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Dynamic Programming

• In Erickson: Ch.3
• (In the B&P: Ch. 9, and Section 20.5)

• These slides have a different introduction to this topic than the books
• The introduction in B&P is a bit confusing, the formulation of the principle of 

optimality (def. 9.1.1) should be the other way around!
• Erickson is better

• The slides have a lot of text
• Meant to be a slide set that can be read afterwards



Dynamic Programming

• Dynamic programming was formalised by 
Richard Bellmann (RAND Corporation) in the 
1950s.

• “Programming” should here be understood as 
planning, scheduling, or making decisions. 
It has nothing to do with writing code.

• “Dynamic” should indicate that it is a stepwise 
process.



A Simple Example

We are given a matrix W with positive “weights” in each cell:
• Problem: Find the “best” path (lowest sum of weights) 

from upper left to lower right corner
• NB: The shown red path is radomly chosen, and is probably 

not the best path (has total weight = 255)  

• Solution: Use a new matrix P to store intermediate results:  
• P[i,j] = The weight of the best path from the start (upper left) 

to cell [i,j]
• The formula (recurrence relation) we us will be:  

P[i, j] = min( P[i-1, j], P[i, j-1] ) + W[i,j] 

12 5 35 7 21

4 29 8 19 14

8 3 19 20 24

37 84 78 15 62

26 13 40 33 12

21 60 27 18 17

12 17 52 58 80

16 45 53 72 86

24 27 46 66 90

61 111 124 81 143

87 100 140 114 126

108 160 167 132 143

(Initalization as light green)



Longest Common Subsequence (LCS), Ch 9.4

Find the Longest Common Subsequence of two strings: P (pattern) and 
T (text) (not necessarily consecutive)

• Here it is ehpp, the length is 4

T

P

e f h k p p g

g e h p f p

1 2 3 4 5 6

1 2 3 4 5 6

7



An Idea for Finding LCS
We will use an integer matrix L[0:m, 0:n] as shown below, where we imagine 
that the string P = P[1:m] is placed downwards along the left side of L, 
and T = T[1:n] is placed above L from left to right (at corresponding indices)
(NB: This is a slightly different use of indices than in sections 9.4 and 20.5)

• Our plan is then to systematically fill in this table so that  
L[i, j]  =   LCS( P[1:i], T[1:j] ) 

• The value we are looking for, LCS(P, T), 
will then occur in L[m, n]

We will do this from smaller to larger index pairs (i, j), 
by taking row after row from top to bottom 
(but column after column from left to tight would also work)

T
P 0 1 … j-1 j n

1
…

i-1

i ? 
m



Example: P = gehpfp and T = efhkppg

• We initialize the leftmost column
and the topmost row as shown

• Why is it correct with zeroes here? 
• Note that these celles correspond to 

the empty prefix of P and/or the
empty prefix of T 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 

0 1 1 1 

0 1 1 2 

0 1 

0 

0 4? 

0

g 1

e 2

h 3

p 4

f 5

p 6

e f h k p p g 

0 1 2 3 4 5 6 7 j

i

We have filled in a 
few more entries of L 
by intuition

We hope to get 4 here!

T

P



The General Formula for Filling in L

• We want to calculate L[i,j], 
and assume we have already
computed

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1

0 1 1 1 1 1 1 1

0 1 1 2 

0 

0 

0 4? 

0

g 1

e 2

h 3

p 4

f 5

p 6

e f h k p p g 

0 1 2 3 4 5 6 7 j

i

T

P

L[i-1,j-1] L[i-1, j]
L[i, j-1] Find: L[i,j]

Case 1: 
If  P[i] = T[j] then
L[i, j] =  L[i-1,j-1] + 1
WHY?

Case 2: 
If  P[i] ≠ T[j] then
L[i, j] =  max ( L[i, j-1], L [i-1, j] )
WHY?



The General Formula for Filling in L

L[i-1,j-1] L[i-1, j]
L[i, j-1] Find: L[i,j]

T[1:j-1]

P[1:i-1] 

T[1:j-1]

P[1:i-1]

T[i:j-1]

P[1:i-1]

T[1:j-1]

P[1: i-1]

T[j]

T[j]

P[i] P[i]

Case 1: 
If  P[i] = T[j] then
L[i, j] =  L[i-1,j-1] + 1

Case 2: 
If  P[i] ≠ T[j] then
L[i, j] =  max ( L[i, j-1], L [i-1, j] )



Using the General Formula to Fill in L

• We want to calculate L[i,j], 
and assume we have already
computed

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1

0 1 1 1 1 1 1 1

0 1 1 2 2 2 2 2

0 1 1 2 2 3 3 3

0 1 2 2 2 3 3 3

0 1 2 2 2 3 4 4

0

g 1

e 2

h 3

p 4

f 5

p 6

e f h k p p g 

0 1 2 3 4 5 6 7 j

i

T

P

L[i-1,j-1] L[i-1, j]
L[i, j-1] Find: L[i,j]

Case 1: 
If  P[i] = T[j] then
L[i, j] =  L[i-1,j-1] + 1
WHY?

Case 2: 
If  P[i] ≠ T[j] then
L[i, j] =  max ( L[i, j-1], L [i-1, j] )
WHY?

YAY !!



Finding the Actual Common Subsequence

• To find the actual subsequence (not 
just the length of it), we trace 
backwards from L[m,n], highlighting 
what “caused” each value.
• Arrows indicate the letters included 

in the Longest Common 
Subsequence (ehpp)

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1

0 1 1 1 1 1 1 1

0 1 1 2 2 2 2 2

0 1 1 2 2 3 3 3

0 1 2 2 2 3 3 3

0 1 2 2 2 3 4 4

0

g 1

e 2

h 3

p 4

f 5

p 6

e f h k p p g 

0 1 2 3 4 5 6 7 j

i

T

P

Case 1: 
If  P[i] = T[j] then
L[i, j] =  L[i-1,j-1] + 1
WHY?

Case 2: 
If  P[i] ≠ T[j] then
L[i, j] =  max ( L[i, j-1], L [i-1, j] )
WHY?



Approximate String Matching (Ch 20.5)

Find strings similar to P (pattern) in T (text)

P:  u t t x v 
T:  b s u t t v r t o x i g u t t v x l b t s k u t t z x v k l v h u u t t x v n x u t z t x v w 

• Questions: 
• What do we mean by a “similar string”? 
• Can we quantify the degree of similarity? 

• We look at how to define and find: 
• The Edit Distance between strings



Edit Distance Bewtween Strings

We observe that any string P can be converted to another string T by  some sequence
of the following opertions (usally by many different such sequences): 

The Edit Distance, ED(P,T), between two strings P and T is: 
The smallest number of such operations needed to convert P to T 
(or T to P, it is symmetric)

logarithm → alogarithm → algarithm → algorithm (Steps: +a, -o, a->o) 
P                                                                      T

ED(”logarithm”, ”algorithm”) = 3     There are no shorter ways!of doing it

Substitution:  One symbol in P is changed to another symbol
Addition:  A new symbol is inserted somwhere in P
Removing:   One symbol is removed from P



An Idea for Calculating Edit Distance
We will use an integer matrix D[0:m, 0:n] as shown below, where we imagine 
that the string P = P[1:m] is placed downwards along the left side of L, 
and T = T[1:n] is placed above L from left to right (at corresponding indices)

• Our plan is again to systematically fill in this table, but now so that  
D[i, j]  = Edit Distance between the strings P[1:i] and T[1:j]

• The value we are looking for, ED(P, T), 
will then occur in D[m, n]

Again, we will do this from smaller to larger index pairs 
(i, j), by taking row after row 
(but column after column would also work)

T
P 0 1 … j-1 j n

1
…

i-1

i ? 
m



Example: P = anne and T = ane

• We initialize the leftmost column
and the topmost row as shown

• Why is this initaialization correct? 
• Note that these celles correspond to 

the empty prefix of P and/or the
empty prefix of T 
D[i, j]  =   ED( P[1:i], T[1:j] ) 

0 1 2 3 

1 

2 

3 

4 

0

a 1

n 2

n 3

e 4

a n e 

0 1 2 3 j

i

T

P



Example: P = anne and T = ane

We’ll look a general cell D[i,j], and try to find how
the value here can be computed from the values
in the tree cells above and to the left

We first assume that P[i] = T[j]
• We know that P[1: i-1] can be transformed to 

T[1:j-1] in D[i-1, j-1] steps
• Therfore P[1:i-1] Ͱ n can also be transformed

into T[1:j-1] Ͱ n in D[i-1, j-1] steps

• So If P[i] = T[j], then D[i, j] =  D[i-1,j-1] 

0 1 2 3 

1 

2 

3 

4 

0

a 1

n 2

n 3

e 4

a n e 

0 1 2 3 j

i

T

P



Example: P = anne and T = ane

D[i-1,j-1] D[i-1, j]
D[i, j-1] Find: D[i,j]

T[1:j-1]

P[1:i-1] 

T[1:j-1]

P[1:i-1]

T[i:j-1]

P[1:i-1]

T[1:j-1]

P[1: i-1]

T[j]

T[j]

P[i] P[i] =

Case 1: 
If  P[i] = T[j] then
D[i, j] =  D[i-1,j-1]



Example: P = anne and T = ane

We next assume that P[i] ≠ T[j]
• We know that P[1: i-1] can be transformed to 

T[1:j-1] in D[i-1, j-1] steps
• Therfore P[1: i-1] Ͱ x can be transformed into T[1: j-1] Ͱ y in 

D[i-1, j-1] + 1 steps (substitution)

• Likewise P[1: i-1] Ͱ y can be transformed into T[1: j-1] 
in D[i, j-1] +1  steps (remove y from P)

• And P[1: i-1] can be transformed into T[1:j-1] Ͱ x in D[i-1, j] + 1 
steps (insert x in P (same as remove x from T)

• So if P[i] ≠ T[j] then
D[i, j] =  min( D[i-1,j-1], D[i,j-1], D[i-1,j] ) + 1

0 1 2 3 

1 

2 

3 

4 

0

a 1

n 2

n 3

e 4

a n e 

0 1 2 3 j

i

T

P



Example: P = anne and T = ane

D[i-1,j-1] D[i-1, j]
D[i, j-1] Find: D[i,j]

T[1:j-1]

P[1:i-1] 

T[1:j-1]

P[1:i-1]

T[1:j-1]

P[1:i-1]

T[1:j-1]

P[1: i-1]

T[j]

T[j]

P[i] P[i] ≠

Case 2: 
If  P[i] ≠ T[j] then
D[i, j] = min( D[i-1,j-1], D[i,j-1], D[i-1,j] ) + 1



General formula for filling in D

D[i, j] =  min( D[i-1,j-1], D[i,j-1], D[i-1,j] ) + 1 else

0

a 1

n 2

n 3

e 4

a n e 

0 1 2 3

T

P

D[i, j] =  D[i-1,j-1]  if P[i] = T[j]

substitution
make P[i] = T[j]

{D[i, j] =
addition in P
Same as
removal from T

removal from P

D[0, 0] = 0, D[i,0] = D[0,i] = i Initialization 0 1 2 3 

1 

2 

3 

4 



General formula for filling in D

D[i, j] =  min( D[i-1,j-1], D[i,j-1], D[i-1,j] ) + 1 else

0 1 2 3 

1 0 1 2

2 1 0 1

3 2 1 1

4 3 2 1

0

a 1

n 2

n 3

e 4

a n e 

0 1 2 3

T

P

D[i, j] =  D[i-1,j-1]  if P[i] = T[j]

substitution
make P[i] = T[j]

{D[i, j] =
addition in P
Same as
removal from T

removal from P

D[0, 0] = 0, D[i,0] = D[0,i] = i Initialization



A Program for Calculating Edit Distance
function EditDistance ( P [1:n ], T [1:m ] )

for i ← 0 to n do D[ i, 0 ] ← i
for j ← 1 to m do D[ 0, j ] ← j

for i ← 1 to n do
for j ← 1 to m do

If P [ i ] = T [ j ] then
D[ i, j ] ← D[ i -1, j - 1 ] 

else
D[ i, j ] ← min {  D[i -1, j - 1] +1,   D[i -1, j ] +1,   D[i, j - 1] +1  } 

endif
endfor

endfor
return( D[ n, m ] )

end EditDistance

Note that, after the initialization, we look at the pairs (i, j) 
in the following order (line after line):

(1,1) (1,2) … (1,n)        
(2,1) (2,2) … (2,n)        
… 
(m,1) …        (m,n) 

This is OK as this order ensures that the smaller 
instances are solved before they are needed to solve a 
larger instance. That is: 

D[i-1, j-1], D[i-1, j] and  D[i, j-1]  are always 
computed before D[i, j]  



Finding the Edit Steps

• Arrows indicate how we calculated each value
Diagonally and P[i] = T[j] 

• No edit needed (e.g. D[3,2], n = n)

Diagonally and P[i] ≠ T[j] 
• Substitution (e.g. D[3,3], not used in final edit path, n ≠ e)

Upwards (and thus P[i] ≠ T[j])
• A letter is deleted from P (e.g. D[2,1], n ≠ a)

To the left (and thus P[i] ≠ T[j])
• A letter is added to P (e.g. D[1,3], not used in final edit path, a ≠ e)

0 1 2 3 

1 0 1 2

2 1 0 1

3 2 1 1

4 3 2 1

0

a 1

n 2

n 3

e 4

a n e 

0 1 2 3 j

i

T

P



Finding the Edit Steps

• Arrows indicate how we calculated each value
Diagonally and P[i] = T[j] 

• No edit needed (e.g. D[3,2], n = n)

Diagonally and P[i] ≠ T[j] 
• Substitution (e.g. D[3,3], not used in final edit path, n ≠ e)

Upwards (and thus P[i] ≠ T[j])
• A letter is deleted from P (e.g. D[2,1], n ≠ a)

To the left (and thus P[i] ≠ T[j])
• A letter is added to P (e.g. D[1,3], not used in final edit path, a ≠ e)

0 1 2 3 

1 0 1 2

2 1 0 1

3 2 1 1

4 3 2 1

0

a 1

n 2

n 3

e 4

a n e 

0 1 2 3 j

i

T

P



About Dynamic Programming in General
• Dynamic Programming is typically used to solve optimazation problems. 

• The instances of the problem must be handeled from smaller to larger 
ones, and the smallest (or simplest) instances can usually easily be 
solved directly (and be used for initialization of a program) 

• For each problem instance I there is a set of instances I1, I2, … ,Ik, all 
smaller than I, so that we can find an 
(optimal) solution to I if we know the 
(optimal) solution of all the problems 
I1, I2 , …, Ik

0 1 … j-1 j n

1
…

i-1

i

m

The values of the green area are all computed when 
the gray value is to be computed. Usually only a few is 
used for computing each new entry 



When Should We Use Dynamic Programming?
• Dynamic Programming is useful if the total number of smaller instances 

needed to solve an instance I is so small that
• The answer to all of them can be stored in a suitabel table
• They can be computed within reasonable time

• The main trick is to store the solutions in the table for later use. The real 
gain comes when each “smaller” table
entry is used a number of times for later 
computations

0 1 … j-1 j n

1
…

i-1

i

m



Another (Slightly Abstract) Exmple

• As indicated on the previous slide, Dynamic Programming is more useful if the solution to a certain 
instance is used in the solution of many (larger) instances (assuming that the size of an 
instanstance C(i, j) is j – i) 

• In the problem C below, an instance is given by some data (e.g two strings) and by two intergers i 
and j. Assume the corresponding instances are written C(i, j).  Thus the solutions to the instances 
can be stored in a two-dimentional table with dimensions i and j. (The size of an instanstance C(i, j) 
is here j – i).

• Below, the children of a node N indicate the instances that we need the solution of, to compute the 
solution to instance N.  We would therefore get this tree if we use recursion without remembering 
computed values at all. 



A Rather Formal Basis for Dynamic 
Programming (not central to IN 3130)

Assume we have a problem P with instances I1, I2, I3 , ... 
Dynamic programming might be useful for solving P, if:

• Each instance has a “size”, where the “simplest” instances have small sizes, usually 0 or 1
• The (optimal) solution to instance I is written s(I) 
• For each I there is a set of instances { J1, … , Jk } called the base of I, written  B(I)={ J1, J2, … , Jk }

(where k may vary with I), and every Jk  is smaller than I. 
• We have a process/function Combine that takes as input an instance I, and the solutions  s(Ji) to all Ji in B(I), so 

that 
s(I) = Combine( I, s(J1), s(J2), … , s(Jk ) ) 

This is called the «recurrence relation» of the problem. 
• For an instance I, we can set up a sequence of instances < L0, L1,… , Lm> with growing sizes, and where Lm is the 

problem we want to solve, and so that for all p ≤ m, all instances in B(Lp)  occur  in the sequence before Lp. 

• The solutions of  the instances L0, L1,… , Lm can be stored in a table of reasonable size compared to the size of 
the instance I.



Two Variants of Dynamic Programming:
Bottom-Up (Trad.) and Top-Down (Memoization)
1. Traditional Dynamic Programming (bottom up) 
• Dynamic Programming is traditionally performed bottom-up. All relevant smaller instances are 

solved first (independently of whether they will be used later!), and their solutions are stored in a 
table

• This usually leads to very simple and often rapid programs

2. “Top-Down” Dynamic Programming - Memoization
• A drawback with traditional dynamic programming is that one usually solves a number of smaller 

instances that turn out not to be needeed for the actual (larger) instance that we are really 
interested in

• We can instead start at the (large) instance we want to solve, and do the computation recursively 
top-down. Also here we put computed solutions in the table as soon as they are computed

• Each time we need to find the answer to an instance we first check in the table whether it is 
already solved, and if so we only use the stored solution. Otherwise we do recursive calls, and 
store the solution

• The table entries then need a special marker “not computed”, which also should be the initial 
value of the entries



Top-Down Dynamic Programming 
(Memoization)
1. Start at the instance you want to solve, and ask 

recursively for the solution to the instances needed. 
The recursion will follow the green arrows in the 
figure

2. As soon as you have an answer, store it in a table 
table, and retrieve it from there when/if the answer 
to the same instance is needed later 

Benefit:
You only have to compute needed table entries
But:
Managing the recursive calls takes some extra time, so it it 
not always faster.

0 1 2 3 

1 0 1 2

2 1 0 1

3 2 1 1

4 3 2 1

0

a 1

n 2

n 3

e 4

a n e 

0 1 2 3 j

i

T
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Problems typically solved with Dynamic 
Programming
Both the Optimal Matrix Multiplication and Optimal Search Tree problem are of this type

• Assume we have a sequence of elements that should be turned into an optimal binary tree according to 
some criterium

• Assume the sequence occurs in an array E[1:n], and are < e1, e2, …, en > 
• We assume:  

1. What is an optimal subtree containing the interval of elements <ei, … ej>, written  E[i, j], depends only on the 
values of ei, …, ej themselves (and maybe of some "static” global information or table) 

2. The optimal subtree of E[i, j] will have one of the elements in E[i, j] as root, say ek, and have the optimal subtrees 
of the intervals E[i, k-1] and E[k+1,j] as subtrees 

3. The “quality” of an optimal subtree for E[i, j] is written Q(i, j). 
4. There is also a formula Q’(i,k,j) that computes the quality of the tree formed by using the element ek as root. This 

should only depend on Q(i,k-1]), Q(k+1, j) and the value of ek. 
5. That the quality of an empty tree and  a tree with one element can be computed.  This will make up the 

initialization of the algorithm below



Problems typically solved with Dynamic 
Programming
• We can then use Dynamic Programming to compute Q(1,n) (and the optimal tree 

for E[1, n]) by computing the Q(i, j) for the smallest intervals first, by the following 
recurrence formula: 

Q(i, j) = max over k = i, i+1, …, j of Q’(i, k, j) 

1 i j n

k

Try each of these as root for this interval  
(try all k = i … j). Find the best k (that is, 
largest Q’(i,k,j)), and choose this as root. 
You will all the time know the answer for 
the shorter intervals ([i, k-1] and [k+1, j]) 
during this computation

k
Result:



Optimal Matrix Multiplication Order, Ch 9.2
Given a sequence of matrices M0, M1, …, Mn -1 we want to compute the product M0 · M1 · … · Mn -1

We do this by parenthesizing and multiplying pairs of matrices

M0 · M1 · M2 · M3 = (M0 · (M1 · M2)) · M3

The multiplication can be done in different ways (different parenthesis structures):

(M0 · (M1 · (M2 · M3)))
(M0 · ((M1 · M2) · M3))
((M0 · M1) · (M2 · M3))
((M0 · (M1 · M2)) · M3)
(((M0 · M1) · M2) · M3)

The cost (number of scalar multiplications) can vary a lot



Optimal Matrix Multiplication Order, Ch 9.2
Gicen two matrices

A = p × q matrix
B = q × r matrix.

The cost (number of scalar multiplications) of computing A · B is p · q · r, and the result is a p × r matrix

Example
Multiply A · B · C, where
A is a 10 × 100 matrix, B is a 100 × 5 matrix, and C is a 5 × 50 matrix

Calculating D = (A · B) costs 5,000 and results in a 10 × 5 matrix
Calculating D · C costs 2,500
Total cost for (A · B) · C is 7,500

Calculating E = (B · C) costs 25,000 and results in a 100 × 50 matrix
Calculating A · E costs 50,000
Total cost for A · (B · C) is 75,000



Optimal Matrix Multiplication Order, Ch 9.2

• Given a sequence of matrices M0, M1, …, Mn -1 we want to compute the product 
M0 · M1 · … · Mn -1 as cheaply as possible 

• we must find an optimal parenthesis structure
• A parentherization of the sequence is a partition of the sequence into two sub-

sequences that both have to be parenthesized
(M0 · M1 · … · Mk) · (Mk + 1 · Mk + 2 · … · Mn-1)

• We must try all k to find the place to partition the sequence
• Each k gives rise to two subproblems: parentherization of the left and right 

sub-sequence
• A sequence of one matrix is a parentherization in itself (also obvious with two)



Optimal Matrix Multiplication Order, Ch 9.2

• Let d0, d1, …, dn be the dimensions for the sequence of matrices M0, M1, …, Mn-1
so that Mi has dimensions di × di+1

• Let mi,j be the cost of an optimal parenterization of Mi, Mi+1, …, Mj

• The formula for mi,j will then be as follows :

𝑚!,# = min
!$%&#

𝑚!,% + 𝑚%,# + 𝑑!𝑑%'(𝑑#'( for all 0 ≤ 𝑖 < 𝑗 < 𝑛 − 1
𝑚!,# = 0 for all 𝑖 ≤ 𝑖 ≤ 𝑛 − 1

• The total cost is found in m0,n-1



30 35 515 10 20 25d

m

5

4

3

2

1

0

0

1

2

3

4

5

0 0 0 0 0 0

15,750 2,625 750 1,000 5,000

7,875 4,375 2,500 3,500

9,375 5,3757,125

11,875 10,500

15,125

m1,4 = min(d1d2d5 + m(1,1) + m(2,4),
d1d3d5 + m(1,2) + m(3,4),
d1d4d5 + m(1,3) + m(4,4))

= min(35 · 15 · 20 + 0 + 2,500,
35 · 5 · 20 + 2,625 + 1,000,

35 · 10 · 20 + 4,375 + 0)

=min (13000, 7125, 11375)

=7125

Optimal Matrix Multiplication Order, Ch 9.2

Second 
index (j)

First
index (i)



30 35 515 10 20 25d

m

5

4

3

2

1

0

0

1

2

3

4

5

0 0 0 0 0 0

15,750 2,625 750 1,000 5,000

7,875 4,375 2,500 3,500

9,375 5,3757,125

11,875 10,500

15,125

Optimal Matrix Multiplication Order, Ch 9.2

Second 
index

First
index

c

0
1

2
3

4

5
4

3
2

1
2

Store the k in a separate 
table to remember the 
solution.



Optimal Matrix Multiplication Order, Ch 9.2
function OptimalParens( d[0 : n – 1] )

for i ← 0 to n-1 do
m[i, i] ← 0

for diag ← 1 to n – 1 do // helper variable, we fill in table diagonally
for i ← 0 to n – 1 – diag do

j ← i + diag
m[i, j] ← ∞
for k ← i to j – 1 do

q ← m[i, k] + m[k + 1, j] + d[i] · d[k + 1] · d[j + 1]
if q < m[i, j] then

m[i, j] ← q
c[i,j] ← k

endif
return m[0, n – 1]

end OptimalParens



Optimal Search Trees, Ch 9.3

• A binary tree for keys K0 , … Kn-1 conists of a root with key Ki , and two subtrees
L and R 

• We must try all possible roots Ki to find the best way to partition the tree
• Each root gives rise to two sub-problems – optimizing the left and rigt

subtree

Ki

K0 , …, Ki -1

p0 , …, pi -1
q0 , …, qi

Ki+1 , …, Kn -1

pi+1 , …, pn -1
pi+1 , …, qn 



Dynamic Programming in General:
Filling in tables bottom-up (smallest instances first)



Dynamic Programming – Calculations

• Normally we solve all small instances before moving on to larger ones
• If we know which small solutions are needed to solve a larger one, we can deviate 

from the above
• Thus, if we know the dependency graph of the problem, we must look at the 

intances in an order that conforms with that dependency


