IN3070 IN4070

Autumn 2023

Exercises for the Course

Logic

Obligatory Exercises 2

Deadline: 18 October 2023, 23:59

Exercise O2.1 (Validity and Proof Calculi)

Consider the following formulae.

$$F_1 \colon \left((p \to q) \land (q \to r) \right) \to (p \to r) \tag{``Transitivity''}$$

$$F_2 \colon \forall x \, \exists y \, (p(x) \land (p(y) \to q(x))) \to \forall z \, q(z) \tag{``A modus ponens''}$$

Prove the validity of formulae F_1 and F_2 in the *resolution calculus*. First, translate the negated formula into clausal form.

Exercise O2.2 (Adding a Logical Operator)

The logical operator \uparrow is defined as follows: $A \uparrow B \equiv \neg (A \land B)$.

Resolution works on formulae in clause form. For a resolution-based theorem proving programme to work with full 1st-order or propositional formulae, these are transformed to clause form before starting resolution. What would have to be changed in such a theorem prover to make it accept formulae with a \uparrow operator?