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Priority Queues

• Binary heaps
• Leftist heaps
• Binomial heaps
• Fibonacci heaps

Priority queues are important in, among other things, operating 
systems (process control in multitasking systems), search algorithms 
(A, A*, D*, etc.), and simulation.



Priority Queues

Priority queues are data structures that hold elements with some kind of priority (key) in 
a queue-like structure, implementing the following operations:

• insert() – Inserting an element into the queue.
• deleteMin() – Removing the element with the highest priority.

And maybe also:

• buildHeap() – Build a queue from a set (>1) of elements.
• increaseKey()/DecreaseKey() – Change priority.
• delete() – Removing an element from the queue.
• merge() – Merge two queues.



Priority Queues

An unsorted linked list can be used. insert() inserts an element at the 
head of the list (O(1)), and deleteMin() searches the list for the 
element with the highest priority and removes it (O(n)). 

A sorted list can also be used (reversed running times).

– Not very efficient implementations.

To make an efficient priority queue, it is enough to keeps the elements 
“almost sorted”.



Binary Heaps

A binary heap is organized as a 
complete binary tree. (All levels 
are full, except possibly the last.)

In a binary heap the element in 
the root must have a key less than 
or equal to the key of its children, 
in addition each sub-tree must be 
a binary heap.
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Binary Heaps

Worst Case Average
insert() O(log N) O(1)
deleteMin() O(log N) O(log N)

buildHeap() O(N)
(Insert elements into the array unsorted, and run percolateDown() on each root in 
the resulting heap (the tree), bottom up)
(The sum of the heights of a binary tree with N nodes is O(N).)

merge() O(N)
(N = number of elements)



Leftist Heaps

• To implement an efficient  merge(), we move away from arrays, and implement 
so-called leftist heaps as pure trees.
• The idea behind leftist heaps is to make the heap (the tree) as skewed as 

possible, and do all the work on a short (right) branch, leaving the long (left) 
branch untouched.
• A leftist heap is still a binary tree with the heap structure (key in root is lower 

than key in children), but with an extra skewness requirement.
• For all nodes X in our tree, we define the null-path-length(X) as the distance from 

X to a descendant with less than two children (i.e. 0 or 1).
• The skewness requirement is that for every node the null path length of its left 

child be at least as large as the null path length of the right child.
• For the empty tree we define the null-path-length to be -1, as a special case.
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Leftist Heaps

Worst Case
merge() O(log N)

insert() O(log N)
deleteMin() O(log N)

buildHeap() O(N)
(N = number of elements)

In a leftist heap with N nodes, the right path is at most ëlog (N+1)û long.



Binomial Heaps

Leftist heaps:
merge(), insert() and deleteMin() in O(log N) time w.c.

Binary heaps:
insert() in O(1) time on average.

Binomial heaps
merge(), insert() og deleteMin() in O(log N) time w.c.
insert() O(1) time on average

Binomial heaps are collections of trees (sometimes called a forest), each tree a heap.
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(Doubly linked, circular list.)
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Binomial Heaps

Worst Case Average Case
merge() O(log N) O(log N)

insert() O(log N) O(1)
deleteMin() O(log N) O(log N)

buildHeap() O(N) O(N)
(Run N insert() on an initially empty heap.)

(N = number of elements)
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Binomial Heaps – implementation
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Fibonacci Heaps

• Very elegant, and in theory efficient, way to implement heaps: Most operations have O(1) 
amortized running time. (Fredman & Tarjan ’87)

• insert(), decreaseKey() and  merge() O(1) amortized time
• deleteMin() O(log N) amortized time

• Combines elements from leftist heaps and binomial heaps.

• A bit complicated to implement, and certain hidden constants are a bit high.

• Best suited when there are few deleteMin() compared to the other operations. The 
data structure was developed for a shortest path algorithm (with many decreaseKey() 
operations), also used in spanning tree algorithms.
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We include a smart decreaseKey() method from leftist heaps.
The method must be modified a bit, as we wish to use trees that are
binomial trees, or partial binomial trees.
• Nodes are marked the first time a child node is removed. 
• The second time a node gets a child node removed, it is cut off, and becomes

the root of a separate tree

Fibonacci Heaps
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Fibonacci Heaps
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The method must be modified a bit, as we wish to use trees that are
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Fibonacci Heaps
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Fibonacci Heaps
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Fibonacci Heaps

We also use lazy merging / lazy binomial queue.
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Fibonacci Heaps
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Fibonacci Heaps

The problem with our decreaseKey()-method and lazy merging is 
that we have to clean up afterwards. This is done in by the
deleteMin()-method, which then becomes expensive (O(log N) 
amortized time):
• All trees are examined, we start with the smallest, and merge two and 

two, so that we get at most one tree of each size. 
• Each root has a number of children – this is used as the size of the

tree. (Recall how we construct binomial trees, and that they may be 
partial as a result of decreaseKey() operations)
• The trees are put in lists, one per size, and we begin merging, starting

with the smallest. (As for Binomial heaps.)



Fibonacci Heaps

Amortized Time
insert() O(1)
decreaseKey() O(1)
merge() O(1)
deleteMin() O(log N)

buildHeap() O(N)
(Run N insert() on an initially empty heap.)

(N = number of elements)


