‘i
2iSk

BB
A=
ST

T E =]

i LSRR
AN Lseane
R b ¥
bl l'mﬂr[m:im.
"'-;E'-uh 1 mriiﬁ
T 0N,

-uH.'J.I uhﬂ.-'mh-nl

1‘1 -'i

4-.11m.=- 1.-11.‘-=.|‘=' "
L..III"F'.-E"!- '3"
R T R I;II AL ;LI."
e
ﬁﬁﬂulﬂ -aflr =t
iz il g b 1A
i ‘-L—l-‘-'-lf—"'-?'u'r.,-i;"
il el a _vfﬁzﬁb‘:,bl & o
e 2% m'l'"-'-'r'l.' h—l'ﬂ:

i1 TR ALE !11."::"-'-:
‘ﬂ,hﬂl:ll.’-&ﬂ |"'" r-j;J.-,.- A
Ty - '|-""- =-'1|‘-h

are L ded CRLEE G LS G
e T)
Nl
MII‘E: .-'S;:-]h':ll.l.mgﬂhu i
-.r:"lfn-..a.."lt 'I.|.':.h|-".ln;l-_l| |
¥ 14 LFLL I
-:'nljliih Eorag E-ia'h..l':?.ml.-qimﬁ fl=
%ﬂﬂ L B T Y
1= -r;l.--uun-dq:.-.-.ﬁ_"
...I'.i-ﬂ.ﬂl-'-'ﬂ'J -'-uir1= LA G,

Selp ARl

o e

vy
S i T*JE"}-A-! & "'!a-.-l-.n'h
L 1R 1Tl o g, \ I.;

Fry L TEHKATAL THIARE e il T

] I&T.' rMEF & LOATIAESLT

AT HE Tayad Aul"rﬂ'l"l'l?"l""lﬁh

HEAIEE A RE TEFFETAH KRiBLnMb larT

[I Moy ||_|-E1,|.Ip.n.lr-=-|-|r AETA, TR

By Ts H-I: crefE e HERHNFa gz Fan
10y Pl T e f i e FHATH russ A

e Y EPFE T

String Search

7th September 2022

Petter Kristiansen

i 01y
0 10000108
g 4

1211001010&(1 10

Searching is increasingly important

e Vast ammounts of information is available

* Google and other search engines search for given strings
(or sets of strings) on all registered web-pages

 The amount of stored digital information grows steadily
(rapidly — 61 % compound rate)
» 3 zettabytes (10?1 =1 000 000 000 000 000 000 000 bytes) in 2012
e 4.4 zettabytes in 2013
e 59 zettabytes in 2020 (44 ZB estimated in 2019)
e 175 zettabytes in 2025 (estimated)

Searching is increasingly important

e Search for a given pattern in DNA strings (about 3 «giga-
letters» (10°) in human DNA — four letters in the
alphabet: A, C, G, T)

* Searching for similar patterns is also relevant

* The genetic sequences in organisms are changing over time
because of mutations

* We will look at searches for similar patterns that in connection
with Dynamic Programming

Definitions

* An alphabet is a finite set of «symbols» A={a,, a,, ..., a, }

* AstringS=5[0:n-1]orS=<s,s,... s, ;> of length n is a sequence of n symbols
from A

String Search:
Given two strings T (= Text) and P (= Pattern), P is usually much shorter than T
Decide whether P occurs as a (continuous) substring in T, and if so, find where it occurs

Variants of String Search

* Naive algorithm, no preprocessing of T or P

* Preprocessing of P (the pattern) for each new P

e Preprocessing of the text T

(Used when we search the same text a lot of times (with different patterns), done
to an extreme degree in search engines)

The naive algorithm (Prefix based)

Searching forward

T[0:n-1]

P[0:m-1]

The naive algorithm

T[0:n-1]

P[0:m-1]

The naive algorithm

T[0:n-1]

P[0:m-1]

The naive algorithm

n-m

T[0:n-1]

P[0:m-1]

The naive algorithm

n -1

function NaiveStringMatcher (P [0:m -1], T [0:n -1])

fors < Oton-mdo
if T[s:s+m-1] =P then
return(s)
endif
endfor
return(-1)

end NaiveStringMatcher

// loop through all window positions
// is window = P?

// if so, return start-index of window

// no match found

T[0:n-1]

P[0:m-1]

The naive algorithm

n -1

T[0:n-1]

P[0:m-1]

function NaiveStringMatcher (P [0:m -1], T [0:n -1])

fors < Oton-mdo
if T[s:s+m-1] =P then
return(s)
endif
endfor
return(-1)

end NaiveStringMatcher

// loop through all window positions
// is window = P?

// if so, return start-index of window

// no match found

The for-loop is executed n —m + 1 times

Each string test has up to m symbol
comparisons

O(nm) execution time (worst case)

The Knuth-Morris-Pratt algorithm (Prefix based)

* There is room for improvement in the naive algorithm
* The naive algorithm moves the window (pattern) only one character at a time

* But we can move the window farther, based on what we know from earlier comparisons
 USE WHAT WE KNOW, TO START FROM FIRST POSISTION WHERE A MATCH IS POSSIBLE

* How far can we move it?

Search forward

o(1y0;0}1}70}0}2]000|1T]J]0]0]2]|]0]1]2

The Knuth-Morris-Pratt algorithm (Prefix based)

* There is room for improvement in the naive algorithm
* The naive algorithm moves the window (pattern) only one character at a time

* But we can move the window farther, based on what we know from earlier comparisons
 USE WHAT WE KNOW, TO START FROM FIRST POSISTION WHERE A MATCH IS POSSIBLE

* How far can we move it?

Search forward

v

o{1,0;0}1}y0}0}2|0,0;(0|1,0|0]| 2] 1 | 2

The Knuth-Morris-Pratt algorithm (Prefix based)

* There is room for improvement in the naive algorithm
* The naive algorithm moves the window (pattern) only one character at a time

* But we can move the window farther, based on what we know from earlier comparisons
 USE WHAT WE KNOW, TO START FROM FIRST POSISTION WHERE A MATCH IS POSSIBLE

* How far can we move it?

Search forward

v

o|1{0]0|1]0]0}|2]0

The Knuth-Morris-Pratt algorithm (Prefix based)

* There is room for improvement in the naive algorithm
* The naive algorithm moves the window (pattern) only one character at a time

* But we can move the window farther, based on what we know from earlier comparisons
 USE WHAT WE KNOW, TO START FROM FIRST POSISTION WHERE A MATCH IS POSSIBLE

* How far can we move it?

Search forward

o(1y0;0}1}70}0}2]000|1T]J]0]0]2]|]0]1]2

The Knuth-Morris-Pratt algorithm (Prefix based)

* There is room for improvement in the naive algorithm
* The naive algorithm moves the window (pattern) only one character at a time

* But we can move the window farther, based on what we know from earlier comparisons
 USE WHAT WE KNOW, TO START FROM FIRST POSISTION WHERE A MATCH IS POSSIBLE

* How far can we move it?

Search forward

The Knuth-Morris-Pratt algorithm (Prefix based)

* There is room for improvement in the naive algorithm
* The naive algorithm moves the window (pattern) only one character at a time

* But we can move the window farther, based on what we know from earlier comparisons
 USE WHAT WE KNOW, TO START FROM FIRST POSISTION WHERE A MATCH IS POSSIBLE

* How far can we move it?

Search forward

v

The Knuth-Morris-Pratt algorithm (Prefix based)

* There is room for improvement in the naive algorithm
* The naive algorithm moves the window (pattern) only one character at a time

* But we can move the window farther, based on what we know from earlier comparisons
 USE WHAT WE KNOW, TO START FROM FIRST POSISTION WHERE A MATCH IS POSSIBLE

* How far can we move it?

Search forward

v

The Knuth-Morris-Pratt algorithm

The Knuth-Morris-Pratt algorithm

o1 110701

O|10((1T1]0] 0] 2

We move the pattern one step: Mismatch (in the second symbol)
(We have to move at least one step...)

The Knuth-Morris-Pratt algorithm

o1 110701

OO0} 1T]10]0]2

We move the pattern two steps: Mismatch (in the first symbol)

The Knuth-Morris-Pratt algorithm

O]l 11001

OO0} 10|02

We move the pattern three steps: Now, there is at least a match in the part of T where
we had a match previously

The Knuth-Morris-Pratt algorithm

A

v

We move the pattern three steps: Now, there is at least a match in the part of T where
we had a match previously

We can skip a number of tests and move the pattern more than one step before we start comparing characters again.
(3 in the above situation.)

The key is that we know what the characters of T and P are, up to the point where P and T got different.

(Tand P are equal up to this point.)

For each possible index jin P we assume that the first difference between P and T occurs at j, and from that compute
how far we can move P before the next string-comparison. (We only need to look at P for this!)

It may well be that we never get an overlap like the one above, and we can then move P all the way to the pointin T
where we found an inequality. This is the best case for the efficiency of the algorithm.

The Knuth-Morris-Pratt algorithm

0 J-1]
0 0
0 0
K j
« T . e ; .

— d; is the longest suffix of P[1:j-1] thatis also prefix of P [0 :) - 2]

We know that if we move P less than j - d; steps, there can be no (full) match

And we know that, after this move, P [0: d;-1] will match the corresponding part of T

Thus we can start the comparison at d; in P and compare P [d;: m-1] with the symbols from index/in T

l[dea behind the Knuth-Morris-Pratt algorithm

* We will produce a table Next [0: m-1] that shows how far we can move P when we
get a (first) mismatch at indexjinP, j=0,1,2, ..., m-1

* But the array Next will not give this number directly. Instead, Next [j] will contain
the new (and smaller value) that j should have when we resume the search after a
mismatch at jin P (see below)

e Thatis:
° Or:

* After Pis moved, we know that the first d; symbols of P are equal to the
corresponding symbols in T (that’s how we chose d;)

* So, the search can continue from indexiin Tand Next [j]in P

* The array Next[] can be computed from P alone!

The Knuth-Morris-Pratt algorithm

(2=5-3) we continue from here, this is Next[5]

(From index 5, starting again from 2 is the same as moving the pattern 3 steps)

function KMPStringMatcher (P [0:m -1], T [0:n -1])
i< 0 //indeksiT
j€ 0 //indeksiP
CreateNext(P [0:m -1], Next [n -1])
while i< ndo
ifP[j]=T[i]then
if j=m -1 then

return(i—-m + 1)

endif
< i+l
j<j+l
else
j& Next[j]
if j=0then
if T[i]#P[0] then
< i+l
endif
endif
endif
endwhile
return(-1)

end KMPStringMatcher

// preprocessing of the pattern P

// loop until we have a full match, or get to the end of T

// if the symbols match, we can continue looking for a full match
// check if match is full

// if so, return start-index of the (full) match

// if match is not full, check next symbol

// if the symbols did not match, we must move the window

// move window by decreasing j — implicit shift according to the preprosessing
// if j then becomes O (it can not be decreased any more)

// and symbols do not match

// move window by increasing i — explicit shift

// no match found

Calculating the array Next|[] from P

. 'I(')P(\iszc)an be written straight-ahead with simple searches, and will then use time
m

* A more clever approach finds the array Next in time O(m)

* We will look at the procedure in an exercise next week

The Knuth-Morris-Pratt algorithm, example

The Knuth-Morris-Pratt algorithm, example

The Knuth-Morris-Pratt algorithm, example

The Knuth-Morris-Pratt algorithm, example

The Knuth-Morris-Pratt algorithm, example

The Boyer-Moore algorithm (Suffix based)

* The naive algorithm, and Knuth-Morris-Pratt is prefix-based (from left
to right through P)

* The Boyer-Moore algorithm (and variants of it) is suffix-based (from
right to left in P)

* Horspool proposed a simplification of Boyer-Moore, and we will look
at the resulting algorithm here

The Boyer-Moore algorithm (Horspool)

Comparing from the
end of P

Mimj{a|t|c|h s|lh|i]|f]t clhlalr|alc]|t

hlal|r|la|c]|t

The Boyer-Moore algorithm (Horspool)

The Boyer-Moore algorithm (Horspool)

The Boyer-Moore algorithm (Horspool)

The Boyer-Moore algorithm (Horspool)

function HorspoolStringMatcher (P [0:m -1], T [0:n -1])

i<0
CreateShift(P [0:m -1], Shift [0:|A] - 1]) // preprocessing of the pattern P
whilei<n—-mdo // loop through all window positions (from left)
j&<Em-=1
whilej>0and T[i+j]=P[j] do // compare window and pattern (from right)
j<i-1
endwhile
if j=0then // if we have a full match,
return(/) // return start-index of window
endif
i & i+ Shift[T[i+m-1]] // if not, move pattern to the right, and align
endwhile // according to the last symbol of the window
return(-1)

end HorspoolStringMatcher

Calculating the array Shift[] from P

We must preprocess P to find the array Shift

The size of Shift[] is the number of symbols in the alphabet

We search from the end of P (minus the last symbol), and calculate the distance from the end for
every first occurence of a symbol

For the symbols not occuring in P, we know:

This will give a “full shift”

The Karp-Rabin algorithm (hash based)

* We assume that the alphabet for our stringsisA=1{0, 1, 2, ..., k-1}

* Each symbolin A can be seen as a digit in a number system with base k

e Thus each string in A* can be seen as number in this system (and we assume that
the most significant digit comes first, as usual)

Example:

k=10,and A={0,1, 2, ..., 9} we get the traditional decimal number system
The string ”6832355” can then be seen as the number 6 832 355

* Given a string P [0: m -1]. We can then calculate the corresponding number P’
using m - 1 multiplications and m - 1 additions (Horners rule, computed from the
innermost right expression and outwards):

P =P[m-1]1+k(P[m-2]+..+k(P[1] + Kk (P[0])...)

Example (written as it computed from left to right):
1234 = (((1*10) + 2)*10 + 3)*10 + 4

The Karp-Rabin algorithm

* Given a string T [0: n -1], and an integer s (start-index), and a pattern of length m. We
then refer to the substring T [s: s + m-1] as T, and its value is referred to as T~

* The algorithm:

* This is very much like the naive algorithm

* However: Given T, ; and k™~ 1, we can compute T, in constant time:

0 1 2 ... §-1 S s+m-1 n-1

T[0:n -1]

The Karp-Rabin algorithm

This constant time computation can be done as follows (where T', is defined as on the
previous slide, and k™~ is pre-computed):

T . =k*(T . -km™ 1*T[s]) + T [s+m] s=1,..,n—m

S

The Karp-Rabin algorithm

We can compute T, in constant time when we know 7", ; and k™~

We can therefore compute
P and
* T,5=0,1,..,n=m (n—m+1numbers)

in time O(n)

We can threfore “theoretically” implement the search algorithm in time O(n)

However, the numbers T"_and P" will be so large that storing and comparing them will take
too long time (in fact O(m) time — back to the naive algorithm again)

The Karp-Rabin trick is to instead use modular arithmetic:
* We do all computations modulo a value g

The value g should be chosen as a prime, so that kq just fits in a register (of e.g. 64 bits)

A prime number is chosen as this will distribute the values well

The Karp-Rabin algorithm
* We compute T'@_ and P9, where
T@ =T _modg,
P@) = P mod g, (only once)
and compare
* We canget T'@_=P"@ evenif T' . # P". This s called a spurious match

* So, if we have T(@_= P4 we have to fully check whether T.= P

* With large enough g, the probability for getting spurious matches is low
(see next slides)

function KarpRabinStringMatcher (P [0:m -1], T [0:n -1], k, q)

cé& k™ Imodg // initialize
P’a) & Q
T@ &0
fori<1tomdo
P@ & (k* P+ pP[i]) modg // calculate value for P
T, & (k*T@,+T[i])mod g // and first position of window
endfor
fors < 0ton-mdo // loop through all positions for the window
if s> 0 then // calculate value for the (new) window
T & (k*(TW@, -T[s]*c)+T[s+m])modq // (based on previous window)
endif
if 7'(@)_=pP’@ then // if we have a match mod q,
if T.=P then // then we must check the actual strings
return(s) // and return the start-index
endif
endif
endfor
return(-1) // no match found

end KarpRabinStringMatcher

The Karp-Rabin algorithm , time considerations

* The wc;_rst case running time occurs when the pattern P is found at the end of the
string

* If we assume that the strings are distributed uniformally, the probability that 7' _is
equal to P'@ (which is in the interval {0, 1, ..., g-1}) is1/q

* Thus T'@_, fors=0, 1, .., n-m-1 will for each s lead to a spurious match with
probability 1/q

* With the real match at the end of T, we will on average get (n - m) / g spurious
matches during the search

* Each of these will lead to m symbol comparisons. In addition, we have to check
whetherT @ equals P when we finally find the correct match at the end

Thus the number of comparisons of single symbols and computations of new values
T'@_will be:
n—m

q

+1jm+(n—m+1)

* We can choose values so that g >> m. Thus the runing time will be O(n)

Multiple searches in a fixed string T (structure)

* Itis then usually smart to preprocess T, so that later searches in T for different
patterns P will be fast

 We often refer to this as indexing the text (or data set), and this can be done in a
number of ways. We will look at the following technique:

T may also gradually change over time. We then have to update the index for each
such change

Tries (word play on Tree/Retrieval)

Compressed trie

Suffix trees (compressed)

Suffix tree for
T = babbage

* Looking for P in this trie will decide whether P occurs as a substring of T, all
substrings have a path strting in the root

S
&l 1. i
32 —
100
Horspool
English |6 —
g FLEXIBLE PATTERN MATCHING
s IN STRINGS
DNA 4 Praciala e seach s fr s and kg seuens
2 —p— e
o —t—————+—»
2 4 8 16 32 frd 128 256 m

Gonzalo Nevarro Mathieu Raffinot

	String Search
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	The naive algorithm (Prefix based)
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	The Knuth-Morris-Pratt algorithm (Prefix based)
	The Knuth-Morris-Pratt algorithm (Prefix based)
	The Knuth-Morris-Pratt algorithm (Prefix based)
	The Knuth-Morris-Pratt algorithm (Prefix based)
	The Knuth-Morris-Pratt algorithm (Prefix based)
	The Knuth-Morris-Pratt algorithm (Prefix based)
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Idea behind the Knuth-Morris-Pratt algorithm
	Slide Number 26
	The Knuth-Morris-Pratt-algorithm
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	The Boyer-Moore algorithm (Suffix based)
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	 The Boyer-Moore-algorithm (Horspool)
	Calculating the array Shift[] from P
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	The Karp-Rabin-algorithm
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53

