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Independent Joint Modeling


- Controlling a whole manipulator is fairly difficult


  - We focus instead on controlling only one joint at a time


- All interaction between joints (dynamic coupling) will be classified as noise








Dynamic Model of a Robot


From the equations of motion from dynamics we have:


J(q)q + C(q,q)q + Bq + g(q) = f





J(q)q - inertia


C(q,q)q - coriolis/centrifugal forces


Bq - viscous friction (damping)


g(q) - gravitational forces


f - torque/force from actuators





Coriolis/centrifugal


Gravity                             -> D - disturbance


Coupling (J(q)q -> Jq)





Jq + Bq + D = f





- Not the same notations as in velocity kinematics: J is not Jacobian,


  D matrix is not the one from dynamics


- Inertia and inertial forces are not the same thing, they are loosely related, if at all


- Coriolis and centrifugal forces are often classified as inertial (fictitious) forces








Laplace Transform


  - Time -> frequency


  - Ordinary differential equation -> linear equation


  - Differentiation in time -> multiplication by s in Laplace


  - Integration in time -> division by s in Laplace





E.g: Jq + Bq + D = f -> Js Θ + BsΘ + D = f
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Transfer functions


- Y(s) = H(s)X(s)


- Y(s) - system output


- X(s) - system input


- H(s) - transfer function (transforms input into output)


- Rearrange equations to find: H(s) = Y(s)/X(s)


- If numerator (Y) is set to 0, we can find the poles of the system by solving for s


- If denominator (X) is set to 0, we can find the zeros


  - Useful for determining stability of the system








Block Diagrams


- Helpful for visualizing equations and feedback/feedforward loops





Block diagram for the generic system:









- On the left side, we start with the full torque equation denoted as U (control effort)


- As the signal proceeds through the blocks, we "peel" terms off one by one,


  until we end up with only Θ


- The whole diagram represents a robotic system


  - Can be used as a building block for a larger diagram of controller blocks
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Setpoint controllers


- Controllers that drive a robot to a set point


- Current angle: Θ


- Desired angle: Θ


- Error: e(t) = Θ  - Θ


- Controllers use the error term to calculate the control effort U (output torque/force)


- Controllers try to reduce the error to 0





- Types of setpoint controllers


  - Proportional (P)


  - Proportional Derivative (PD)


  - Proportional Integral Derivative (PID)


  (- Proportional Integral (PI))






 
P controller


- U(t) = K e(t)


- Control effort proportional to the controller


- Laplace: U(s) = K E(s)


- Block diagram:









- Increased K  gives:


  - Faster response


  - Decrease in steady state error


  - Increased oscillations


- Proportional term by itself will not eliminate the error
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PD controller


- Builds on the P controller by adding a derivative term


- Derivative term represents how fast the error changes - used to "predict" future 
error


- U(t) = K e(t) + K e(t)


- Laplace: U(s) = K (Θ  - Θ) - K sΘ


  - Write out the error terms, since the desired velocity for theta is 0 (no oscillations)


     we can simplify


- Block diagram:









- Increased K  reduces oscillations, but can make the robot stop before reaching the 
desired point


























 
PID controller


- Builds on the PD controller by adding an integral term


- Integral term accumulates past errors over time


- U(t) = K e(t) + K e(t) + K ∫e(t)dt


- Laplace: U(s) = (K  + K s +    )E(s)


 


- Block diagram:
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- Good choice of K  gives the necessary push to prevent early stopping due to the 
derivative term, eliminating the error


- If K  is too big, expect an overshoot, oscillations and instability
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Transfer functions recap
Estimate controller constants

Steady state error

Transfer functions
Solve for Q

P controller
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u JEG Bse D dynamic system

JEG Bs D kpOd Kp0

Jsa Bs kp KpQd D

i kp d D
JåttBstkp Transfer function



p

Estimating controller constants

Determined by the characteristic
polynomial from the transfer function

Dcs Js Bs t kp CP controller

General damped second order system

S2 2Gus U2 0

Damping ratio

G I critically damped

Customary in robotics

Produces the fastest
non oscillatory response

nå Closed loop natural frequency
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Steady state error

Final value theorem

tiI fett 50 s fest

Relates the frequency domain
to the time domain as time
approaches infinity

Steady state error is the error
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