aligned}
& q \Rightarrow q \\
& \begin{array}{l}
q \times \\
q
\end{array} \Rightarrow p \vee q \vee-\text { right }_{2} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

- Example 2: $p \vee \neg p$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \frac{\Rightarrow}{q} p^{\prime} \vee q \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }{ }_{1} \text { right }
$$

$$
\begin{aligned}
& q \Rightarrow q \\
& \begin{array}{l}
q \times \\
q
\end{array} \Rightarrow p \vee q \vee-\text { right }_{2} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

- Example 2: $p \vee \neg p$

$$
\Rightarrow p \vee \neg p
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \begin{array}{l}
q
\end{array} \Rightarrow p \vee q \text {-right } \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

$$
\begin{aligned}
& q \Rightarrow q \mathrm{ax} \\
& \begin{aligned}
q & \Rightarrow p \vee q \vee-\text { right }_{2} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
\end{aligned}
$$

- Example 2: $p \vee \neg p$

$$
\begin{aligned}
& \Rightarrow p \\
& \Rightarrow p \vee \neg p \\
& \Rightarrow-\text { right }_{1}
\end{aligned}
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \begin{array}{l}
q
\end{array} \Rightarrow p \vee q \text {-right } \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

$$
\begin{aligned}
& q \Rightarrow q \\
& \text { ax } \\
& \begin{aligned}
q & \Rightarrow p \vee q \\
\Rightarrow & - \text { right }_{2} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
\end{aligned}
$$

- Example 2: $p \vee \neg p$

$$
\begin{aligned}
& \Rightarrow p \\
& \Rightarrow p \vee \neg p \\
& \Rightarrow \text {-right }_{1}
\end{aligned}
$$

$$
\Rightarrow p \vee \neg p
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \begin{array}{l}
q
\end{array} \Rightarrow p \vee q \vee \text { right }_{1} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

$$
\begin{aligned}
\begin{array}{l}
q
\end{array} \Rightarrow q \mathrm{ax} \\
\begin{aligned}
q & \Rightarrow p \vee q \\
& \Rightarrow q \rightarrow \text { right }_{2} \\
& \Rightarrow \text {-right }
\end{aligned} \text { (pマq)}
\end{aligned}
$$

- Example 2: $p \vee \neg p$

$$
\begin{aligned}
& \Rightarrow p \\
& \Rightarrow p \vee \neg p \\
& \Rightarrow \text {-right } \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \neg p \\
& \Rightarrow p \vee \neg p \\
& \Rightarrow \text {-right } \\
& 2
\end{aligned}
$$

Intuitionistic Sequent Calculus - Examples

- Example 1: $q \rightarrow(p \vee q)$

$$
\begin{aligned}
& q \Rightarrow p \\
& \begin{array}{l}
q
\end{array} \Rightarrow p \vee q \vee \text { right }_{1} \\
& \Rightarrow q \rightarrow(p \vee q)
\end{aligned} \rightarrow \text {-right }
$$

- Example 2: $p \vee \neg p$

$$
\begin{aligned}
& \Rightarrow p \\
& \Rightarrow p \vee \neg p \\
& \Rightarrow \text {-right } \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& p \Rightarrow \\
& \Rightarrow \neg p \neg-\text { left } \\
& \Rightarrow p \vee \neg p \\
& \Rightarrow \text { right }_{2}
\end{aligned}
$$

Intuitionistic Sequent Calculus - Examples

- Example 3: $\neg \neg(p \vee \neg p)$

Intuitionistic Sequent Calculus - Examples

- Example 3: $\neg \neg(p \vee \neg p)$

$$
\Rightarrow \neg \neg(p \vee \neg p)
$$

Intuitionistic Sequent Calculus - Examples

- Example 3: $\neg \neg(p \vee \neg p)$

$$
\begin{aligned}
\neg(p \vee \neg p) & \Rightarrow \\
& \Rightarrow \neg \neg(p \vee \neg p) \\
\Rightarrow & \text { right }
\end{aligned}
$$

Intuitionistic Sequent Calculus - Examples

- Example 3: $\neg \neg(p \vee \neg p)$

$$
\begin{aligned}
\neg(p \vee \neg p) & \Rightarrow p \vee \neg p \\
\neg \neg(p \vee \neg p) & \Rightarrow \\
& \Rightarrow \neg \neg(p \vee \neg p)
\end{aligned} \neg \text { - left } \quad \text { right }
$$

Intuitionistic Sequent Calculus - Examples

- Example 3: $\neg \neg(p \vee \neg p)$

$$
\begin{aligned}
\neg(p \vee \neg p) & \Rightarrow \neg p \\
\hline \neg(p \vee \neg p) & \Rightarrow p \vee \neg p \vee \text {-right }_{2} \\
\neg \neg(p \vee \neg p) & \Rightarrow \\
& \Rightarrow \neg \neg(p \vee \neg p)
\end{aligned} \neg-\text { right } \quad \text { left } \quad \text {. }
$$

Intuitionistic Sequent Calculus - Examples

- Example 3: $\neg \neg(p \vee \neg p)$

$$
\begin{aligned}
& p, \neg(p \vee \neg p) \Rightarrow \\
& \begin{aligned}
& \neg(p \vee \neg p) \Rightarrow \neg p \\
& \text { right } \\
& \neg \neg(p \vee \neg p) \Rightarrow p \vee \neg p \\
& \text {-right } \\
& 2
\end{aligned} \\
& \frac{\neg(p \vee \neg p)}{} \Rightarrow \\
& \Rightarrow \neg \neg(p \vee \neg p)
\end{aligned} \text {-right }
$$

Intuitionistic Sequent Calculus - Examples

- Example 3: $\neg \neg(p \vee \neg p)$

Intuitionistic Sequent Calculus - Examples

- Example 3: $\neg \neg(p \vee \neg p)$

$$
\begin{aligned}
& p, \neg(p \vee \neg p) \Rightarrow p \\
& \hline p, \neg(p \vee \neg p) \Rightarrow p \vee \neg p \\
& \text {-right } \\
& 1
\end{aligned}
$$

Intuitionistic Sequent Calculus - Examples

- Example 3: $\neg \neg(p \vee \neg p)$

$$
\begin{aligned}
& \hline p, \neg(p \vee \neg p) \Rightarrow p \\
& \hline p, \neg(p \vee \neg p) \Rightarrow p \vee \neg p \\
& \hline \text { - } \text { - } \\
& \hline, \neg(p \vee \neg p) \Rightarrow \\
& \hline \neg(p \vee \neg p) \Rightarrow \neg p \\
&- \text { right } \\
& 1
\end{aligned}
$$

Intuitionistic Sequent Calculus - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid

Intuitionistic Sequent Calculus - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid
$\Rightarrow p \rightarrow q$
$\Rightarrow(p \rightarrow q) \vee(q \rightarrow p)$
\Rightarrow-right $_{1}$

Intuitionistic Sequent Calculus - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid
$\Rightarrow p \rightarrow q$
$\Rightarrow(p \rightarrow q) \vee(q \rightarrow p)$$\vee$-right $_{1} \quad \begin{aligned} & \Rightarrow q \rightarrow p \\ & \Rightarrow(p \rightarrow q) \vee(q \rightarrow p)\end{aligned}$-right $_{2}$

Intuitionistic Sequent Calculus - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid
$\begin{array}{ll}\Rightarrow p \rightarrow q \\ \Rightarrow(p \rightarrow q) \vee(q \rightarrow p) \\ \Rightarrow \text {-right }_{1} & \Rightarrow q \rightarrow p \\ \Rightarrow(p \rightarrow q) \vee(q \rightarrow p)\end{array}$-right $_{2}$

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid

Intuitionistic Sequent Calculus - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid
$\begin{array}{ll}\Rightarrow p \rightarrow q \\ \Rightarrow(p \rightarrow q) \vee(q \rightarrow p) \\ \Rightarrow \text {-right }_{1} & \Rightarrow q \rightarrow p \\ \Rightarrow(p \rightarrow q) \vee(q \rightarrow p)\end{array}$-right $_{2}$

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid

$$
\Rightarrow \neg \forall x p(x) \rightarrow \exists x \neg p(x)
$$

Intuitionistic Sequent Calculus - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid
$\begin{array}{ll}\Rightarrow p \rightarrow q \\ \Rightarrow(p \rightarrow q) \vee(q \rightarrow p) \\ \Rightarrow \text {-right }_{1} & \Rightarrow q \rightarrow p \\ \Rightarrow(p \rightarrow q) \vee(q \rightarrow p)\end{array}$-right $_{2}$

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid

$$
\begin{aligned}
\neg \forall x p(x) & \Rightarrow \exists x \neg p(x) \\
& \Rightarrow \neg \forall x p(x) \rightarrow \exists x \neg p(x)
\end{aligned} \rightarrow-\text { right }
$$

Intuitionistic Sequent Calculus - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid
$\Rightarrow p \rightarrow q$
$\Rightarrow(p \rightarrow q) \vee(q \rightarrow p)$$\vee$-right $_{1} \quad \begin{aligned} & \Rightarrow q \rightarrow p \\ & \Rightarrow(p \rightarrow q) \vee(q \rightarrow p)\end{aligned}$-right $_{2}$

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid

Intuitionistic Sequent Calculus - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid
$\Rightarrow p \rightarrow q$
$\Rightarrow(p \rightarrow q) \vee(q \rightarrow p)$$\vee$-right $_{1} \quad \begin{aligned} & \Rightarrow q \rightarrow p \\ & \Rightarrow(p \rightarrow q) \vee(q \rightarrow p)\end{aligned}$-right $_{2}$

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid

$$
\begin{aligned}
& \frac{p(c), \neg \forall x p(x)}{} \Rightarrow \forall \forall x p(x) \\
& p(c), \neg \forall x p(x) \Rightarrow \\
& \hline \neg \forall x p(x) \Rightarrow \neg p(c) \\
& \text {-right } \\
& \frac{\neg \forall x p(x)}{} \Rightarrow \exists x \neg p(x) \\
& \hline \Rightarrow \text {-right } \\
& \hline \neg \forall x p(x) \rightarrow \exists x \neg p(x)
\end{aligned} \rightarrow \text {-right }
$$

Intuitionistic Sequent Calculus - More Examples

Example: $(p \rightarrow q) \vee(q \rightarrow p)$ is not intuitionistically valid
$\begin{array}{ll}\Rightarrow p \rightarrow q \\ \Rightarrow(p \rightarrow q) \vee(q \rightarrow p) \\ \Rightarrow \text {-right }_{1} & \Rightarrow q \rightarrow p \\ \Rightarrow(p \rightarrow q) \vee(q \rightarrow p) \\ \Rightarrow \text {-right }_{2}\end{array}$

Example: $\neg \forall x p(x) \rightarrow \exists x \neg p(x)$ is not intuitionistically valid

$$
\begin{aligned}
& p(c), \neg \forall x p(x) \Rightarrow p(a) \\
& \hline p(c), \neg \forall x p(x) \Rightarrow \forall x p(x) \\
& \hline p(c), \neg \forall x p(x) \Rightarrow \text {-right } \\
& \begin{aligned}
& \neg \forall \times p(x) \Rightarrow \neg p(c) \\
& \text {-right } \\
& \hline \neg \forall x p(x) \Rightarrow \exists x \neg p(x) \\
& \Rightarrow \text {-right } \\
& \Rightarrow \neg \forall x p(x) \rightarrow \exists x \neg p(x)
\end{aligned} \text {-right }
\end{aligned}
$$

Gödel's Translation from Intuitionistic to Modal Logic

Definition 4.1 (Gödel's Translation).

Gödel's translation T_{G} for embedding propositional intuitionistic logic into the modal logic S4 is defined as follows.

Gödel's Translation from Intuitionistic to Modal Logic

Definition 4.1 (Gödel's Translation).

Gödel's translation T_{G} for embedding propositional intuitionistic logic into the modal logic $S 4$ is defined as follows.

1. $T_{G}(p)=\square p$ iff p is an atomic formula

Gödel's Translation from Intuitionistic to Modal Logic

Definition 4.1 (Gödel's Translation).

Gödel's translation T_{G} for embedding propositional intuitionistic logic into the modal logic $S 4$ is defined as follows.

1. $T_{G}(p)=\square p$ iff p is an atomic formula
2. $T_{G}(A \wedge B)=T_{G}(A) \wedge T_{G}(B)$
3. $T_{G}(A \vee B)=T_{G}(A) \vee T_{G}(B)$

Gödel's Translation from Intuitionistic to Modal Logic

Definition 4.1 (Gödel's Translation).

Gödel's translation T_{G} for embedding propositional intuitionistic logic into the modal logic $S 4$ is defined as follows.

1. $T_{G}(p)=\square p$ iff p is an atomic formula
2. $T_{G}(A \wedge B)=T_{G}(A) \wedge T_{G}(B)$
3. $T_{G}(A \vee B)=T_{G}(A) \vee T_{G}(B)$
4. $T_{G}(A \rightarrow B)=\square\left(T_{G}(A) \rightarrow T_{G}(B)\right)$
5. $T_{G}(\neg A)=\square\left(\neg T_{G}(A)\right)$

Gödel's Translation from Intuitionistic to Modal Logic

Definition 4.1 (Gödel's Translation).

Gödel's translation T_{G} for embedding propositional intuitionistic logic into the modal logic $S 4$ is defined as follows.

1. $T_{G}(p)=\square p$ iff p is an atomic formula
2. $T_{G}(A \wedge B)=T_{G}(A) \wedge T_{G}(B)$
3. $T_{G}(A \vee B)=T_{G}(A) \vee T_{G}(B)$
4. $T_{G}(A \rightarrow B)=\square\left(T_{G}(A) \rightarrow T_{G}(B)\right)$
5. $T_{G}(\neg A)=\square\left(\neg T_{G}(A)\right)$

Theorem 4.1 (Gödel's Translation).
A formula F is valid in propositional intuitionistic logic iff the formula $T_{G}(F)$ is valid in the modal logic $S 4$.

Outline

- Motivation

- Syntax and Semantics
- Satisfiability \& Validity
- Sequent Calculus
- Summary

Summary

- in intuitionistic logic the law of excluded middle is not valid; non-constructive existence proofs are also not allowed
- intuit. logic has applications in program synthesis and verification

Summary

- in intuitionistic logic the law of excluded middle is not valid; non-constructive existence proofs are also not allowed
- intuit. logic has applications in program synthesis and verification
- the Kripke semantics of intuitionistic logic uses a set of worlds and an accessibility relation between these worlds
- in each world the classical semantics holds, but the semantics of \neg, \rightarrow and \forall is defined with respect to the set of worlds

Summary

- in intuitionistic logic the law of excluded middle is not valid; non-constructive existence proofs are also not allowed
- intuit. logic has applications in program synthesis and verification
- the Kripke semantics of intuitionistic logic uses a set of worlds and an accessibility relation between these worlds
- in each world the classical semantics holds, but the semantics of \neg, \rightarrow and \forall is defined with respect to the set of worlds
- validity in propositional intuitionistic logic is decidable, but PSPACE-complete [Statman 1979] (PSPACE: polynomial space)

Summary

- in intuitionistic logic the law of excluded middle is not valid; non-constructive existence proofs are also not allowed
- intuit. logic has applications in program synthesis and verification
- the Kripke semantics of intuitionistic logic uses a set of worlds and an accessibility relation between these worlds
- in each world the classical semantics holds, but the semantics of \neg, \rightarrow and \forall is defined with respect to the set of worlds
- validity in propositional intuitionistic logic is decidable, but PSPACE-complete [Statman 1979] (PSPACE: polynomial space)

