
Priority Queues
2nd November 2022



Priority Queues

• Binary heaps
• Leftist heaps
• Binomial heaps
• Fibonacci heaps

Priority queues are important in, among other things, operating 
systems (process control in multitasking systems), search algorithms 
(A, A*, D*, etc.), and simulation.



Priority Queues

Priority queues are data structures that hold elements with some kind of priority (key) in 
a queue-like structure, implementing the following operations:

• insert() – Inserting an element into the queue.
• deleteMin() – Removing the element with the highest priority.

And maybe also:

• buildHeap() – Build a queue from a set (>1) of elements.
• increaseKey()/DecreaseKey() – Change priority.
• delete() – Removing an element from the queue.
• merge() – Merge two queues.



Priority Queues

An unsorted linked list can be used. insert() inserts an element at the 
head of the list (O(1)), and deleteMin() searches the list for the 
element with the highest priority and removes it (O(n)). 

A sorted list can also be used (reversed running times).

– Not very efficient implementations.

To make an efficient priority queue, it is enough to keeps the elements 
“almost sorted”.



Binary Heaps

A binary heap is organized as a 
complete binary tree. (All levels 
are full, except possibly the last.)

In a binary heap the element in 
the root must have a key less than 
or equal to the key of its children, 
in addition each sub-tree must be 
a binary heap.

a b c d e f g h i j

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

1

2

3

4

ëi / 2û

a

b c

d e

h i j

f g2i 2i+1



Binary Heaps

A binary heap is organized as a 
complete binary tree. (All levels are 
full, except possibly the last.)

In a binary heap the element in 
the root must have a key less than 
or equal to the key of its children, 
in addition each sub-tree must be 
a binary heap.

a b c d e f g h i j

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

1

2

3

4

ëi / 2û

a

b c

d e

h i j

f g2i 2i+1



Binary Heaps
13

21 16

24 31

65 26 32

19 68

1

2

3

4

13 21 16 24 31 19 68 65 26 32 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

14

insert(14)



Binary Heaps
13

14 16

23 21

65 26 32

19 68

1

2

3

4

13 14 16 24 21 19 68 65 26 32 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

31

”percolateUp()”

insert(14)



Binary Heaps

14 16

19 21

65 26 32

19 68

1

2

3

4

14 16 19 21 19 68 65 26 32 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

31

deleteMin()



Binary Heaps
31

14 16

19 21

65 26 32

19 68

1

2

3

4

31 14 16 19 21 19 68 65 26 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

deleteMin()



Binary Heaps
14

19 16

26 21

65 31 32

19 68

1

2

3

4

14 19 16 19 21 26 68 65 31 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

”percolateDown()”

deleteMin()



Binary Heaps

Worst Case Average
insert() O(log N) O(1)
deleteMin() O(log N) O(log N)

buildHeap() O(N)
(Insert elements into the array unsorted, and run percolateDown() on each root in 
the resulting heap (the tree), bottom up)
(The sum of the heights of a binary tree with N nodes is O(N).)

merge() O(N)
(N = number of elements)



Leftist Heaps

• To implement an efficient  merge(), we move away from arrays, and implement 
so-called leftist heaps as pure trees.
• The idea behind leftist heaps is to make the heap (the tree) as skewed as 

possible, and do all the work on a short (right) branch, leaving the long (left) 
branch untouched.
• A leftist heap is still a binary tree with the heap structure (key in root is lower 

than key in children), but with an extra skewness requirement.
• For all nodes X in our tree, we define the null-path-length(X) as the distance from 

X to a descendant with less than two children (i.e. 0 or 1).
• The skewness requirement is that for every node the null path length of its left 

child be at least as large as the null path length of the right child.
• For the empty tree we define the null-path-length to be -1, as a special case.



1 0

0 0

0

NOT LEFTIST

LEFTIST

1

1 0

0 1

0

1

0

Leftist Heaps



10 8

21 14

23

17

26

12 7

18 24

33

37 18

merge()

3 6
Leftist Heaps



10 8

21 14

23

17

26

12 7

18 24

33

37 18

3 6

merge()

Leftist Heaps



10 8

21 14

23

17

26

12

7

18 24

33

37

18

3

6

10
8

21 14

23
17

26

3

12 7

18 24

33

37 18

6

merge()

Leftist Heaps



10 8

21 14

23

17

26

12

7

18 24

33

37

18

3

6

10
8

21 14

23
17

26

3

12 7

18 24

33

37 18

6

Flip L/R if not leftist

merge()

Leftist Heaps



10 8

21 14

23

17

26

12

7

18 24

33

37

18

3

6

10
8

21 14

23
17

26

3

12 7

18 24

33

37 18

6

Flip L/R if not leftist

merge()

Leftist Heaps



10 8

21 14

23

17

26

12

7

18 24

33

37

18

3

6

10

8
21 14

23 17

26

3

12 7

18 24

33

37 18

6

Flip L/R if not leftist

merge()

Leftist Heaps



10 8

21 14

23

17

26

12 7

18 24

33

37

18

3

6

8

17

26

3

12 7

18 24

33

37 18

6

10

21 14

23

merge()

Leftist Heaps



5 3

7 6

10

5 3

7 6

10

deleteMin()

insert(3) merge()

11

merge()

1

Leftist Heaps



Leftist Heaps

Worst Case
merge() O(log N)

insert() O(log N)
deleteMin() O(log N)

buildHeap() O(N)
(N = number of elements)

In a leftist heap with N nodes, the right path is at most ëlog (N+1)û long.



Binomial Heaps

Leftist heaps:
merge(), insert() and deleteMin() in O(log N) time w.c.

Binary heaps:
insert() in O(1) time on average.

Binomial heaps
merge(), insert() og deleteMin() in O(log N) time w.c.
insert() O(1) time on average

Binomial heaps are collections of trees (sometimes called a forest), each tree a heap.



B0

Binomial Trees



B0
B1

Binomial Trees



B0
B1

B2

Binomial Trees



B0
B1

B2

B3

Binomial Trees



B0
B1

B2

B3

B4

Binomial Trees



B0
B1

B2

B3

B4

Bi = 2 x Bi-1, root of one tree
connected as a child of the root
of the other tree.

A tree of height k has: 

2k nodes in total,

nodes on level d.÷
ø
öç

è
æ
d
k

Binomial Trees



16

18

12

21 24

65

Maximum one tree of each size:

6 elements: 6 binary = 011 (0+2+4) B0 B1 B2X

Binomial Heaps



16

18

12

21 24

65

The length of the root list in a heap of N elements is O(log N).
(Doubly linked, circular list.)

Maximum one tree of each size:

6 elements: 6 binary = 011 (0+2+4) B0 B1 B2X

Binomial Heaps



merge() 16

18

12

21 24

65

14

26

23

51 24

65

13

Binomial Heaps



merge() 16

18

12

21 24

65

14

26

23

51 24

65

13

Binomial Heaps



merge() 16

18

12

21 24

65

14

26

23

51 24

65

13

13

Binomial Heaps



merge() 16

18

12

21 24

65

14

26

23

51 24

65

13

13

16

18

14

26

Binomial Heaps



merge() 16

18

12

21 24

65

14

26

23

51 24

65

13

13

The trees (the root list) is kept sorted on height.

16

18

14

26

12

21 24

65

24

65

23

51

Binomial Heaps



deleteMin() 13

16

18

14

26

12

21 24

65

23

51 24

65

Binomial Heaps



deleteMin()

13

16

18

14

26

21 24

65

23

51 24

65

merge()

13

16

18

14

26

12

21 24

65

23

51 24

65

Binomial Heaps



Binomial Heaps

Worst Case Average Case
merge() O(log N) O(log N)

insert() O(log N) O(1)
deleteMin() O(log N) O(log N)

buildHeap() O(N) O(N)
(Run N insert() on an initially empty heap.)

(N = number of elements)



13

16

18

14

26

12

21 24

65

23

51 24

65

Doubly linked, circular lists

Binomial Heaps – implementation



Binomial Heaps – implementation

13

16

18

14

26

12

21 24

65

23

51 24

65

23

61 27

88

Doubly linked, circular lists



Binomial Heaps – implementation

13

16

18

14

26

12

21 24

65

23

51 24

65

23

61 27

88

Doubly linked, circular lists



Fibonacci Heaps

• Very elegant, and in theory efficient, way to implement heaps: Most operations have O(1) 
amortized running time. (Fredman & Tarjan ’87)

• insert(), decreaseKey() and  merge() O(1) amortized time
• deleteMin() O(log N) amortized time

• Combines elements from leftist heaps and binomial heaps.

• A bit complicated to implement, and certain hidden constants are a bit high.

• Best suited when there are few deleteMin() compared to the other operations. The 
data structure was developed for a shortest path algorithm (with many decreaseKey() 
operations), also used in spanning tree algorithms.



2

11

12 17

18

4

5

8 6

11

9

1018

31

21

15

We include a smart decreaseKey() method from leftist heaps.

Fibonacci Heaps



2

11

12 17

18

4

5

8 6

11

0

1018

31

21

15

We include a smart decreaseKey() method from leftist heaps.

Fibonacci Heaps



2

11

12 17

18

4

5

8 6

11

0

1018

31

21

15

Leftist

Not leftist

We include a smart decreaseKey() method from leftist heaps.

Fibonacci Heaps



2

11

12 17

18

4

5

8 6

11

0

1018

31

21

15

Leftist

Not leftist

We include a smart decreaseKey() method from leftist heaps.

Fibonacci Heaps



2

4

12 17

18

11

5

8 6

11

0

1018

31

21

15

Leftist

Leftist

We include a smart decreaseKey() method from leftist heaps.

Fibonacci Heaps



2

We include a smart decreaseKey() method from leftist heaps.

Fibonacci Heaps

2

4

12 17

18

11

5

8 6

11

0

10

18

31

21

15

Leftist



We include a smart decreaseKey() method from leftist heaps.
The method must be modified a bit, as we wish to use trees that are
binomial trees, or partial binomial trees.
• Nodes are marked the first time a child node is removed. 
• The second time a node gets a child node removed, it is cut off, and becomes

the root of a separate tree

Fibonacci Heaps

38

26

35

24

46

7

23 17

30

18

39 21

52

41

min



38

26

35

24

5

7

23 17

30

18

39 21

52

41

min

We include a smart decreaseKey() method from leftist heaps.
The method must be modified a bit, as we wish to use trees that are
binomial trees, or partial binomial trees.
• Nodes are marked the first time a child node is removed. 
• The second time a node gets a child node removed, it is cut off, and becomes

the root of a separate tree

Fibonacci Heaps



Fibonacci Heaps

We include a smart decreaseKey() method from leftist heaps.
The method must be modified a bit, as we wish to use trees that are
binomial trees, or partial binomial trees.
• Nodes are marked the first time a child node is removed. 
• The second time a node gets a child node removed, it is cut off, and becomes

the root of a separate tree

38

26

35

24

57

23 17

30

18

39 21

52

41

min



Fibonacci Heaps

We include a smart decreaseKey() method from leftist heaps.
The method must be modified a bit, as we wish to use trees that are
binomial trees, or partial binomial trees.
• Nodes are marked the first time a child node is removed. 
• The second time a node gets a child node removed, it is cut off, and becomes

the root of a separate tree

38

13

35

24

57

23 17

30

18

39 21

52

41

min



Fibonacci Heaps

We include a smart decreaseKey() method from leftist heaps.
The method must be modified a bit, as we wish to use trees that are
binomial trees, or partial binomial trees.
• Nodes are marked the first time a child node is removed. 
• The second time a node gets a child node removed, it is cut off, and becomes

the root of a separate tree

38 13

3524

57

23 17

30

18

39 21

52

41

min



Fibonacci Heaps

We include a smart decreaseKey() method from leftist heaps.
The method must be modified a bit, as we wish to use trees that are
binomial trees, or partial binomial trees.
• Nodes are marked the first time a child node is removed. 
• The second time a node gets a child node removed, it is cut off, and becomes

the root of a separate tree

38 13

35

2457

23 17

30

18

39 21

52

41

min



Fibonacci Heaps

We also use lazy merging / lazy binomial queue.

18 7

8

5

8 6

11

8

9

4

9 6

32



Fibonacci Heaps

We also use lazy merging / lazy binomial queue.

18 7

8

5

8 6

11

8

9

4

9 6

32

18 7

8

5

8 6

11

8

9

4

9 6

32



Fibonacci Heaps

The problem with our decreaseKey()-method and lazy merging is 
that we have to clean up afterwards. This is done in by the
deleteMin()-method, which then becomes expensive (O(log N) 
amortized time):
• All trees are examined, we start with the smallest, and merge two and 

two, so that we get at most one tree of each size. 
• Each root has a number of children – this is used as the size of the

tree. (Recall how we construct binomial trees, and that they may be 
partial as a result of decreaseKey() operations)
• The trees are put in lists, one per size, and we begin merging, starting

with the smallest. (As for Binomial heaps.)



Fibonacci Heaps

Amortized Time
insert() O(1)
decreaseKey() O(1)
merge() O(1)
deleteMin() O(log N)

buildHeap() O(N)
(Run N insert() on an initially empty heap.)

(N = number of elements)


