IN3070 IN4070	Exercises for the Course	
Autumn 2023	Week 8	· Maccos

Exercise 8.1

(Atomic Cut and Unit Propagation)

Using atomic cut and unit propagation, show that the following formulas (sets of clauses) are unsatisfiable, or give a satisfying substitution

- 1. $(\neg p \lor r \lor \neg s) \land (p \lor q \lor r \lor \neg s) \land (\neg p \lor \neg t) \land \neg r \land (p \lor s) \land (p \lor r \lor t) \land (s \lor t)$
- 2. $\{\{p, \neg q\}, \{\neg p, q\}, \{q, \neg r\}, \{s\}, \{\neg s, \neg q, \neg r\}, \{s, r\}\}$
- **3.** $\{\{p,q,s,t\},\{p,s,\neg t\},\{q,\neg s,t\},\{p,\neg s,\neg t\},\{p,\neg q\},\{\neg r,\neg p\},\{r\}\}$

Exercise 8.2

(Properties of Simplification)

Prove that the simplification rules are sound.

- a) Given a propositional formula A that contains a subformula B, and let $B \equiv B'$ (logical equivalence). Prove A is logically equivalent to the result of replacing B by B' in A. *Hint: use structural induction on* A
- b) Given propositional formulae A and B and an interpretation \mathcal{I} with $\mathcal{I} \models B$. Prove that $\mathcal{I} \models A$ if and only if $\mathcal{I} \models A[B]$. *Hint: for the replacement of B by true or false, use structural induction on A similarly to part A. For the simplification steps, use part a*).
- c) Prove that the simplification rule

$$\frac{B, A[B], \Gamma \Longrightarrow \Delta}{B, A, \Gamma \Longrightarrow \Delta}$$

preserves falsifiability upwards.

Exercise 8.3

(Pure Literal Elimination)

Given a set of clauses S, a literal L is *pure* for S if it occurs only positively or only negatively. I.e. if there are no clauses $C, D \in S$ with $L \in C$ and $\overline{L} \in D$.

In a refutation procedure like DPLL or resolution, if there is a pure literal L, it is OK to remove all clauses that contain L, and this is why:

Let $S' := \{C \in S \mid L \notin C\}$ be the set of clauses in S that do not contain L. Show that if L is pure, then S is satisfiable if and only if S' is satisfiable.

Hint: it is easiest to consider two cases, depending on whether L is an atom like p or a negated atom like $\neg p$. In both cases, if L is pure, it is easy to find an interpretation that satisfies all clauses containing L.