Logic

Autumn 2023 Week 4

Exercise 3.05

(Recursively defining a function)

The definition of *free variable* on slide 11 is somewhat informal. Try giving a proper, recursive definition of the function

Free :
$$\mathcal{F} \to \mathcal{P}(\mathcal{V})$$

which sends a formula to the set of variables occurring free in it. ($\mathcal{P}(\mathcal{V})$ is the powerset of \mathcal{V} —the set of sets of variables.)

You might want to start with defining the function that sends a term to the variables that occur in it, or you can take that as given if you couldn't be bothered to.

Exercise 3.1 (Variables & Assignments)

- a) Which variables occur free in the following formulae? Which variables occur bound?
- b) Apply the following substitution to both formulae: $\{x \setminus a, y \setminus f(a, b), z \setminus g(x, c)\}$.
- c) Is the substitution capture-free for these formulae?
- 1. $\forall x (p(y) \land \forall y (p(x,z) \rightarrow q(y)))$
- 2. $\forall x \exists x \forall y (p(x) \lor \exists y q(y)) \to r(x)$

Exercise 3.2

(Formalization & Interpretations)

- a) "If there is a man in town who shaves all the men in town who do not shave themselves, then some man in town shaves himself." Formalize these statements by a single first-order formula F_S .
- b) What is the value of the term (5+3)*(8-5) under the interpretation $\mathcal{I}=(\mathbb{N},\iota)$ with $+^{\iota}=*, *^{\iota}=-, -^{\iota}=\div$ (division), $3^{\iota}=8, 5^{\iota}=6, 8^{\iota}=36$.
- c) Show that the following formulae are satisfiable or invalid (or both) by providing a model and/or a counter-model (i.e. an interpretation that falsifies the formula).
- 1. $\forall x \, p(f(x), a) \to \exists x \, p(g(x), x)$
- 2. $\forall y \, q(y, b) \to \exists x \, q(a, x)$

Exercise 3.25 (Interpretations)

The language of arithmetic has constants $\{\bar{0}, \bar{1}, \bar{2}, \ldots\}$, two function symbols of arity $2, \{\bar{+}, \bar{\times}\}$, and a relation symbol of arity $2, \{\bar{\leq}\}$, (and equality). We use infix notation for convenience, that is we write e.g. $x\bar{\leq}y$ instead of $\bar{\leq}(x,y)$.

Give interpretations to *falsify* the following two statements:

- 1. $\bar{1} + \bar{2} = \bar{3}$
- 2. $\forall x \exists y (x \leq y)$

Exercise 3.3 (If we get to LK)

(Sequent Calculus LK & Eigenvariables)

Try to prove the validity of the following formulae in the sequent calculus LK. If you cannot find a proof in LK then povide a counter-model.

- 1. The first-order formula F_S from Exercise 3.2 a).
- 2. $\forall x \exists y \, p(x,y) \rightarrow \forall u \, \exists v \, p(u,v)$
- 3. $\forall x \,\exists y \, p(x,y) \to \exists v \, \forall u \, p(u,v)$

Exercise 3.4 (If we get to LK)

(Symmetry of LK)

Let A be a formula containing only \forall , \exists and the connectives \neg , \vee , and \wedge . The dual formula A' of A is obtained by exchanging \forall and \exists , and exchanging \vee and \wedge . Prove that $\vdash A$ iff $\vdash \neg A'$.

Hint: try to explain how to transform an LK proof for A into a proof for $\neg A'$, and vice versa

Exercise 3.5

(Warm-up induction proofs on terms)

a. Let a language contain the constants a,b,c and the ternary function symbol f. Let I be the interpretation (\mathbb{N},ι) where $a^\iota=2,\,b^\iota=8$, $c^\iota=12$, and f^ι is the function which takes three numbers and adds them all together.

Prove by induction on terms that for any closed term t, $v_{\iota}(t)$ is an even number.

b. Try proving the Substitution Lemma for Terms (slide 26) without looking at the proof on the slide.

Exercise 3.6

(Variable Assignments and Closed Formulas)

The term value, resp. truth value of a *closed* term t, resp. formula A in an interpretation $\mathcal{I}=(D,\iota)$ is independent of the variable assignment. I.e. if α and β are two variable assignments for \mathcal{I} , and t is closed, then

$$v_{\mathcal{I}}(\alpha, t) = v_{\mathcal{I}}(\beta, t)$$

and if A is closed then

$$v_{\mathcal{I}}(\alpha, A) = v_{\mathcal{I}}(\beta, A)$$

Prove these facts by structural induction on t and A.

Hint: when you try to prove this for $\forall x \ A$ and $\exists x \ A$, you will run into the obstacle that the subformula A is not necessarily closed, so it's not possible to apply the induction hypothesis to it. You have to find and prove a more general statement about variable assignments and the free variables occurring in formulae and terms.