IN 2070	Exercises for the Course	ATAS OF
IN3070 IN4070	Logic	
Autumn 2023	Week 7	Marcall

Exercise 7.1

(First-Order Resolution)

Translate the following formulae into a (skolemized) clausal form. Show that the first two formulae are valid and the third formula is invalid by using the resolution calculus.

a) $\forall x (q \to p(x)) \to (q \to \forall y p(y))$

b)
$$\forall y (p(y) \land q(y)) \rightarrow \forall x (\forall x p(x) \land q(x))$$

c) $\forall x \exists y \, p(x, y) \to \exists v \, \forall u \, p(u, v)$

Exercise 7.2

(Clause Subsumption)

Given two propositional clauses C_1 and C_2 , we say that C_1 subsumes C_2 if $C_1 \subseteq C_2$.

E.g. $\{p, \neg r\}$ subsumes $\{p, q, \neg r\}$. And the empty clause subsumes every other clause.

The intuition is that if an interpretation satisfies C_1 (i.e. makes one of the literals true) then it certainly also satisfies C_2 which has more literals to choose from. C_1 'says more' than C_2 .

Syntactically, if we use the longer clause C_2 in a proof, we would think that it should be possible to use C_1 instead and get a simpler proof... and this is indeed the case!

Prove that the resolution calculus remains complete if we allow to remove a clause $C_2 \in S$ from S if it is subsumed by a different clause $C_1 \in S$.

Hints:

- If a node n in a semantic tree falsifies a clause C_2 , and $C_1 \subseteq C_2$, can you conclude that n falsifies C_1 ?
- Show that if n is a failure node for a clause set S, then it falsifies some non-subsumed clause, *i.e.* a clause that is not subsumed by any other clause in S.
- Conclude that for an unsatisfiable set S not containing the empty clause, there is a resolution step between two non-subsumed clauses.
- Explain why a clause that is subsumed by another (different) clause in S will continue to be subsumed if we add resolvents to S or remove subsumed clauses.