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Ch. 23.5: Games, game trees and strategies

• We have looked at “one player games” (= search)  and their decision trees, earlier 
(Ch 23.1 – 23.4)
• This is search for a goal node that everybody agrees is “good”

• Then you can for instance use A*-search for e.g.: 
• Solve the 15-puzzle from a given position
• Find the shortest path between nodes in a graph (better than plain Dijkstra)

BUT:
• When two players are playing against each other, things get very different.  

What is good for one player is bad for the other
• The tree of possible plays is often enormous.  For chess it is estimated to have ca 10100 nodes, 

and can therefore never (?) be searched exhaustively!
• We look at “zero-sum” games. This roughly means:

• If, during a move, the “chances to win” is increased for one of the players, then it is decreased by 
the corresponding amount for the other



Example: A game tree for Tic-Tac-Toe 

• The board has 3 x 3 squares.
• The game: Repeat the following 

moves 
• Player A chooses an unused square and 

writes X in it
• Player B does the same, but writes O

• Player A (always) starts
• When a player has three-in-a-row, 

he/she has won
• The game stops when A or B wins, or 

when all squares are filled (maybe 
with a “draw” = neither A nor B has 
three-in-a-row)

The start/root node of the 
game tree for Tic-Tac-Toe.

o   o x
x   x o
o   x   x

A final situation 
without a winner



Number of nodes in a fully expanded tree for
Tic-Tac-Toe

9 nodes

9*8 = 72 nodes

9*8*7 = 504 nodes                                     . . . . . . . . . .

9*8*7*6 = 3024 nodes                               . . . . . . . . . . 

9*8*7*6*5*4*3*2*1 =  9! (“factorial”) = 362 880 nodes

……
9*8*7*6*5 = 15120 nodes            . . . . . . . . . . 

1 node

Comment: By searching depth-first in 
this tree, you never need to store more 
than 9 nodes, but it will take some time 
to go through all 362 880 nodes.

(And for “interesting games” there are 
usually a lot more!)



The same situation may occur many places in the 
tree. We may represent each situation by one node 

1 node

9 nodes

9*8 = 72 nodes

9*8*7 = 504 nodes

9*8*7*6 = 3024 nodes

9*8*7*6*5*4*3*2*1 =  362 880 nodes

……

72 different nodes

9 nodes

252 different nodes

756 different nodes

9*8*7*6*5 = 15120 nodes 1260 different nodes

126 different nodes  =
……

This usually requires a lot of memory!

1680 different nodes9*8*7*6*5* 4 = 60480 nodes

Example of a 
collapsed

tree (a DAG)

1 node

( )9
4

( ) = (9 8 7 6 ) / (1 2 3 4) = 1269
4

As before

Fewer than before

In some games, 
e.g. Tic-Tac-Toe, 
you can gain a lot 
by recognizing 
equal nodes, and 
not repeat the 
analysis for these  

In Tic-Tac-Toe we 
then never need 
more than 1680 
nodes during 
breath first search 

In Chess this is 
very important!



Representing symmetric situations by the 
same node
• We can also gain a lot by looking at symmetries:

• Two situations are symmetric if the rest of the game from these two situations will also 
be symmetric according to the rules of the game

• Represent positions that are symmetries of each other by the same node
• Tic-Tac-Toe: Symmetric solutions will always be at the same depth, but this is not 

generally the case! 
• In e.g. chess there are fewer symmetries to utilize

• Using this will often reduce the needs for memory/time further!

1 node

3 nodes

12 nodes



The “value” of a position, and zero-sum games

• During a game, we will always store:
• A number (value) characterizing how good the situation is for player A

• High values are good for A, and low values are bad
• Thus all nodes of a game-tree have a value (seen from A)

• If we want to see the game from B’s point of view, we usually negate the 
values

• We want a “strategy for A”
• That is: Some kind of rule telling A what to do in all possible “A-situations” 

(those where it is A’s turn to make a move)
• We will, for a given position, look for a strategy that will give A a win

• But note: Such a strategy will often not exist!



Fully analyzable games

• “Fully analyzable games” means: The full tree can be traversed and 
analyzed
• Then there will be three possible values for each A-situation S (usually 

represented as +1,  -1  or  0)
1. A has a  strategy so that A will win whatever B does, if A follows that 

strategy from S (score: +1 for A)
2. Whatever A does from S, B has a winning strategy from the new situation  

(score:  -1 for A).
3. If A and B both play perfectly, it will end in a tie, or the game will go on for 

ever (score:  0 for both)
• Situation 3 can only occur for some games. E.g.: The game Tic-Tac-Toe ends in a tie if 

both players play as good as possible.



Another example: The game Nim

• We start with two (or more?) piles of 
sticks
• Number of sticks:  m and n

• One player can take any number of 
sticks from one pile, but have to take at 
least 1
• The player taking the last stick has lost

‒ Nim will never end in a tie.
‒ With m=3 and n=2, the full game tree is 

shown to the right.
‒ The value seen from A is indicated for 

the final situations (leaf nodes).
‒ Next problem:  What is the value of the 

rest of the nodes?

Here m=3 and n=2

NB: We could reduce the number of separate nodes 
by recognizing symmetries and equivalent nodes 
(see e.g. blue circles above)



How can we find a strategy so that A wins? 
Or prove that no such strategy exists!
• A wants to find an optimal move from any 

given position
• We must assume that also B will do optimal 

moves seen from B’s point of view
• Thus B will move to the subnode with smallest 

value (since +1 and -1 are as seen from A)

Min-Max Strategy:
• To compute the value of a node, we have to 

know the values of all the subnodes
• This can be done by a depth first search, 

computing node values during the 
withdrawal (postfix)

Values for A-nodes: If possible, move to a node 
with value +1 (and mark current node with +1). 
Otherwise make a random move

Values for B-nodes: If possible, move to a node 
with value -1. Otherwise make a random move



The Min-Max-Algorithm in action, with simple 
alpha-beta cutoff

S

U V W

• Previous slide: The search is done by a 
depth first traversal of the game tree, 
computing values on withdrawal (postfix)

• The result of this is given in the figure to 
the left as + and -.

Possible optimalization:
• From the start-position S, assume that A 

has looked at three of its subtrees (from 
the left). A has then found a winning node 
U (marked +1). Then the value of V and W 
does not matter. 

• This is a simple version of alpha-beta 
cutoff (pruning)

• Green arrows: Good moves for A 
from winning situations for A

Not looked at!

• Red arrows: Good move for B 
from winning situations for B



What if the game tree is too large to traverse?

• Search to a certain depth, and then estimate 
(with some heuristic function) how good the 
situation is for A at the nodes at that depth. 
We then usually use other values than only:  
+1, -1 and 0

• In the figure above we go to depth  2

• The heuristic function above is:  
the number of “winning lines for A” minus 
the number of “winning lines for B”
(this is given above for each leaf node)
• A “winning line” for A is a column, row or diagonal 

where B has not filled any of the three positions 
(so that A can still hope to fill them all, and win)

• The best move for A from the start position 
is therefore (according to this heuristic) to 
go to C2

•



What if the game tree is too large to traverse?

• However, this heuristic is not good later on 
in the game. It does not take into account 
that winning is better than any heuristic. We 
therefore, in addition, give winning nodes 
the value +∞ (no such node here).

• This will give quite a good strategy. But, as 
said above: Tic-Tac-Toe will end in a tie if 
both players play perfectly.  

• We have to add that the tie-situation (e.g. 
the one below) gets the value 0. Thus, if we 
fully analyze the game, the value of the root 
node will be 0.

•

NOTE: The difficult choice for a game-programmer is between 
searching very deep or using a  good, but time consuming, 
heuristic function!

o   o x
x   x o
o   x   x



Intuition: Alpha-beta cutoff (pruning)
(Assuming it is A’s move)
• A will consider all the possible moves from the current situation, one after the other...
• After a while, A has noted that the best move seen so far is a move in which A can obtain 

the value u (after C1 and C2, u = 1)
• A looks at the next potential move, which would lead to situation C3, and then looks at 

the subnodes of C3. A soon observes that B has a very good move (C4) giving value v = -1
Thus the value of C3 cannot be better (for A) than -1 as B will minimize at C3. This is true 
independent of what value the other subtrees of  C3 gives

• As v < u, player A has no interest in looking for even better moves for B from situation C3.  
A already knows that it has a better move than to C3, which is C2

C4

Should have become -2, 
but value -1 (after C4) is 
enough for A to conclude 
that a move to C3 is not 
the best (to C2 is better, 
with value 1)



Examples showing
alpha-beta cutoff
• When A considers the next move:

• Cutoffs from A-situations is called alpha-cutoffs
• Corresponding cutoffs from B-situations are called 
beta-cutoffs

• The figures show alpha- and beta-cutoffs at 
different stages of a  DF-search of a game tree

• When implementing alpha-beta-cutoffs during a 
DF-search, it is usual to switch viewpoints 
between the levels
• Then we can always maximize the value
• But we have to negate all values for each new level



Examples showing
alpha-beta cutoff
• When A considers the next move:

• Cutoffs from A-situations is called alpha-cutoffs
• Corresponding cutoffs from B-situations are called 
beta-cutoffs

• The figures show alpha- and beta-cutoffs at 
different stages of a  DF-search of a game tree

• When implementing alpha-beta-cutoffs during a 
DF-search, it is usual to switch viewpoints 
between the levels
• Then we can always maximize the value
• But we have to negate all values for each new level



real function ABNodeValue (
X,  // The node we compute alpha/beta value for. Children: C[1],C[2]… C[k]
numLev,   // Number of levels left
parentVal) // The alpha/beta-value from the parent node (-LB from the parent)

// Returned value: The final alpha/beta-value for the node X
{       

real LB; // Will hold current Lower Bound for the alpha/beta value of node X

if <X is a terminal node> or numLev = 0 then { 
return <An estimate of the quality of the situation (the heuristic)>;

} else {
LB :=  - ABNodeValue(C[1], NumLev-1, ¥); // Recursive call
for i :=  2 to k do {

if  LB >= parentValue then {
return LB;  // Cutoff, no further calculation 

}
else {

LB := max(LB, - ABNodeValue(C[i], Numlev-1,  - LB) ); //Recursive call

}
}

}
return LB;

}

Start the recursive call to calculate value for the (current) rootnode (down to depth 10) by calling
ABNodeValue(rootnode, 10, -¥) // This ”-” is missing in the textbook



Misprints in the textbook (B&P)

• There are some simple misprints in the program at page 741 in the textbook 
(may be corrected in some editions):
• ”AB” is missing in the name of the procedure in the recursive call.
• A right parenthesis is missing at the end of the line where max is called.
• A minus (“-”) is missing in the arguments of the initial call

• These errors are corrected on the previous slide!


