
IN3070
IN4070

Autumn 2023

Exercises for the Course

Logic
Obligatory Exercises 3

Deadline: 1.11.2022, 23:59

Exercise O3.1 (Program a SAT solver)

In your favourite programming language, write a program that checks the satisfiability of a
propositional formula in clause form.

The program should indicate if the clause set is satisfiable or not, and if it is satisfiable, give a
satisfying interpretation.

IN3070: You may use any of the calculi we covered in the course. (But don’t just build a truth
table!)

IN4070: You should use a calculus that uses some form of simplification or unit propagation
as discussed in the DPLL lecture.

Check you program on the clause set consisting of all 8 clauses you can build from 3 proposi-
tional variables.

{{p, q, r}, {p, q,¬r}, {p,¬q, r}, . . .}

This clause set should be identified as unsatisfiable. If you delete one of the clauses, the resulting
set of 7 clauses is satisfiable.

See what happens with the 2n clauses from n propositional variables for n > 3. How large n
can your program cope with?

Please deliver your program, as well as a PDF explaining your code and your results.

Hints:

• Building up a whole proof tree will be complicated and slow and may take a lot of memory.
Try to write your program so it works on one branch at a time. Only keep track of the
leaf sequent you are working on. One way of doing this is using recursion. Here’s some
pseudo code:

Result prove(Sequent s) {
if (s is axiom) {

return "unsatisfiable"
else if (no more rule applications possible on s) {

return literals in s as satisfying interpretation
}
else {

pick a possible rule application
List<Sequent> prems = premisses from that rule application
for p in prems {

answer = prove(s)



if (answer is a satisfying interpretation I) {
return I

}
}
// the proofs for all premisses were closed, so...
return "unsatisfiable";

}
}

It may be easier to keep the literals and the remaining clauses separate in the sequent s,
i.e. pass around two arguments.

• You can represent a clause set as a list of lists or an array of arrays, etc., depending on
what is most natural for the programming language you choose.

• For the literals you can use p and not(p) in Prolog, but you could also use integers,
so that 1 is a propositional varible and −1 its negation. Take care not to use 0 in that
case. . . Again, it’s up to you what is easiest in your programming language.

• Normal resolution won’t easily give you a satisfying interpretation when it fails, so don’t
base your program on that.

• And please: We need to understand what your program does. So please add enough
documentation and use sensible function/method/predicate/variable names.


