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Remember logic circuits
Recap

How do we define and use logic circuits?

I AND, OR, NOR, XOR, NOT, ...
I Semantics based on truth tables
I Written as diagrams
I Implemented with e.g. CMOS

𝐴 𝐵 𝐴 ∧𝐵 𝐴 ∨𝐵 𝐴⊕𝐵 ¬𝐴
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 0
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Why talk about logic circuits
Recap

Why do we have a need to talk about the logic circuit model?

Hint: I have pushed it from the beginning of the course.

I It is impossible to implement any interesting computer
directly in any physical environment.

I Abstractions are important and required to implement
computers.

This also holds true for quantum computers!
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Making a Model for Quantum Computations
Quantum Circuit Model

We know from Anders Sørensen that operations in a quantum
computer needs to be reversible.

First step, let’s make a reversible logic circuit model based on
the standard.
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General Properties of Reversible Circuits
Quantum Circuit Model

Most conventional logic gates are irreversible (e.g. AND, OR)

An 𝑛-bit gate is reversible if

I the number of input lines is equal to the number of output
lines (𝑛× 𝑛 gates), and

I the logical function B𝑛 → B𝑛 of the gate is bijective.

A circuit is reversible if

I consists only of reversible gates,
I it is combinatorial (acyclic), and
I it does not contain fan-out.
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Basic Reversible Gates
Quantum Circuit Model

Based on Feynman’s diagram notation and Fredkin, Toffoli’s
model.

[Toffoli, 1980, Fredkin and Toffoli, 1982, Feynman, 1985]

Not gate

𝐴 𝐴

𝐴 ¬𝐴
0 1
1 0

Controlled-not gate

𝐴 ∙ 𝐴

𝐵 𝐴⊕𝐵

𝐴 𝐵 𝐴 𝐴⊕𝐵

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Note, we can also define this as permutation matrices.
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Generalising Reversible Gates
Quantum Circuit Model

We can generalise this to more advanced gates.

CC-not gate

𝐶1 ∙ 𝐶1

𝐶2 ∙ 𝐶2

𝐴 𝐴⊕ 𝐶1𝐶2

Negative controls

𝐶1 𝐶1

𝐶2 ∙ 𝐶2

𝐴 𝐴⊕ 𝐶1𝐶2

Control function

𝑥⃗ / 𝑓 / 𝑥⃗

𝑥𝑡 𝑥𝑡 ⊕ 𝑓(𝑥⃗)

Controlled-swap gate

𝐶 ∙ 𝐶1

𝐵 𝐶𝐴⊕ 𝐶𝐵

𝐴 𝐶𝐴⊕ 𝐶𝐵

Note, these gates are not implementable in current quantum
computers.
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Second abstraction on Quantum gates
Quantum Circuit Model

What is the consequence of having gates that is not
implementable and is it a problem?

I No, it is not a problem.
I We already to is for logical circuits; you did it in A2.
I You do in every time you program.

I We must define translation to the lower-level abstraction;
call logic synthesis.

I We can define quantum circuits that is much larger than is
executable on current quantum computers.

I As computer scientists we can play with what is possible.
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Full-adder approach
Quantum Circuit Model

Adder calculation

𝑆𝑖 = 𝐶𝑖 ⊕𝐴𝑖 ⊕𝐵𝑖

𝐶𝑖+1 = 𝐶𝑖(𝐴𝑖 ⊕𝐵𝑖)⊕𝐴𝑖𝐵𝑖 . 𝑆𝑖

0

𝐵𝑖

𝐴𝑖

𝐶𝑖

𝐴𝑖

𝐴𝑖 ⊕𝐵𝑖

𝐶𝑖+1

𝐴𝑛−1

𝐴0

𝐵0

0

𝐴1

𝐵1

0

0

𝐴𝑛−1

𝐵𝑛−1

𝑆𝑢𝑚0

𝐺

𝐺

𝑆𝑢𝑚1

𝐶𝑜𝑢𝑡

𝑆𝑢𝑚𝑛−1

𝐴0

𝐴1
Garbage

Garbage are non-constant
output that is not part of the
desired embedding.
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V-shaped adder
Quantum Circuit Model

𝐴𝑖

𝐶𝑖

𝑆𝑖

𝐴𝑖

Majority
Circuit

Unmajority
Circuit

Sum calculation
Circuit

𝐶𝑖

𝐵𝑖

𝐴𝑖

𝐶𝑖 ⊕𝐴𝑖

𝐶𝑖+1

𝐴𝑖 ⊕𝐵𝑖

𝐶𝑖

𝐵𝑖

Insight

Sum and
carry-out
independent.

𝐶1 ⊕𝐴1

0

𝐶𝑛

𝐴𝑛−1 ⊕𝐵𝑛−1

𝐶𝑛−1 ⊕𝐴𝑛−1

𝐴0 ⊕𝐵0

𝐶0 ⊕𝐴0

𝐴1 ⊕𝐵1𝐵1

𝐴1 𝐴1

𝑆1

𝐵𝑛−1

𝐴𝑛−1

𝑆𝑛−1

𝐴𝑛−1

0

𝑆0

𝐴0𝐴0

𝐵0

M
A

J

U
M

S

U
M

S

U
M

S

M
A

J

M
A

J

Ancillae
Wires that are
constant at
both input and
output.

[Vedral et al., 1996, Cuccaro et al., 2005]
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Quantum Circuit Model
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The infamous Qubit
Quantum Circuit Model

Reversibility is only half the story.

A qubit can be modelled as a unit vector of the Bloch sphere.

I Usually, the vectors |0⟩ and |1⟩ are used
as the standard basis; spin-up and
spin-down that Anders told about.

I A value is a linear combination
(superposition) of the basis vectors,
𝛼|0⟩+ 𝛽|1⟩, where |𝛼|2 + |𝛽|2 = 1.

I A qubit is thus considered a

two-element complex vector
(︂
𝛼
𝛽

)︂
.

I Can also be considered as a rotation
around two axis.
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More Qubits
Quantum Circuit Model

A state of more qubits is then modelled as a product of all
standard bases.

I E.g. a two qubit state is
I 𝛼|00⟩+ 𝛽|01⟩+ 𝛾|10⟩+ 𝜃|11⟩, where

|𝛼|2 + |𝛽|2 + |𝛾|2 + |𝜃|2 = 1.
I Thus a four-element complex vector.

I A three qubit state is then modelled by a eighth-element
complex-valued vector.

I ...

15



Some Quantum Operations
Quantum Circuit Model

Hadamard gate

𝐻
𝐻 =

1√
2

[︂
1 1
1 −1

]︂
.

Maps the basis states such that a measurement will have equal
probabilities to become 1 or 0 (i.e. creates a superposition).

Pauli gates

𝑋 𝑌 𝑍

𝑋 =

[︂
0 1
1 0

]︂

𝑍 =

[︂
1 0
0 −1

]︂ 𝑌 =

[︂
0 −𝑖
𝑖 0

]︂

Rotations around the axis of the Bloch sphere.
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More Quantum Operations
Quantum Circuit Model

T gate

𝑇

𝑇 =
1√
2

[︂
1 0

0 𝑒𝑖𝜋/4

]︂
.

Controlled gate

∙

𝑈

𝑈 =

[︂
𝑢00 𝑢01
𝑢10 𝑢11

]︂
C(𝑈) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 𝑢00 𝑢01
0 0 𝑢10 𝑢11

⎤⎥⎥⎦
The available gate (and cost of these) differs is different
implementations of quantum computers.

17



More Quantum Operations
Quantum Circuit Model

T gate

𝑇

𝑇 =
1√
2

[︂
1 0

0 𝑒𝑖𝜋/4

]︂
.

Controlled gate

∙

𝑈

𝑈 =

[︂
𝑢00 𝑢01
𝑢10 𝑢11

]︂
C(𝑈) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 𝑢00 𝑢01
0 0 𝑢10 𝑢11

⎤⎥⎥⎦
The available gate (and cost of these) differs is different
implementations of quantum computers.

17



Quantum circuit
Quantum Circuit Model

With the smaller gates we can define larger circuits:

CC-not gate

∙ ∙ ∙ ∙ ∙ 𝑇

∙ = ∙ ∙ 𝑇 † 𝑇 † 𝑆

𝐻 𝑇 † 𝑇 𝑇 † 𝑇 𝐻

I The task is the find the optimal circuit wrt. some cost
metric, which is much dependent on the implementation
technology.

18



Superposition, Entanglement, Measurements
Quantum Circuit Model

Three principles very simplified
I Superposition

I A qubit is on a superposition when it is in a state that is a
combination of the basis states.

I Entanglement
I Qubits are entangled when the state of one is dependent on

the state other.
I Entanglement is created by an interaction by a qubit in

superposition.
I Measurement

I Projects the state of a qubit onto one of the basis vectors.
I Operation “destroys” any superposition of a qubit.
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Performing Quantum Computations
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IBM Q
Performing Quantum Computations

I https://www.research.ibm.com/ibm-q/
I Online experimental quantum computers

21
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Languages for describing quantum circuits
Performing Quantum Computations

There exist several higher-level languages that can be used to
describe quantum circuits

I QASM used in IBM Q
I Relative low-level language that resembles netlists.

I Quipper
I DSL embedded in Haskell. Includes the basic gates, but

also monadic combinators (map, etc.) that makes it easier
to create large circuits

I QWIRE
I Similar to Quipper, but embedded in Coq.

I Liqui|⟩
I Stand-alone DSL from Microsoft Research. Integrates with

dot-net.
I pyQuil, QuTiP

I Tool boxed for quantum computations implemented in
Python.

And others...
22



A touch of Quantum Algorithms
Performing Quantum Computations

Conjectured complexity classes
[Strubell, 2011]
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A touch of Quantum Algorithms
Performing Quantum Computations

Grover’s algorithm

Performs a search for an element over an 𝑛-element unordered
list

I Best know algorithm runs 𝑂(𝑛)

I Quantum algorithm runs 𝑂(
√
𝑛)

Algorithm outline:
1. Put all possible 2𝑛 states in equal superposition. All

possible element is equally like to be the one be search for.
2. Perform quantum operations such that measurement will

give correct outcome with probability higher that 1/2.
This is the general approach of quantum algorithms.

24



Conclusion
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Conclusion
Conclusion

I Even with quantum computers we build abstractions to be
able to work with the underlying implementation:

I quantum and reversible circuits,
I description languages,
I algorithmic descriptions.

I Part of doing quantum computations is successfully
working with these.

I Our interaction in the model is still very basic.

I There exist quantum algorithms that performs
asymptotically better than known conventional
algorithms.

26



Thank you

?
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