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• Vast ammounts of information is available

• Google and other search engines search for given strings
(or sets of strings) on all registered web-pages

• The amount of stored digital information grows steadily
(rapidly – 61 % compound rate)

• 3 zettabytes (1021 = 1 000 000 000 000 000 000 000  bytes) in 2012
• 4.4 zettabytes in 2013
• 59 zettabytes in 2020 (44 ZB estimated in 2019)
• 175 zettabytes in 2025 (estimated)

Searching is increasingly important



• Search for a given pattern in DNA strings (about 3 «giga-
letters» (109) in human DNA – four letters in the
alphabet: A, C, G, T )

• Searching for similar patterns is also relevant 
• The genetic sequences in organisms are changing over time 

because of mutations
• We will look at searches for similar patterns that in connection

with Dynamic Programming

Searching is increasingly important



• An alphabet is a finite set of «symbols» A = {a1 , a2 , …, ak }
• A string S = S [0: n -1] or S = < s0 s1 … sn-1 > of length n is a sequence of n symbols 

from A

String Search: 
Given two strings  T (= Text) and P (= Pattern), P is usually much shorter than T
Decide whether P occurs as a (continuous) substring in T, and if so, find where it occurs

0 1 2 … n -1

T [0:n -1]     
(Text)

P [0:m -1]
(Pattern)

Definitions



• Naive algorithm, no preprocessing of T or P
• Assume that the length of T and P are n and m respectively
• The naive algorithm is already a polynomial-time algorithm, with worst case execution time 

O(n*m), which is also O(n2)

• Preprocessing of P (the pattern) for each new P
• Prefix-search: The Knuth-Morris-Pratt algorithm
• Suffix-search:        The Boyer-Moore algorithm
• Hash-based: The Karp-Rabin algorithm

• Preprocessing of the text T
(Used when we search the same text a lot of times (with different patterns), done 
to an extreme degree in search engines) 
• Suffix trees: Data structure that relies on a structure called a Trie

Variants of String Search



0 1 2 … n -1

T [0:n -1]     

P [0:m -1]

The naive algorithm (Prefix based)

Searching forward

“Window”



0 1 2 … n -1

T [0:n -1]     

P [0:m -1]

The naive algorithm



0 1 2 … n -1

T [0:n -1]     

P [0:m -1]

The naive algorithm



0 1 2 … n-m n -1

T [0:n -1]     
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0 1 2 … n-m n -1

T [0:n -1]     

P [0:m -1]

The naive algorithm

function NaiveStringMatcher (P [0:m -1], T [0:n -1])

for s ← 0 to n - m do // loop through all window positions

if T [s :s + m - 1] = P then // is window = P?

return(s) // if so, return start-index of window

endif

endfor

return(-1) // no match found

end NaiveStringMatcher



0 1 2 … n-m n -1

T [0:n -1]     

P [0:m -1]

The naive algorithm

function NaiveStringMatcher (P [0:m -1], T [0:n -1])

for s ← 0 to n - m do // loop through all window positions

if T [s :s + m - 1] = P then // is window = P?

return(s) // if so, return start-index of window

endif

endfor

return(-1) // no match found

end NaiveStringMatcher

The for-loop is executed n – m + 1 times

Each string test has up to m symbol 
comparisons

O(nm) execution time (worst case)

}



• There is room for improvement in the naive algorithm
• The naive algorithm moves the window (pattern) only one character at a time
• But we can move the window farther, based on what we know from earlier comparisons

• USE WHAT WE KNOW, TO START FROM FIRST POSISTION WHERE A MATCH IS POSSIBLE
• How far can we move it?

The Knuth-Morris-Pratt algorithm (Prefix based)

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

Search forward
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= = = = =
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0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

The Knuth-Morris-Pratt algorithm



0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

We move the pattern one step: Mismatch (in the second symbol)
(We have to move at least one step…)

The Knuth-Morris-Pratt algorithm



0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

We move the pattern two steps: Mismatch (in the first symbol)

The Knuth-Morris-Pratt algorithm



0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

3
We move the pattern three steps: Now, there is at least a match in the part of T where 
we had a match previously

The Knuth-Morris-Pratt algorithm



0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

3

• We can skip a number of tests and move the pattern more than one step before we start comparing characters again. 
(3 in the above situation.) 

• The key is that we know what the characters of T and P are, up to the point where P and T got different.
(T and P are equal up to this point.) 

• For each possible index j in P, we assume that the first difference between P and T occurs at j, and from that compute 
how far we can move P before the next string-comparison. (We only need to look at P for this!)

• It may well be that we never get an overlap like the one above, and we can then move P all the way to the point in T
where we found an inequality.  This is the best case for the efficiency of the algorithm.

We move the pattern three steps: Now, there is at least a match in the part of T where 
we had a match previously

The Knuth-Morris-Pratt algorithm



0 1 i - dj i

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 1 j -1 j

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1
0 j -2 j

dj

dj is the longest suffix of P [1 : j -1] that is also prefix of P [0 : j - 2]

We know that if we move P less than j - dj steps, there can be no (full) match 

And we know that, after this move, P [0 : dj -1] will match the corresponding part of T

Thus we can start the comparison at dj in P and compare P [dj : m-1] with the symbols from index i in T

j - dj

The Knuth-Morris-Pratt algorithm



• We will produce a table Next [0: m-1] that shows how far we can move P when we 
get a (first) mismatch at index j in P,  j = 0,1,2, … , m-1

• But the array Next will not give this number directly. Instead, Next [ j ] will contain 
the new (and smaller value) that j should have when we resume the search after a 
mismatch at j in P (see below)

• That is:  Next [ j ] = j – <number of steps that P should be moved>
• or: Next [ j ] is the value that is named dj on the previous slide

• After P is moved, we know that the first dj symbols of P are equal to the 
corresponding symbols in T (that’s how we chose dj )

• So, the search can continue from index i in T and Next [ j ] in P

• The array Next[] can be computed from P alone!

Idea behind the Knuth-Morris-Pratt algorithm



0 1 i - dj i

0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 1 j -1 j

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1
0 j -2 j

djj - dj

(5)

(5)

(2 = 5 - 3)     we continue from here, this is Next[ 5 ]

(From index 5, starting again from 2 is the same as moving the pattern 3 steps)

The Knuth-Morris-Pratt algorithm



function KMPStringMatcher (P [0:m -1], T [0:n -1])

i ← 0   // indeks i T

j ← 0   // indeks i P

CreateNext(P [0:m -1], Next [n -1]) // preprocessing of the pattern P

while i < n do // loop until we have a full match, or get to the end of T

if P [ j ] = T [ i ] then //  if the symbols match, we can continue looking for a full match

if j = m –1 then // check if match is full

return(i – m + 1) //  if so, return start-index of the (full) match

endif

i ← i +1 // if match is not full, check next symbol

j ← j +1

else // if the symbols did not match, we must move the window

j ← Next [ j ] // move window by decreasing j – implicit shift according to the preprosessing

if j = 0 then // if j then becomes 0 (it can not be decreased any more)

if T [ i ] ≠ P [0] then // and symbols do not match

i ← i +1 // move window by increasing i – explicit shift

endif

endif

endif

endwhile

return(-1) // no match found

end KMPStringMatcher O(n)



function CreateNext (P [0:m -1], Next [0:m -1])
…

end CreateNext

• This can be written straight-ahead with simple searches, and will then use time 
O(m2)

• A more clever approach finds the array Next in time O(m)

• We will look at the procedure in an exercise next week

Calculating the array Next[] from P



0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

The array Next for the string P above:   

j =  0 1 2 3 4 5 6 7 
Next[ j ] =  0   0  1   1 1   2 0  1

The Knuth-Morris-Pratt algorithm, example
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0 0 1 0 0 1 0 0 2 0 0 0 1 0 0 2 0 1 2 …

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

0 0 1 0 0 2 0 1

This is a linear algorithm: worst case runtime O(n)

The array Next for the string P above:   

j =  0 1 2 3 4 5 6 7 
Next[ j ] =  0   0  1   1 1   2  0 1

The Knuth-Morris-Pratt algorithm, example



• The naive algorithm, and Knuth-Morris-Pratt  is prefix-based (from left
to right through P)

• The Boyer-Moore algorithm (and variants of it) is suffix-based (from 
right to left in P)

• Horspool proposed a simplification of Boyer-Moore, and we will look
at the resulting algorithm here

B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x …

c h a r a c t e r

The Boyer-Moore algorithm (Suffix based)



B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x …

c h a r a c t e r

Comparing from the
end of P

The Boyer-Moore algorithm (Horspool)
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B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x …

c h a r a c t e r

c h a r a c t e r

c h a r a c t e r

c h a r a c t e r
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B M m a t c h e r _ s h i f t _ c h a r a c t e r _ e x …

c h a r a c t e r

c h a r a c t e r

c h a r a c t e r

c h a r a c t e r

Worst case execution time O(mn), same as for the naive algorithm!

However: Sub-linear (≤ n), as the average execution time is O(n (log|A| m) / m)

The Boyer-Moore algorithm (Horspool)



function HorspoolStringMatcher (P [0:m -1], T [0:n -1])
i ← 0

CreateShift(P [0:m -1], Shift [0:|A| - 1]) // preprocessing of the pattern P
while i < n – m do // loop through all window positions (from left)

j ← m – 1

while j ≥ 0 and T [ i + j ] = P [ j ] do // compare window and pattern (from right)
j ← j -1

endwhile

if j = 0 then // if we have a full match,
return( i ) // return start-index of window

endif

i ← i + Shift[ T[ i + m -1] ] // if not, move pattern to the right, and align
endwhile // according to the last symbol of the window

return(-1)
end HorspoolStringMatcher



function CreateShift (P [0:m -1], Shift [0:|A| - 1])
…

end CreateShift

• We must preprocess P to find the array Shift

• The size of Shift[ ] is the number of symbols in the alphabet

• We search from the end of P (minus the last symbol), and calculate the distance from the end for 
every first occurence of a symbol

• For the symbols not occuring in P, we know: 

Shift [ t ] = <the length of P>  (m)
This will give a “full shift”

Calculating the array Shift[] from P



• We assume that the alphabet for our strings is A = {0, 1, 2, …, k -1}
• Each symbol in A can be seen as a digit in a number system with base k
• Thus each string in A* can be seen as number in this system (and we assume that 

the most significant digit comes first, as usual)

Example:
k = 10, and A = {0,1, 2, …, 9} we get the traditional decimal number system
The string ”6832355” can then be seen as the number 6 832 355

• Given a string P [0: m -1]. We can then calculate the corresponding number P´
using m - 1 multiplications and m - 1 additions (Horners rule, computed from the 
innermost right expression and outwards):

P´ = P [m - 1] + k (P [m - 2] + … + k (P [1] + k (P [0])...))

Example (written as it computed from left to right):
1234 = (((1*10) + 2)*10 + 3)*10 + 4

The Karp-Rabin algorithm (hash based)



• Given a string T [0: n -1], and an integer s (start-index), and a pattern of length m.  We
then refer to the substring T [s: s + m -1] as Ts, and its value is referred to as T´s

• The algorithm:
• We first compute the value P´ for the pattern P.
• Based on Horners rule, we compute T´0, T´1 , T´2 , …, and successively compare

these numbers to P´

• This is very much like the naive algorithm

• However: Given T´s -1 and k m – 1, we can compute T´s in constant time: !
0 1 2 … s -1 s s + m -1 n -1

T [0:n -1]

T´s

The Karp-Rabin algorithm



This constant time computation can be done as follows (where T´s -1 is defined as on the 
previous slide, and k m – 1 is pre-computed):

T´s = k * (T´s -1 - k m – 1 *T [s]) + T [s+m] s = 1, …, n – m

Example:
k = 10, A = {0,1, 2, …, 9}  (the usual decimal number system) and m = 7.
T´s -1 = 7937245
T´s =    9372458

T´s = 10 * (7937245 – (1000000 * 7)) + 8   =    9372458

The Karp-Rabin algorithm



• We can compute T´s in constant time when we know T´s -1 and k m – 1

• We can therefore compute
• P´ and
• T´s, s = 0, 1, …, n – m (n – m + 1 numbers)

in time O(n)

• We can threfore “theoretically” implement the search algorithm in time O(n)

• However, the numbers T´s and P´ will be so large that storing and comparing them will take 
too long time (in fact O(m) time – back to the naive algorithm again)

• The Karp-Rabin trick is to instead use modular arithmetic:  
• We do all computations modulo a value q

• The value q should be chosen as a prime, so that kq just fits in a register (of e.g. 64 bits)

• A prime number is chosen as this will distribute the values well

The Karp-Rabin algorithm



• We compute T´(q)
s and P´(q), where

T´(q)
s = T´s mod q,

P´(q) = P´ mod q, (only once)
and compare

• We can get T´(q)
s = P´(q) even if T´s ≠ P´.  This is called a spurious match

• So, if we have T´(q)
s = P´(q), we have to fully check whether Ts = P

• With large enough q, the probability for getting spurious matches is low
(see next slides)

} x mod y is the remainder when deviding x with y, 
this is always in the interval {0, 1, …, y -1}.

The Karp-Rabin algorithm



function KarpRabinStringMatcher (P [0:m -1], T [0:n -1], k, q)
c ← k m -1 mod q // initialize
P´(q) ← 0
T´(q)

s ← 0

for i ← 1 to m do
P´(q) ← (k * P´(q) + P [ i ]) mod q // calculate value for P
T´(q)

0 ← (k * T´(q)
0 + T [ i ]) mod q // and first position of window

endfor

for s ← 0 to n - m do // loop through all positions for the window
if s > 0 then // calculate value for the (new) window

T´(q)
s ← (k * ( T´(q)

s -1 - T [ s ] * c) + T [ s + m ]) mod q // (based on previous window)
endif
if T´(q)

s = P´(q) then // if we have a match mod q,
if Ts = P then // then we must check the actual strings

return(s) // and return the start-index
endif

endif
endfor
return(-1) // no match found
end KarpRabinStringMatcher



• The worst case running time occurs when the pattern P is found at the end of the
string T

• If we assume that the strings are distributed uniformally, the probability that T´(q)
s is 

equal to P´(q) (which is in the interval  {0, 1, …,   q-1})  is 1/q 
• Thus T´(q)

s , for s = 0, 1, …, n-m-1  will for each s lead to a spurious match with 
probability 1/q

• With the real match at the end of T, we will on average get (n - m) / q spurious 
matches during the search

• Each of these will lead to m symbol comparisons. In addition, we have to check
whetherT´(q)

n-m equals P when we finally find the correct match at the end
• Thus the number of comparisons of single symbols and computations of new values

T´(q)
s will be:

• We can choose values so that q >> m. Thus the runing time will be O(n)

)1(1 +−+







+

− mnm
q

mn

The Karp-Rabin algorithm , time considerations



• It is then usually smart to preprocess T, so that later searches in T for different 
patterns P will be fast

• Search engines (like Google or Bing) do this in a very clever way, so that searches in huge number of web-
pages can be done extremely fast

• We often refer to this as indexing the text (or data set), and this can be done in a 
number of ways.  We will look at the following technique:

• Suffix trees, which relies on “Tries” trees
• So we first look at Tries

• T may also gradually change over time. We then have to update the index for each
such change

• The index of a search engine is updated when the crawler finds a new web page

Multiple searches in a fixed string T (structure)
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Tries (word play on Tree/Retrieval)



”al” ”inter” ”w”

”gorithm” ”l” ”n” ”view” ”eb” ”orld”

”ally” ”et”

Compressed trie



Suffix tree for
T = babbage

”bbage” ”a” ”bage”

”ge”

”ge”

”a” ”b” ”e” ”ge”

”bbage”

• Looking for P in this trie will decide whether P occurs as a substring of T, all 
substrings have a path strting in the root

Suffix trees (compressed)



Div.
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