ees a Sff.rategles
VO- pIaye Games-_r

2nd November 2 ’

Ch. 23.5: Games, game trees and strategies

* We have looked at “one player games” (= search) and their decision trees, earlier
(Ch 23.1 - 23.4)

* This is search for a goal node that everybody agrees is “good”

* Then you can for instance use A*-search for e.g.:

* Solve the 15-puzzle from a given position
* Find the shortest path between nodes in a graph (better than plain Dijkstra)

BUT:
* When two players are playing against each other, things get very different.
What is good for one player is bad for the other
* The tree of possible plays is often enormous. For chess it is estimated to have ca 10'% nodes,
and can therefore never (?) be searched exhaustively!

* We look at “zero-sum” games. This roughly means:

* If, during a move, the “chances to win” is increased for one of the players, then it is decreased by
the corresponding amount for the other

Example: A game tree for Tic-Tac-Toe

The start/root node of the

* The board has 3 x 3 squares. game tree for Tic-Tac-Toe.
 The game: Repeat the following /
moves Player

* Player A chooses an unused square and
writes X in it

|
* Player B does the same, but writes O | | | | |

* Player A (always) starts B o T T T
|

* When a player has three-in-a-row, — 1T T T T T 71T 1
he/she has won oL ol Lo

o
it
o

* The game stops when A or B wins, or
when all squares are filled (maybe

with a “draw” = neither A nor B has

. A final situation
three-in-a-row)

without a winner

Number of nodes in a fully expanded tree for

Tic-Tac-Toe

1 node ’ |
7T 1T 17T 1T T 1
9 nodes s e e . el i
|
1T T 17T T T 1
9*8 = 72 nodes A % e o e

9*8*7 =504 nodes

9*8*7*6=3024nodes,

9*8*7*6*5=15120nodes

9*8*7*6*5*4*3*2*1 = 9! (“factorial”’) = 362 880 nodes

Comment: By searching depth-first in
this tree, you never need to store more
than 9 nodes, but it will take some time
to go through all 362 880 nodes.

(And for “interesting games” there are
usually a lot more!)

The same situation may occur many places in the
tree. We may represent each situation by one node

/‘

1 node 1 node
9 nodes As before < 9 nodes
9*8 = 72 nodes

Example of a
collapsed
tree (a DAG)

9*8*7 = 504 nodes
9*8*7*6 = 3024 nodes

9*8*7*6*5 = 15120 nodes
9*8*7*6*5* 4 = 60480 nodes

Fewer than before

9*8*7*6*5%4*3*2*1 = 362 880 nodes

9
This usually requires a lot of memory! (4

_ 72 different nodes

-
252 different nodes

756 different nodes

< 1260 different nodes
1680 different nodes

126 different nodes = (Z)

—

) =(9876)/(1234)=126

In some games,
e.g. Tic-Tac-Toe,
you can gain a lot
by recognizing
equal nodes, and
not repeat the
analysis for these

In Tic-Tac-Toe we
then never need
more than 1680
nodes during
breath first search

In Chess this is
very important!

Representing symmetric situations by the

same node

* We can also gain a lot by looking at symmetries:

* Two situations are symmetric if the rest of the game from these two situations will also

be symmetric according to the rules of the game

* Represent positions that are symmetries of each other by the same node
* Tic-Tac-Toe: Symmetric solutions will always be at the same depth, but this is not

generally the case!
* In e.g. chess there are fewer symmetries to utilize

* Using this will often reduce the needs for memory/time further!

Player

>

>

O

1 node

3 nodes

12 nodes

The “value” of a position, and zero-sum games

* During a game, we will always store:

* A number (value) characterizing how good the situation is for player A
* High values are good for A, and low values are bad
* Thus all nodes of a game-tree have a value (seen from A)

* |If we want to see the game from B’s point of view, we usually negate the
values

 We want a “strategy for A”

e Thatis: Some kind of rule telling A what to do in all possible “A-situations”
(those where it is A’s turn to make a move)

* We will, for a given position, look for a strategy that will give A a win
* But note: Such a strategy will often not exist!

Fully analyzable games

* “Fully analyzable games” means: The full tree can be traversed and
analyzed

* Then there will be three possible values for each A-situation S (usually
represented as +1, -1 or 0)

1. A hasa strategy so that A will win whatever B does, if A follows that
strategy from S (score: +1 for A)

2. Whatever A does from S, B has a winning strategy from the new situation
(score: -1 for A).

3. If Aand B both play perfectly, it will end in a tie, or the game will go on for
ever (score: O for both)

 Situation 3 can only occur for some games. E.g.: The game Tic-Tac-Toe ends in a tie if
both players play as good as possible.

Another example: The game Nim

e We start with two (or more?) piles of
sticks

e Number of sticks: m and n

* One player can take any number of
sticks from one pile, but have to take at
least 1

* The player taking the last stick has lost

— Nim will never end in a tie.

— With m=3 and n=2, the full game tree is
shown to the right.

— The value seen from A is indicated for
the final situations (leaf nodes).

— Next problem: What is the value of the
rest of the nodes?

Here m=3 and n=2

Eo—=o

+
+
+
+
—
+

NB: We could reduce the number of separate nodes
by recognizing symmetries and equivalent nodes
(see e.g. blue circles above)

How can we find a strategy so that A wins?
Or prove that no such strategy exists!

Player

* A wants to find an optimal move from any A
given position

* We must assume that also B will do optimal |
moves seen from B’s point of view 2|

 Thus B will move to the subnode with smallest
value (since +1 and -1 are as seen from A) " E

e »—-}—-—[io w

= O]——ﬂ_l_{:—w‘;_

Min-Max Strategy:

* To compute the value of a node, we have to
know the values of all the subnodes

* This can be done by a depth first search,
computing node values during the
withdrawal (postfix)

+
I [o o]———l—{»—‘ =)

I [o o]
I [e o]
- O

I[o ©

+[o o]-—I[.- o

Ilool————ﬁ.—o
. & [}

| [© o}

Values for A-nodes: If possible, move to a node
with value +1 (and mark current node with +1).
Otherwise make a random move

Values for B-nodes: If possible, move to a node
with value -1. Otherwise make a random move

The Min-Max-Algorithm in action, with simple
alpha-beta cutoft

Not looked at!

* Previous slide: The search is done by a
depth first traversal of the game tree,
computing values on withdrawal (postfix)

* The result of this is given in the figure to
the left as + and -.

Possible optimalization:

* From the start-position S, assume that A
has looked at three of its subtrees (from
the left). A has then found a winning node
U (marked +1). Then the value of V and W
does not matter.

+[Eo—H= o1&

E * This is a simple version of alpha-beta
cutoff (pruning)

e Green arrows: Good moves for A ¢ Red arrows: Good move for B
from winning situations for A from winning situations for B

What if the game tree is too large to traverse?

Search to a certain depth, and then estimate Player 1
(with some heuristic function) how good the A
situation is for A at the nodes at that depth. \
We then usually use other values than only: 1] 1y, -2
+1,-1and 0 X ¢,

In the figure above we go to depth 2 | ‘

The heuristic function above is: & o ¥ x| _x

Xx|Q

the number of “winning lines for A” minus A o 5 1 X 5
the number of “winning lines for B” -1 1 0 o0 1 1 2 -1 -2 0 -l
(this is given above for each leaf node)

* A “winning line” for Ais a column, row or diagonal
where B has not filled any of the three positions
(so that A can still hope to fill them all, and win)

o O] X —

The best move for A from the start position
is therefore (according to this heuristic) to
go to G,

What if the game tree is too large to traverse?

* However, this heuristic is not good later on Player
in the game. It does not take into account A
that winning is better than any heuristic. We \
therefore, in addition, give winning nodes -1 1y, |-2
the value +<° (no such node here). ¢ X ¢, C}

* This will give quite a good strategy. But, as | |
said above: Tic-Tac-Toe will end in a tie if - T] f ‘ |

both players play perfectly. o oheX 5 %

o
Q
o O] X —

* We have to add that the tie-situation (e.g. -1 1 0 o 1 1 2 -1 -2 0 -l
the one below) gets the value 0. Thus, if we
fully analyze the game, the value of the root

node will be 0.

0|0|X NOTE: The difficult choice for a game-programmer is between
X|X]|o0 searching very deep or using a good, but time consuming,

0O|X|X heuristic function!

Intuition: Alpha-beta cutoff (pruning)
(Assuming it is A’'s move)

A will consider all the possible moves from the current situation, one after the other...

After a while, A has noted that the best move seen so far is a move in which A can obtain
the value u (after C; and C,, u = 1)

A looks at the next potential move, which would lead to situation C; and then looks at
the subnodes of C;. A soon observes that B has a very good move (8_“4) giving value v =-1

Thus the value of C; cannot be better (for A) than -1 as B will minimize at C;. This is true
independent of what value the other subtrees of C; gives

As v < u, player A has no interest in looking for even better moves for B from situation C.
A already knows that it has a better move than to C;, which is G,

Player

A Should have become -2,
> 1{ - but value -1 (after C4) is
| ' < enough for A to conclude

B C G X G that a move to C; is not

l ‘ the best (to C, is better,
| | | | | ¢ | | | with value 1)

Examples showing
alpha-beta cutoft

* When A considers the next move:
e Cutoffs from A-situations is called alpha-cutoffs

* Corresponding cutoffs from B-situations are called
beta-cutoffs

* The figures show alpha- and beta-cutoffs at
different stages of a DF-search of a game tree

 When implementing alpha-beta-cutoffs during a
DF-search, it is usual to switch viewpoints
between the levels

* Then we can always maximize the value
* But we have to negate all values for each new level

X alpha
? value

O

G, <l> beta
0) value

alpha

A O @M@

®

(; O

beta-cutoff

ponkr-invlinok

(a)

alpha-cutoff

ORI OO

5o

“®
C b G
*© value (@)
alpha | alpha
@ <3> q) value

beta-cutoff

(b)

alpha-cutoff

doodpdeaspocsodesded

beta-cutoff

Examples showing
alpha-beta cutoft

* When A considers the next move:
e Cutoffs from A-situations is called alpha-cutoffs

* Corresponding cutoffs from B-situations are called
beta-cutoffs

* The figures show alpha- and beta-cutoffs at
different stages of a DF-search of a game tree

 When implementing alpha-beta-cutoffs during a
DF-search, it is usual to switch viewpoints
between the levels

* Then we can always maximize the value
* But we have to negate all values for each new level

X alpha
% value

G, %t) beta
0) value

C o B

®

(; O

beta-cutoff

ponkr-invlinok

(a)

alpha-cutoff

&

50

ORI OO

“®
C b G
*© value i
alpha |
© ®

;

alpha
lue
5) va

beta-cutoff

(b)

alpha-cutoff

doodpdeaspocsodesded

beta-cutoff

real function ABNodeValue (
XI
numLev,
parentvVal)

real L1LB;

if <X is a terminal node> or numLev = 0 then {
return <An estimate of the quality of the situation (the heuristic)>;

} else {
LB := - ABNodeValue (C[1l], NumLev-1, o®©);
for i := 2 to k do {

if LB >= parentValue then {
return LB;

}
else {
LB := max (LB, - ABNodeValue(C[i], Numlev-1, - LB));

}

return LB;

Start the recursive call to calculate value for the (current) rootnode (down to depth 10) by calling
ABNodeValue (rootnode, 10, -0)

Misprints in the textbook (B&P)

* There are some simple misprints in the program at page 741 in the textbook
(may be corrected in some editions):
* "AB” is missing in the name of the procedure in the recursive call.
* Aright parenthesis is missing at the end of the line where max is called.

o

* A minus (“-”) is missing in the arguments of the initial call

* These errors are corrected on the previous slide!

