
SAT and SMT solvers in practice
(Inspired by Elizabeth Polgreen)

Joachim Tilsted Kristensen

University of Oslo, November 16, 2022

1 / 14

Agenda

I What is the satisfiability problem.
I Why is SAT interesting?
I What is an SMT solver.
I How to deploy a SAT/SMT solver.

2 / 14

Repetition SAT

Formulas
I Syntax : φ := p | ¬φ | φ ∨ ψ | φ ∧ ψ | φ⇒ ψ

Terminology
I Satisfiable : There exists a solution.
I Unsatisfiable : There are no solutions.
I Invalid : There exists an assignment which is not a solution.
I Valid : All assignments are solutions.

NP-Completeness
I Hardness : We can verify a solution in polynomial time.
I Completeness : We can reduce the halting problem to SAT.
I Also : We can reduce SAT to 3SAT.

3 / 14

Repetition SAT

Formulas
I Syntax : φ := p | ¬φ | φ ∨ ψ | φ ∧ ψ | φ⇒ ψ

Terminology
I Satisfiable : There exists a solution.
I Unsatisfiable : There are no solutions.
I Invalid : There exists an assignment which is not a solution.
I Valid : All assignments are solutions.

NP-Completeness
I Hardness : We can verify a solution in polynomial time.
I Completeness : We can reduce the halting problem to SAT.
I Also : We can reduce SAT to 3SAT.

3 / 14

Repetition SAT

Formulas
I Syntax : φ := p | ¬φ | φ ∨ ψ | φ ∧ ψ | φ⇒ ψ

Terminology
I Satisfiable : There exists a solution.
I Unsatisfiable : There are no solutions.
I Invalid : There exists an assignment which is not a solution.
I Valid : All assignments are solutions.

NP-Completeness
I Hardness : We can verify a solution in polynomial time.
I Completeness : We can reduce the halting problem to SAT.
I Also : We can reduce SAT to 3SAT.

3 / 14

Difference between SAT and SMT

SAT Instance

∃p, q ∈ Bool.(p ∧ ¬q)?

SAT Solution

[p 7→ >, q 7→ ⊥]

SMT Instance

∃m, n ∈ N.(n > 0 ∧m < 0)?

SMT Solution

[m 7→ −2, n 7→ 3]

4 / 14

Difference between SAT and SMT

SAT Instance

∃p, q ∈ Bool.(p ∧ ¬q)?

SAT Solution

[p 7→ >, q 7→ ⊥]

SMT Instance

∃m, n ∈ N.(n > 0 ∧m < 0)?

SMT Solution

[m 7→ −2, n 7→ 3]

4 / 14

Difference between SAT and SMT

SAT Instance

∃p, q ∈ Bool.(p ∧ ¬q)?

SAT Solution

[p 7→ >, q 7→ ⊥]

SMT Instance

∃m, n ∈ N.(n > 0 ∧m < 0)?

SMT Solution

[m 7→ −2, n 7→ 3]

4 / 14

Motivation (Verification Tools)

Triangle of Verification, Martin Brain

5 / 14

Motivation (Example)

Are these programs equivalent?

How about these programs?

Is this a valid formula?

6 / 14

Motivation (Example)

Are these programs equivalent?

How about these programs?

Is this a valid formula?

6 / 14

Motivation (Example)

Are these programs equivalent?

How about these programs?

Is this a valid formula?

6 / 14

Complexity of 3SAT

Naive algorithm
I F(x1, . . . , xn) is a formula.
I α is an assignment.
I we check F(α′) for all α′.
I Worst case O(|F| · 2n)

7 / 14

Example Heuristic - Divide an Conquer

Algorithm (outline)
I pick a variable xi from F (a formula in CNF).

I define F(xi = >) as follows:
I remove the clauses from F that contain xi
I if a clause contains only ¬xi then F(xi = >) is unsatisfiable
I remove other clauses containing ¬xi
I repeat until F does not contain any variables
I analogously for F(xi = ⊥)

Analysis (Outline)
I If F contains (xi ∨ xj) then we need to check F(xi = >) and
F(xi = ⊥)(xj = >).

I Worst case O(|F| · 1.84n). (Hromkovic - 2002).

8 / 14

Example Heuristic - Divide an Conquer

Algorithm (outline)
I pick a variable xi from F (a formula in CNF).
I define F(xi = >) as follows:

I remove the clauses from F that contain xi
I if a clause contains only ¬xi then F(xi = >) is unsatisfiable
I remove other clauses containing ¬xi
I repeat until F does not contain any variables
I analogously for F(xi = ⊥)

Analysis (Outline)
I If F contains (xi ∨ xj) then we need to check F(xi = >) and
F(xi = ⊥)(xj = >).

I Worst case O(|F| · 1.84n). (Hromkovic - 2002).

8 / 14

Example Heuristic - Divide an Conquer

Algorithm (outline)
I pick a variable xi from F (a formula in CNF).
I define F(xi = >) as follows:
I remove the clauses from F that contain xi

I if a clause contains only ¬xi then F(xi = >) is unsatisfiable
I remove other clauses containing ¬xi
I repeat until F does not contain any variables
I analogously for F(xi = ⊥)

Analysis (Outline)
I If F contains (xi ∨ xj) then we need to check F(xi = >) and
F(xi = ⊥)(xj = >).

I Worst case O(|F| · 1.84n). (Hromkovic - 2002).

8 / 14

Example Heuristic - Divide an Conquer

Algorithm (outline)
I pick a variable xi from F (a formula in CNF).
I define F(xi = >) as follows:
I remove the clauses from F that contain xi
I if a clause contains only ¬xi then F(xi = >) is unsatisfiable

I remove other clauses containing ¬xi
I repeat until F does not contain any variables
I analogously for F(xi = ⊥)

Analysis (Outline)
I If F contains (xi ∨ xj) then we need to check F(xi = >) and
F(xi = ⊥)(xj = >).

I Worst case O(|F| · 1.84n). (Hromkovic - 2002).

8 / 14

Example Heuristic - Divide an Conquer

Algorithm (outline)
I pick a variable xi from F (a formula in CNF).
I define F(xi = >) as follows:
I remove the clauses from F that contain xi
I if a clause contains only ¬xi then F(xi = >) is unsatisfiable
I remove other clauses containing ¬xi

I repeat until F does not contain any variables
I analogously for F(xi = ⊥)

Analysis (Outline)
I If F contains (xi ∨ xj) then we need to check F(xi = >) and
F(xi = ⊥)(xj = >).

I Worst case O(|F| · 1.84n). (Hromkovic - 2002).

8 / 14

Example Heuristic - Divide an Conquer

Algorithm (outline)
I pick a variable xi from F (a formula in CNF).
I define F(xi = >) as follows:
I remove the clauses from F that contain xi
I if a clause contains only ¬xi then F(xi = >) is unsatisfiable
I remove other clauses containing ¬xi
I repeat until F does not contain any variables

I analogously for F(xi = ⊥)

Analysis (Outline)
I If F contains (xi ∨ xj) then we need to check F(xi = >) and
F(xi = ⊥)(xj = >).

I Worst case O(|F| · 1.84n). (Hromkovic - 2002).

8 / 14

Example Heuristic - Divide an Conquer

Algorithm (outline)
I pick a variable xi from F (a formula in CNF).
I define F(xi = >) as follows:
I remove the clauses from F that contain xi
I if a clause contains only ¬xi then F(xi = >) is unsatisfiable
I remove other clauses containing ¬xi
I repeat until F does not contain any variables
I analogously for F(xi = ⊥)

Analysis (Outline)
I If F contains (xi ∨ xj) then we need to check F(xi = >) and
F(xi = ⊥)(xj = >).

I Worst case O(|F| · 1.84n). (Hromkovic - 2002).

8 / 14

Example Heuristic - Divide an Conquer

Algorithm (outline)
I pick a variable xi from F (a formula in CNF).
I define F(xi = >) as follows:
I remove the clauses from F that contain xi
I if a clause contains only ¬xi then F(xi = >) is unsatisfiable
I remove other clauses containing ¬xi
I repeat until F does not contain any variables
I analogously for F(xi = ⊥)

Analysis (Outline)
I If F contains (xi ∨ xj) then we need to check F(xi = >) and
F(xi = ⊥)(xj = >).

I Worst case O(|F| · 1.84n). (Hromkovic - 2002).

8 / 14

Progress in Heuristics

9 / 14

Conflict Driven Clause Learning (overview)

10 / 14

Conflict Driven Clause Learning (with theories)

11 / 14

Central Question. How do I use it?

Old school
I Reduce your program to a formula.
I Write a Dimacs file.
I Run solver on said file.

Construct instance via FFI
I Don’t write Dimacs by hand.
I Import a library.

12 / 14

Example (Sudoku)

Strategy
I Sudoku is NP Complete.
I So, we reduce it to SMT and call Z3.
I We can call Z3 from Python3.

13 / 14

Links from the lecure.

https://github.com/Z3Prover/z3
https://jix.github.io/varisat/manual/0.2.0/formats/
dimacs.html
https:
//jcrouser.github.io/CSC250/projects/sudoku.html

14 / 14

https://github.com/Z3Prover/z3
https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html
https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html
https://jcrouser.github.io/CSC250/projects/sudoku.html
https://jcrouser.github.io/CSC250/projects/sudoku.html

