

Coping with Intractability

Branch-and-Bound

Branch:

Leaf nodes = possible solutions

Bound:

- Bactracking
- Pruning ('avskjæring')

Dynamic Programming

- Building up a solution from solutions from subproblems
- Principle: Every part of an optimal solution must be optimal.

Restricting

- Idea: Perhaps the hard instances don't arise in practice?
- Often **restricted versions** of intractable problems can be solved efficiently.

Some examples:

- CLIQUE on graphs with edge degrees bounded by constant is in \mathcal{P} : const. $C \Rightarrow \binom{n}{C} = \mathcal{O}\left(n^{C}\right)$ is a polynomial!
- Perhaps the input graphs are
 - planar
 - sparse
 - have limited degrees
 - **—** . . .
- Perhaps the input **numbers** are
 - small
 - limited
 - **—** . . .

Pseudo-polynomial algorithms

Def. 1 Let I be an instance of problem L, and let MAXINT(I) be (the value of) the largest integer in I. An algorithm which solves L in time which is polynomial in |I| and MAXINT(I) is said to be a **pseudo-polynomial** algorithm for L.

Note: If MAXINT(I) is a constant or even a polynomial in |I| for all $I \in L$, then a pseudo-polynomial algorithm for L is also a polynomial algorithm for L.

Example: 0-1 KNAPSACK

In 0-1 KNAPSACK we are given integers w_1, w_2, \ldots, w_n and K, and we must decide whether there is a subset S of $\{1, 2, \ldots, n\}$ such that $\sum_{j \in S} w_j = K$. In other words: Can we put a subset of the integers into our knapsack such that the knapsack sums up to exactly K, under the restriction that we include any w_i at most one time in the knapsack.

Note: This decision version of 0-1 KNAPSACK is essentially SUBSET SUM.

0-1 KNAPSACK can be solved by dynamic programming. **Idea:** Going through all the w_i one by one, maintain an (ordered) set M of all sums ($\leq K$) which can be computed by using some subset of the integers seen so far.

Algorithm DP

- 1.Let $M_0 := \{0\}$.
- 2.For j = 1, 2, ..., n do:

Let $M_j := M_{j-1}$.

For each element $u \in M_{j-1}$:

Add $v = w_j + u$ to M_j if $v \leq K$ and v is not already in M_j .

3. Answer 'Yes' if $K \in M_n$, 'No' otherwise.

Example: Consider the instance with w_i 's 11, 18, 24, 42, 15, 7 and K = 56. We get the following M_i -sets:

 $M_0: \{0\}$ $M_1: \{0,11\}$ (0+11=11) $M_2: \{0,11,18,29\}$ (0+18=18,11+18=29) $M_3: \{0,11,18,24,29,35,42,53\}$ $M_4: \{0,11,18,24,29,35,42,53\}$ $M_5: \{0,11,15,18,24,26,29,33,35,39,42,44,50,53\}$ $M_6: \{0,7,11,15,18,22,24,25,26,29,31,33,35,36,39,40,42,44,46,49,50,51,53\}$

Theorem 1 *DP* is a pseudo-polynomial algorithm. The running time of *DP* is $\mathcal{O}(nK \log K)$.

Proof: MAXINT(I)= $K \dots$

Strong \mathcal{NP} -completeness

Def. 2 A problem which has no pseudo-polynomial algorithm unless $\mathcal{P} = \mathcal{NP}$ is said to be \mathcal{NP} -complete in the strong sense or strongly \mathcal{NP} -complete.

Theorem 2 TSP *is strongly* \mathcal{NP} *-complete.*

Proof: In the standard reduction HAM \propto TSP the only integers are 1, 2 and n, so MAXINT(I)= n. Hence a pseudo-polynomial algorithm for TSP would solve HAMILTONICITY in polynomial time (via the standard reduction).

$$K = n(=4)$$

Alternative approaches to algorithm design and analysis

- **Problem:** Exhaustive search gives typically $\mathcal{O}(n!) \approx \mathcal{O}(n^n)$ -algorithms for \mathcal{NP} -complete problems.
- So we need to get around the worst case / best solution paradigm:
 - worst-case → average-case analysis
 - best solution \rightarrow approximation
 - best solution → randomized algorithms

Approximation

Def. 3 Let L be an optimization problem. We say that algorithm M is a **polynomial-time** ϵ -approximation algorithm for L if M runs in polynomial time and there is a constant $\epsilon \geq 0$ such that M is guaranteed to produce, for all instances of L, a solution whose cost is within an ϵ -neighborhood from the optimum.

Note 1: Formally this means that the **relative error** $\frac{|t_M(n)-\mathrm{OPT}|}{\mathrm{OPT}}$ must be less than or equal to the constant ϵ .

Note 2: We are still looking at the worst case, but we don't require the very best solution any more.

Example: TSP with triangle inequality has a polynomial-time approximation algorithm.

Algorithm TSP- \triangle :

Phase I: Find a minimum spanning tree.
Phase II: Use the tree to create a tour.

The cost of the produced solution can not be more than $2\cdot OPT$, otherweise the OPT tour (minus one edge) would be a more minimal spanning tree itself. Hence $\epsilon=1$.

Theorem 3 TSP has no polynomial-time ϵ -approximation algorithm for any ϵ unless $\mathcal{P} = \mathcal{NP}$.

Proof:

Idea: Given ϵ , make a reduction from HAMILTONICITY which has only **one** solution within the ϵ -neighborhood from OPT, namely the optimal solution itself.

$$K = n(=4)$$

The **error** resulting from picking a non-edge is: Approx.solutin - OPT =

$$(n-1+2+\epsilon n)-n=(1+\epsilon)n>\epsilon n$$

Hence a polynomial-time ϵ -approximation algorithm for TSP combined with the above reduction would solve HAMILTONICITY in polynomial time.

Example: Vertex Cover

- **Heuristics** are a common way of dealing with intractable (optimization) problems in practice.
- Heuristics differ from algorithms in that they have no performance guarantees, i.e. they don't always find the (best) solution.

A greedy heuristic for VERTEX COVER-opt.:

Heuristic VC-H1:

Repeat until all edges are covered:

- 1. Cover highest-degree vertex v;
- 2. Remove v (with edges) from graph;

Theorem 4 The heuristic VC-H1 is not an ϵ -approximation algorithm for VERTEX COVER-opt. for any fixed ϵ .

Proof:

Show a **counterexample**, i.e. cook up an instance where the heuristic performs badly.

Counterexample:

- A graph with nodes a_1, \ldots, a_n and b_1, \ldots, b_n .
- Node b_i is only connected to node a_i .
- A bunch of *c*-nodes connected to *a*-nodes in the following way:
 - Node c_1 is connected to a_1 and a_2 . Node c_2 is connected to a_3 and a_4 , etc.
 - Node $c_{n/2+1}$ is connected to a_1 , a_2 and a_3 . Node $c_{n/2+2}$ is connected to a_4 , a_5 and a_6 , etc.
 - . . .
 - Node c_{m-1} is connected to $a_1, a_2, \ldots a_{n-1}$.
 - Node c_m is connected to all a-nodes.

- The optimal solution OPT requires n guards (on all a-nodes).
- VC-H1 first covers all the c-nodes (starting with c_m) before covering the a-nodes.
- The number of *c*-nodes are of order $n \log n$.
- Relative error for VC-H1 on this instance:

$$\frac{|\text{VC-H1}| - |\text{OPT}|}{|\text{OPT}|} = \frac{(n \log n + n) - n}{n}$$
$$= \frac{n \log n}{n} = \log n \neq \epsilon$$

 \bullet The relative error **grows as a function of** n**.**

Heuristic VC-H2:

Repeat until all edges are covered:

- 1. Pick an edge e;
- 2. Cover and remove both endpoints of e.
- Since at least one endpoint of every edge must be covered, $|VC-H2| \le 2 \cdot |OPT|$.
- So VC-H2 is a polynomial-time ϵ -approximation algorithm for VC with $\epsilon=1$.
- Surpisingly, this "stupid-looking" algorithm is the best (worst case) approximation algorithm known for VERTEX COVER-opt.

Polynomial-time approximation schemes (PTAS)

Running time of M is $\mathcal{O}(P_{\epsilon}(|I|))$ where $P_{\epsilon}(n)$ is a polynomial in n and also a function of ϵ .

Def. 4 M is a **polynomial-time approximation scheme (PTAS)** for optimization problem L if given an instance Iof L and value $\epsilon > 0$ as input

- 1. M produces a solution whose cost is within an ϵ -neighborhood from the optimum (OPT) and
- 2. M runs in time which is bounded by a polynomial (depending on ϵ) in |I|.

M is a fully polynomial-time approximation scheme (FPTAS) if it runs in time bounded by a polynomial in |I| and $1/\epsilon$.

Example: 0-1 KNAPSACK-optimization has a FPTAS.

0-1 KNAPSACK-optimization

Instance: 2n + 1 integers: Weights w_1, \ldots, w_n and costs c_1, \ldots, c_n and maximum weight K.

Question: Maximize the total cost

$$\sum_{j=1}^{n} c_j x_j$$

subject to

$$\sum_{j=1}^{n} w_j x_j \le K \text{ and } x_j = 0, 1$$

Image: We want to maximize the total value of the items we put into our knapsack, but the knapsack cannot have total weight more than K and we are only allowed to bring one copy of each item.

Note: Without loss of generality, we shall assume that all individual weights w_i are $\leq K$.

0-1 KNAPSACK-opt. can be solved in pseudo-polynomial time by dynamic programming. **Idea:** Going through all the items one by one, maintain an (ordered) set M of pairs (S, C) where S is a subset of the items (represented by their indexes) seen so far, such that S is the "lightest" subset having total cost equal C.

Algorithm DP-OPT

- 1.Let $M_0 := \{(\emptyset, 0)\}.$
- 2. For j = 1, 2, ..., n do steps (a)-(c):
 - (a) Let $M_i := M_{i-1}$.
 - (b) For each elem.(S,C) of M_{j-1} : If $\sum_{i\in s} w_i + w_j \leq K$, then add $(S \cup \{j\}, C + c_j)$ to M_j .
 - (c) Examine M_j for pairs of elements (S,C) and (S',C) with the same 2nd component. For each such pair, delete (S',C) if $\sum_{i\in s'}w_i\geq \sum_{i\in S}w_i$ and delete (S,C) otherwise.
- 3. The optimal solution is S where (S,C) is the element of M_n having the larges second component.
 - The running time of DP-OPT is $\mathcal{O}\left(n^2C_m\log(nC_mW_m)\right)$ where C_m and W_m are the largest cost and weight, respectively.

Example: Consider the following instance of 0-1 KNAPSACK-opt.

Running the DP-OPT algorithm results in the following sets:

$$M_{0} = \{(\emptyset, 0)\}$$

$$M_{1} = \{(\emptyset, 0), (\{1\}, 6)\}$$

$$M_{2} = \{(\emptyset, 0), (\{1\}, 6), (\{2\}, 11), (\{1, 2\}, 17)\}$$

$$M_{3} = \{(\emptyset, 0), (\{1\}, 6), (\{2\}, 11), (\{1, 2\}, 17), (\{1, 3\}, 23), (\{2, 3\}, 29), (\{1, 2, 3\}, 34)\}$$

$$M_{4} = \{(\emptyset, 0), (\{4\}, 3), (\{1\}, 6), (\{1, 4\}, 9), (\{2\}, 11), (\{2, 4\}, 14), (\{1, 2\}, 17), (\{1, 2, 4\}, 20), (\{1, 3\}, 23), (\{2, 3\}, 29), (\{1, 2, 3\}, 34)\}$$

Hence the optimal subset is $\{1, 2, 3\}$ with $\sum_{j \in S} c_j = 34$.

The FTPAS for 0-1 KNAPSACK-optimization combines the DP-OPT algorithm with rounding-off of input values:

j
 1
 2
 3
 4
 5
 6
 7

$$w_j$$
 4
 1
 2
 3
 2
 1
 2

 c_j
 299
 73
 159
 221
 137
 89
 157

The optimal solution $S = \{1, 2, 3, 6, 7\}$ gives $\sum_{j \in S} c_j = 777$.

j
 1
 2
 3
 4
 5
 6
 7

$$w_j$$
 4
 1
 2
 3
 2
 1
 2
 $K = 10$
 \overline{c}_j
 290
 70
 150
 220
 130
 80
 150

The best solution, given the trunctation of the last digit in all costs, is $S' = \{1, 3, 4, 6\}$ with $\sum_{j \in S'} c_j = 740$.

Algorithm APPROX-DP-OPT

- Given an instance I of 0-1 KNAPSACK-opt and a number t, truncate (round off downward) t digits of each cost c_i in I.
- Run the DP-OPT algorithm on this truncated instance.
- Give the answer as an approximation of the optimal solution for I.

Idea:

- Truncating t digits of all costs, reduces the number of possible "cost sums" by a factor exponential in t. This implies that the running time drops exponentially.
- Truncating error relative to reduction in instance size is "exponentially small":

$$C_m = 53501\,87959$$

half of length
but only 10^{-5} of
precision

Theorem 5 *APPROX-DP-OPT is a FPTAS for* 0-1 KNAPSACK-opt.

Proof: Let S and S' be the optimal solution of the original and the truncated instance of 0-1 KNAPSACK-opt., respectively. Let c_j and \overline{c}_j be the original and truncated version of the cost associated with element j. Let t be the number of truncated digits. Then

$$\sum_{j \in S} c_j \stackrel{(1)}{\geq} \sum_{j \in S'} c_j \stackrel{(2)}{\geq} \sum_{j \in S'} \overline{c}_j \stackrel{(3)}{\geq} \sum_{j \in S} \overline{c}_j$$

$$\stackrel{(4)}{\geq} \sum_{j \in S} (c_j - 10^t) \stackrel{(5)}{\geq} \sum_{j \in S} c_j - n \cdot 10^t$$

- 1. because *S* is a optimal solution
- 2. because we round off downward ($\overline{c}_j \leq c_j$ for all j)
- 3. because S' is a optimal solution for the truncated instance
- 4. because we truncate *t* digits
- 5. because S has at most n elements

This means that the have an upper bound on the **error**:

$$\sum_{j \in S} c_j - \sum_{j \in S'} c_j \le n \cdot 10^t$$

- Running time of DP-OPT is $\mathcal{O}\left(n^2C_m\log(nC_mW_m)\right)$ where C_m and W_m are the largest cost and weight, respectively.
- Running time of APPROX-DP-OPT is $\mathcal{O}\left(n^2C_m\log(nC_mW_m)10^{-t}\right)$ because by truncating t digits we have reduced the number of possible "cost sums" by a factor 10^t .
- Relative error ϵ is

$$\frac{\sum_{j \in S} c_j - \sum_{j \in S'} c_j}{\sum_{j \in S} c_j} \stackrel{(1)}{\leq} \frac{n \cdot 10^t}{c_m} \triangleq \epsilon$$

- 1. because our assumption that each individual weight w_j is $\leq K$ ensures that $\sum_{j \in S} c_j \geq C_m$ (the item with cost C_m always fits into an empty knapsack).
- Given any $\epsilon > 0$, by truncating $t = \lfloor \log_{10} \frac{\epsilon \cdot c_m}{n} \rfloor$ digits APPROX-DP-OPT is an ϵ -approximation algorihtm for 0-1 KNAPSACK-opt with running time $\mathcal{O}\left(\frac{n^3 \log(nC_mW_m)}{\epsilon}\right)$.