Coping with Intractability

Branch:

Leaf nodes = possible solutions

Bound:

e Bactracking

e Pruning ("avskjering’)

1 of 22

e Building up a solution from solutions from
subproblems

e Principle: Every part of an optimal solution
must be optimal.

o<
o

S
o,

SV vl

2 of 22

[\

Restricting

e Idea: Perhaps the hard instances don’t
arise in practice?

e Often restricted versions of intractable
problems can be solved efficiently.

e CLIQUE on graphs with edge degrees
bounded by constant is in P:
const. C = (/) = O (n®) is a polynomial!
e Perhaps the input graphs are
— planar
— sparse
— have limited degrees

e Perhaps the input numbers are
— small
— limited

3 of 22

Def. 1 Let I be an instance of problem L, and

let MAXINT(I) be (the value of) the largest
integer in I. An algorithm which solves L in

time which is polynomial in |I| and
MAXINT(D) is said to be a pseudo-polynomial
algorithm for L.

Note: If MAXINT(I) is a constant or even a
polynomial in [[| forallI € L, then a
pseudo-polynomial algorithm for L is also a
polynomial algorithm for L.

4 of 22

In 0-1 KNAPSACK we are given integers

wi, wo, . . ., w, and K, and we must decide
whether there is a subset S of {1,2,...,n}
such that) ,._sw; = K. In other words: Can
we put a subset of the integers into our
knapsack such that the knapsack sums up to
exactly K, under the restriction that we
include any w; at most one time in the
knapsack.

Note: This decision version of 0-1 KNAPSACK
is essentially SUBSET SUM.

0-1 KNAPSACK can be solved by dynamic
programming. Idea: Going through all the w;
one by one, maintain an (ordered) set M of all
sums (< K) which can be computed by using
some subset of the integers seen so far.

5 of 22

Algorithm DP
1.Let My := {O}
2.For 1=1,2,...,n do:

Let Mj = Mj—l-

For each element u € M;_i:

Add v =w; +u to M; if v < K and
v is not already in M;.

3.Answer ’Yes’ if K € M,, ’No’
otherwise.

Example: Consider the instance with w;’s
11,18,24,42,15,7and K = 56. We get the
following M;-sets:

M() . {O}

M {0,11} (0411 =11)

M, :{0,11,18,20} (0 + 18 = 18,11 + 18 = 29)
M, - {0,11,18,24, 29,35, 42, 53}

M, - {0,11, 18,24, 29, 35, 42, 53}

M; - {0,11,15, 18, 24, 26, 29, 33,
35,39, 42, 44, 50, 53}

Mg - {0,7,11, 15,18, 22, 24, 25, 26, 29, 31, 33,
35,36, 39, 40, 42, 44, 46, 49, 50, 51, 53}

Theorem 1 DP is a pseudo-polynomial
algorithm. The running time of DP is
O (nK log K).

Proof: MAXINT()= K ...

6 of 22

Def. 2 A problem which has no
pseudo-polynomial algorithm unless P = NP
is said to be N"P -complete in the strong sense
or strongly N"P -complete.

Theorem 2 TSP is strongly N'P-complete.

Proof: In the standard reduction HAM TSP
the only integers are 1, 2 and n, so
MAXINT(I)= n. Hence a pseudo-polynomial
algorithm for TSP would solve
HAMILTONICITY in polynomial time (via
the standard reduction).

a b c d

a d al2 1 2 1
I I x bl|l 2 1 2
b C cl2 1 2 1
djl1 2 1 2

K =n(=4)

7 of 22

Alternative approaches to
algorithm design and analysis

e Problem: Exhaustive search gives typically
O (n!) = O (n")-algorithms for
NP-complete problems.

e So we need to get around the worst case /
best solution paradigm:
— worst-case — average-case analysis
— best solution — approximation
— best solution — randomized algorithms

8 of 22

Approximation

OPT
< 4 | \)
\¢.OPT ' €¢-OPT “/

Def. 3 Let L be an optimization problem. We
say that algorithm M is a polynomial-time
e-approximation algorithm for L if M runs
in polynomial time and there is a constant

e > 0 such that M is guaranteed to produce,
for all instances of L, a solution whose cost is

within an e-neighborhood from the optimum.

Note 1: Formally this means that the relative

error ‘tM(%)leOPT' must be less than or equal to

the constant e.

Note 2: We are still looking at the worst case,
but we don’t require the very best solution
any more.

Example: TSP with triangle inequality has a
polynomial-time approximation algorithm.

Al c<a+bd

a

9 of 22

Algorithm TSP-A:

Phase I: Find a minimum spanning tree.
Phase II: Use the tree to create a tour.

The cost of the produced solution can not be
more than 2-OPT, otherweise the OPT tour
(minus one edge) would be a more minimal
spanning tree itself. Hence ¢ = 1.

Opt. tour

10 of 22

Theorem 3 TSP has no polynomial-time
e-approximation algorithm for any ¢ unless
P=NP.

Proof:

Idea: Given ¢, make a reduction from
HAMILTONICITY which has only one solution
within the e-neighborhood from OPT, namely
the optimal solution itself.

a b C d
Id aj2+4en 1 24en 1

xb| 1 2+en 1 2+en
c Cl|24en 1 2+en 1
dl 1 2+en 1 2+en

K =n(=4)

The error resulting from picking a non-edge
is: Approx.solutin - OPT =
(m—142+en)—n=(1+€en>en

Hence a polynomial-time e-approximation
algorithm for TSP combined with the above

reduction would solve HAMILTONICITY in
polynomial time.

11 of 22

e Heuristics are a common way of dealing with
intractable (optimization) problems in
practice.

e Heuristics differ from algorithms in that they
have no performance guarantees, i.e. they
don’t always find the (best) solution.

A greedy heuristic for VERTEX COVER-opt.:

Heuristic VC-H1:

Repeat until all edges are covered:
1.Cover highest-degree vertex v;
2.Remove v (with edges) from

graph;

Theorem 4 The heuristic VC-H1 is not an
e-approximation algorithm for VERTEX
COVER-opt. for any fixed e.

12 of 22

N
Proof:

Show a counterexample, i.e. cook up
A an instance where the heuristic per-

forms badly.

Counterexample:

e A graph with nodes a;,...,a, and by, ..., b,.
e Node 0; is only connected to node a;.

e A bunch of c-nodes connected to a-nodes in
the following way:

— Node ¢; is connected to a; and a». Node ¢, is
connected to as; and a4, etc.

— Node ¢, 5 is connected to a;, a; and as.
Node ¢, /2,9 is connected to a4, a5 and ag, etc.

— Node ¢,,_; is connected to a1, as, . . . a,_1.

— Node ¢,, is connected to all a-nodes.

13 of 22

e The optimal solution OPT requires
n guards (on all a-nodes).

e VC-H1 first covers all the c-nodes (starting
with ¢,,) before covering the a-nodes.

e The number of c-nodes are of order n log n.

e Relative error for VC-H1 on this instance:
IVC-H1| — |OPT| (nlogn+n)—n
|OPT| B n
~ nlogn

= = logn # ¢
n

e The relative error grows as a function of n.

Heuristic VC-H2:
Repeat until all edges are covered:
1.Pick an edge e¢;
2.Cover and remove
both endpoints of e.

e Since at least one endpoint of every edge
must be covered, [VC-H2| < 2. |OPT|.

e S0 VC-H2 is a polynomial-time
e-approximation algorithm for VC with ¢ = 1.

e Surpisingly, this “stupid-looking” algorithm is
the best (worst case) approximation
algorithm known for VERTEX COVER-o0pt.

14 of 22

solution within

- Algorithm | €-neighborhood
T> M from OPT

Running time of M is O (F.(|I]))
where P.(n) is a polynomial in n and
also a function of e.

Def. 4 M is a polynomial-time
approximation scheme (PTAS) for
optimization problem L if given an instance I
of L and value e > 0 as input

1. M produces a solution whose cost is within
an e-neigborhood from the optimum (OPT)
and

2. M runs in time which is bounded by a
polynomial (depending on¢) in |I|.

M is a fully polynomial-time approximation
scheme (FPTAS) if it runs in time bounded by
a polynomial in |I| and 1/e.

Example: 0-1 KNAPSACK-optimization has a
FPTAS.

15 of 22

Instance: 2n + 1 integers: Weights wq, . . ., w,
and costs ¢y, . . ., ¢, and maximum weight K.

Question: Maximize the total cost

n

E :ijj

subject to =1

ij.flij < Kand:z:j =0,1
j=1

Image: We want to maximize the total value
of the items we put into our knapsack, but the
knapsack cannot have total weight more than
K and we are only allowed to bring one copy
of each item.

Note: Without loss of generality, we shall
assume that all individual weights w; are < K.

0-1 KNAPSACK-opt. can be solved in
pseudo-polynomial time by dynamic
programming. Idea: Going through all the
items one by one, maintain an (ordered) set
M of pairs (S, C') where S is a subset of the
items (represented by their indexes) seen so
far, such that S is the “lightest” subset having
total cost equal C.

16 of 22

Algorithm DP-OPT
1.Let My:={(0,0)}.
2.For 7=1,2,...,n do steps (a)-(c):
(&L) Let Mj = Mj—l-
(b) For each elem.(S,C) of M;_;:
If » . .,w;+w; <K, then add
(SU{3},C+¢j) to M;.
(c) Examine M; for pairs of
elements (S,C) and (S5',C)
with the same 2nd component.
For each such pair, delete
(Sla C) it 22’63’ w; = ZZES W;
and delete (5,C') otherwise.
3.The optimal solution is S where (S5,C)
is the element of M, having the larges
second component.

e The running time of DP-OPT is
O (nQCm 10g(nCme)) where C,, and W,,
are the largest cost and weight,
respectively.

17 of 22

Example: Consider the following instance of
0-1 KNAPSACK-opt.

jlil2]3|4
wiltl1]3]2 K=5
¢i [6]11]17]3

Running the DP-OPT algorithm results in the
following sets:

Mo = {(0,0)}

M, = {(Q)v 0)? <{1}7 6>}

2 — {(®7 O): <{1}7 6)? <{2}7 11)7 <{17 2}7 17)}

Ms = {(Q)v 0)? <{1}7 6)? <{2}7 11)7 <{17 2}7 17)7
({1,3},23),({2,3},29), ({1,2,3},34)}
M, = {(Q)v) <{4} 3) <{1}76>7<{174}79>7
({2}, 11), (12,4}, 14), ({1, 2},17), ({1, 2,4}, 20),
({1,3},23),({2,3},29), ({1,2,3},34)

Hence the optimal subset is {1, 2, 3} with

18 of 22

The FTPAS for 0-1 KNAPSACK-optimization
combines the DP-OPT algorithm with
rounding-off of input values:

il l23l4]5]6]7

will 4 111213 12]1]2 K=10
c; 1299731159221 13789157

The optimal solution S = {1,2, 3,6, 7} gives
S g€ =TT,

jlrl2l3l4a]5]6]7
wil 4 l1]2]3]2]1]2 K=10
¢; 12901 70(150]220{130 |80 150

The best solution, given the trunctation of the
last digit in all costs, is S" = {1, 3, 4,6} with
ZjGS/ Cj — 740.

19 of 22

A

Algorithm APPROX-DP-OPT

e Given an instance I of 0-1 KNAPSACK-opt
and a number ¢, truncate (round off
downward) ¢ digits of each cost c; in L.

e Run the DP-OPT algorithm on this
truncated instance.

e Give the answer as an approximation of
the optimal solution for 1.

Idea:

e Truncating ¢ digits of all costs, reduces the
number of possible “cost sums” by a factor
exponential in ¢. This implies that the
running time drops exponentially.

e Truncating error relative to reduction in
instance size is “exponentially small”:

Cn = 53501 87959
m N
half of length
but only 10~° of
precision

20 of 22

Theorem 5 APPROX-DP-OPT is a FPTAS for
0-1 KNAPSACK-0pL.

Proof: Let S and S’ be the optimal solution of
the original and the truncated instance of 0-1
KNAPSACK-opt., respectively. Let ¢; and ¢; be
the original and truncated version of the cost
associated with element j. Let ¢t be the
number of truncated digits. Then

ZngZngZEngEj

JjeS jes’ jes’ JES

(4) (5)

> Z(cj — 10" > ch —n- 10
JES JES

1. because S is a optimal solution

2. because we round off downward (¢; < ¢;
for all 5)

3. because 5’ is a optimal solution for the
truncated instance

4. because we truncate t digits
5. because S has at most n elements

This means that the have an upper bound on
the error:

ch—ch <mn-10

JeS jes’

21 of 22

e Running time of DP-OPT is
O (n*C,, log(nC,, W,,)) where C,, and W,,
are the largest cost and weight,
respectively.

e Running time of APPROX-DP-OPT is
O (n*C,, log(nC,W,,)107") because by
truncating ¢ digits we have reduced the

number of possible “cost sums” by a factor
10,
e Relative error € is
ZjeS Cj — ZjeS’ Cj (2 n - 10’ A
Z jes Cj - Cn
1. because our assumption that each
individual weight w; is < K ensures that

> iesCi 2 O (the item with cost C,,
always fits into an empty knapsack).

e Given any ¢ > 0, by truncating
t = |log;, <] digits APPROX-DP-OPT is an
e-approximation algorihtm for 0-1
KNAPSACK-opt with running time

%, (n3 log(nCy, W)) .

€

22 of 22

