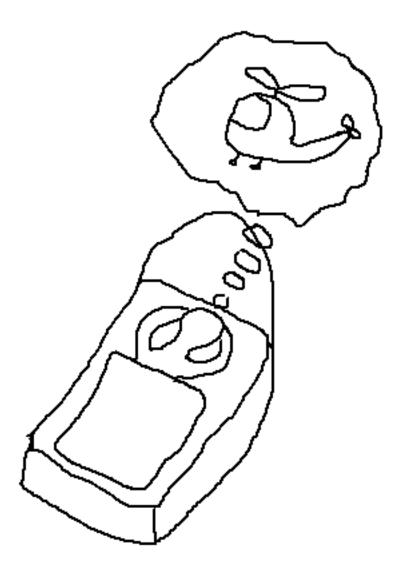
Alternative approaches to algorithm design and analysis

- **Problem:** Exhaustive search gives typically $\mathcal{O}(n!) \approx \mathcal{O}(n^n)$ -algorithms for \mathcal{NP} -complete problems.
- So we need to get around the worst case / best solution paradigm:
 - worst-case → average-case analysis
 - best solution \rightarrow approximation
 - best solution → randomized algorithms

Average-case analysis & algorithms



- **Problem** = (L, P_r) where P_r is a probability function over the input strings: $P_r : \sum^* \to [0, 1]$.
- $\sum_{x \in \sum^*} P_r(x) = 1$ (the probabilities must sum up to 1).
- **Average time** of an algorithm:

$$T_A(n) = \sum_{\{x \in \sum^* \mid |x|=n\}} T_A(x) P_r(x)$$

- **Key issue:** How to choose P_r so that it is a realistic model of reality.
- Natural solution: Assume that all instances of length n are equally probable (uniform distribution).

Random graphs

Uniform probability model (UPM)

- Every graph *G* has equal probability
- If the number of nodes = n, then $P_r(G) = \frac{1}{\# \text{graphs}} = \frac{1}{2\binom{n}{2}}$, where $\binom{n}{2} = \frac{n(n-1)}{2}$
- UPM is more natural for interpretation

Independent edge probability model (IEPM)

- ullet Every possible edge in a graph G has equal probability p of occuring
- The edges are independent in the sense that for each pair (s, t) of vertices, we make a new toss with the coin to decide whether there will be an edge between s and t.
- For $p = \frac{1}{2}$ IEPM is identical to UPM:

$$P_r(G) = \left(\frac{1}{2}\right)^m \cdot \left(\frac{1}{2}\right)^{\binom{n}{2}-m} = \frac{1}{2\binom{n}{2}}$$

IEPM is easier to work with

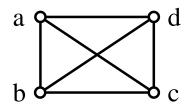
Example: 3-COLORABILITY

In 3-COLORABILITY we are given a graph as input and we are asked to decide whether it is possible to color the nodes using 3 different colors in such a way that any two nodes have different colors if there is an edge between them.

Theorem 1 3-COLORABILITY, which is an \mathcal{NP} -complete problem, is solvable in **constant** average (expected) time on the IEPM with p = 1/2 by a branch-and-bound algorithm (with exponential worst-case complexity).

Proof:

Strategy (for a rough estimate): Use the indep. edge prob. model. Estimate expected time for finding a proof of non-3-colorability.



 K_4 (a clique of size 4) is a proof of non-3-colorability.

• The probability of 4 nodes being a K_4 :

$$P_r(K_4) = 2^{-\binom{4}{2}} = 2^{-6} = \frac{1}{128}$$

• Expected no. of 4-vertex sets examined before a K_4 is found:

$$\sum_{i=1}^{\infty} i (1 - 2^{-6})^{i-1} 2^{-6} = 2^{-6} \sum_{i=1}^{\infty} i (1 - 2^{-6})^{i-1}$$

$$\stackrel{*}{=} 2^{-6} \frac{1}{(1 - (1 - 2^{-6}))^2}$$

$$= 2^{-6} \frac{1}{(2^{-6})^2} = \frac{2^{12}}{2^6} = 2^6 = 128$$

- $(1-2^{-6})^{i-1}2^{-6}$ is the probability that the first K_4 is found after examining exactly i 4-vertex sets.
- (*) is correct due to the following formula $(q = 1 2^{-6})$ from mathematics (MA100):

$$\sum_{i=1}^{\infty} iq^{i-1} = \frac{\delta}{\delta q} \left(\sum_{i=1}^{\infty} q^i \right) = \frac{\delta}{\delta q} \left(\frac{q}{1-q} \right)$$
$$= \frac{1}{(1-q)^2}$$

Conlusion: Using IEPM with $p = \frac{1}{2}$ we need to check 128 four-vertex sets on average before we find a K_4 .

Note: Random graphs with constant edge probability are very dense (have lots of edges). More realistic models has p as a function of n (the number of vertices), i.e. $p = 1/\sqrt{n}$ or p = 5/n.

0-1 Laws

as a link between probabilistic and deterministic thinking.

Example: "Almost all" graphs are

- not 3-colorable
- Hamiltonian
- connected
- . . .

Def. 1 A property of graphs or strings or other kind of problem instances is said to have a **zero-one law** if the limit of the probability that a graph/string/problem instance has that property is either 0 or 1 when n tends to infinity ($\lim_{n\to\infty}$).

Example: HAMILTONICITY

a linear expected-time algorithm for random graphs with p = 1/2.

- **Difficulty:** The probability of non-Hamiltonicity is too large to be ignored, e.g. $P_r(\exists \text{ at least } 1 \text{ isolated vertex}) = 2^{-n}$.
- The algorithm has 3 phases:
 - Phase 1: Construct a Hamiltonian path in linear time. Fails with probability $P_1(n)$.
 - Phase 2: Find proof of non-Hamiltonicity or construct Hamiltonian path in time $\mathcal{O}(n^2)$. Unsuccessful with probability $P_2(n)$.
 - Phase 3: Exhaustive search (dynamic programming) in time $\mathcal{O}\left(2^{2n}\right)$.
- Expected running time is $\leq \mathcal{O}(n) + \mathcal{O}(n^2) P_1(n) + \mathcal{O}(2^{2n}) P_1(n) P_2(n)$ $= \mathcal{O}(n) \text{ if } P_1(n) \cdot \mathcal{O}(n^2) = \mathcal{O}(n)$ $\text{and } P_1(n) P_2(n) \cdot \mathcal{O}(2^{2n}) = \mathcal{O}(n)$
- Phase 2 is necessary because $\mathcal{O}(2^{-n}) \cdot \mathcal{O}(2^{2n}) = \mathcal{O}(2^n)$.
- After failing to construct a Hamiltonian path fast in phase 1, we first reduce the probability of the instance being non-Hamiltonian (phase 2), before doing exhaustive search in phase 3.

Randomized computing

Machines that can **toss coins** (generate random bits/numbers)

- Worst case paradigm
- Always give the correct (best) solution

Randomized algorithms

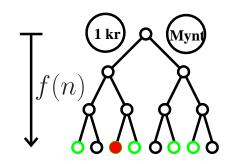
Idea: Toss a coin & simulate non-determinism

Example 1: Proving polynomial non-identities

$$(x+y)^{2} \neq x^{2} + 2xy + y^{2}$$

$$\stackrel{?}{\neq} x^{2} + y^{2}$$

- What is the "classical" complexity of the problem?
- Fast, randomized algorithm:
 - Guess values for x and y and compute left-hand side (LHS) and right-hand side (RHS) of equation.
 - If LHS \neq RHS, then we know that the polynomials are different.
 - If LHS = RHS, then we suspect that the polynomials are identical, but we don't know for sure, so we repeat the experiment with other x and y values.
- Idea works if there are many witnesses.



Let f(n) be a polynomial in n and let the probability of success after f(n) steps/coin tosses be $\geq \frac{1}{2}$. After f(n) steps the algorithm either

- finds a witness and says "Yes, the polynomials are different", or
- halts without success and says "No, maybe the polynomials are identical".

This sort of algorithm is called a **Monte Carlo** algorithm.

Note: The probability that the Monte Carlo algorithm succeeds after f(n) steps is **independent of input** (and dependent only on the coin tosses).

- Therefore the algorithm can be repeated on the same data set.
- After 100 repeated trials, the probability of failure is $\leq 2^{-100}$ which is smaller then the probability that a meteorite hits the computer while the program is running!

Metaheuristics

Simulated Annealing

- Analogy with physical annealing
- 'Temperature' T, annealing schedule
- 'Bad moves' with probability $\exp(-\delta f/T)$

Genetic algorithms

- Analogy with Darwinian evolution
- 'individuals', 'fitness', 'cross breeding'

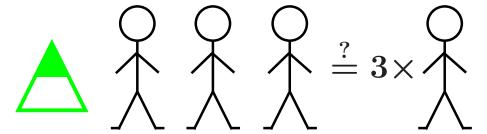
Neural Networks

- Analogy with human mind
- 'neurons', 'learning'

Taboo search

- Analogy with culture
- adaptive memory, responsive exploration

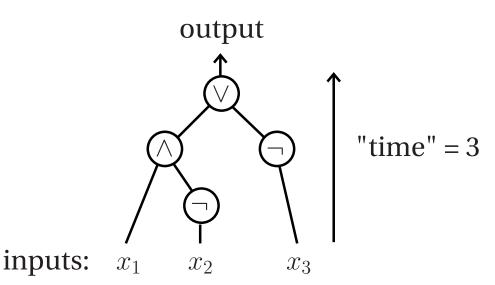
Parallel computing



- some problems can be efficiently parallelized
- some problems seems inherently sequential

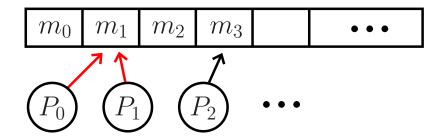
Parallel machine models

- Alternating TMs
- Boolean Circuits



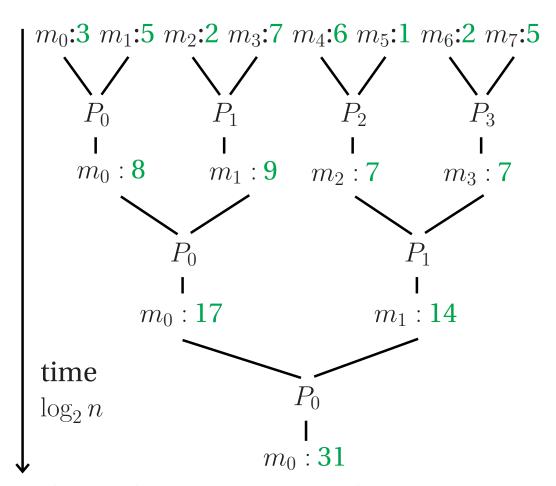
Boolean Circuit complexity: "time" (length of longest directed path) and hardware (# of gates)

• Parallell Random Access Machines (PRAMS)



- Read/Write conflict resolution strategy
- PRAM complexity: time (# of steps) and hardware (# of processors)

Example: Parallel summation in time $O(\log n)$



Result: Boolean Circuit complexity = PRAM complexity.

Limitations to parallel computing Good news

parallel time ↔ sequential space

Example: Hamiltonicity can easily be solved in parallel polynomial time:

- On a graph with n nodes there are at most n! possible Hamiltonian paths.
- Use n! processors and let each of them check 1 possible solution in polynomial time.
- Compute the OR of the answers in parallel time $\mathcal{O}(\log(n!)) = \mathcal{O}(n \log n)$.

Bad news

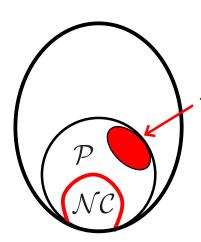
Theorem 2 *With polynomial many processors* parallel poly. time = sequential poly. time

Proof:

- 1 processor can simulate one step of m processors in sequential time $t_1(m) = \mathcal{O}(m)$
- Let $t_2(n)$ be the polynomial parallel time of the computation. If m is polynomial then $t_1(m) \cdot t_2(n) = \text{polynomial}$.

Parallel complexity classes

Def. 2 A language is said to be in class \mathcal{NC} if it is recognized in polylogarithmic, $\mathcal{O}\left(\log^k(n)\right)$, parallel time with uniform polynomial hardware.



P-hard, Ex: CIRCUIT VALUE

$$\bullet \mathcal{P} \stackrel{?}{=} \mathcal{NC}$$