Plan:

- Independent Joint Modeling

- Dynamic model recap

- Laplace transforms

- Transfer functions (short)

- Block diagrams

- P, PD, PID setpoint controllers

Independent Joint Modeling
- Controlling a whole manipulator is fairly difficult
- We focus instead on controlling only one joint at a time
- All interaction between joints (dynamic coupling) will be classified as noise

Dynamic Model of a Robot
From the equations of motion from dynamics we have:

J(@)g + C(q,q)a + Bg + g(q) = f
J(g)q - inertia

C(q,9)q - coriolis/centrifugal forces
Bq - viscous friction (damping)
g(q) - gravitational forces

f - torque/force from actuators

Coriolis/centrifugal
Gravity } -> D - disturbance

Coupling (J(a)q -> Jq)
Jg+Bg+D=f

- Not the same notations as in velocity kinematics: J is not Jacobian,

D matrix is not the one from dynamics
- Inertia and inertial forces are not the same thing, they are loosely related, if at all
- Coriolis and centrifugal forces are often classified as inertial (fictitious) forces

Laplace Transform
- Time -> frequency
- Ordinary differential equation -> linear equation
- Differentiation in time -> multiplication by s in Laplace
- Integration in time -> division by s in Laplace

Eg:Jg+Bg+D=f->Js© +Bs® + D =f



Transfer functions
- Y(s) = H(s)X(s)
- Y(s) - system output
- X(s) - system input
- H(s) - transfer function (transforms input into output)
- Rearrange equations to find: H(s) = Y(s)/X(s)
- If numerator (Y) is set to 0, we can find the poles of the system by solving for s
- If denominator (X) is set to 0, we can find the zeros
- Useful for determining stability of the system

Block Diagrams
- Helpful for visualizing equations and feedback/feedforward loops

Block diagram for the generic system:
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Block diagram with basic building blocks

- On the left side, we start with the full torque equation denoted as U (control effort)
- As the signal proceeds through the blocks, we "peel" terms off one by one,

until we end up with only ©
- The whole diagram represents a robotic system

- Can be used as a building block for a larger diagram of controller blocks



Setpoint controllers

- Controllers that drive a robot to a set point

- Current angle: O
- Desired angle: O4
- Error: e(t) = Q- ©

- Controllers use the error term to calculate the control effort U (output torque/force)

- Controllers try to reduce the error to 0

- Types of setpoint controllers

- Proportional (P)

- Proportional Derivative (PD)
- Proportional Integral Derivative (PID)
(- Proportional Integral (Pl))

P controller

- U(t) = Kee(t)

- Control effort proportional to the controller
- Laplace: U(s) = KoE(s)

- Block diagram:
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- Increased K, gives:

- Faster response

- Decrease in steady state error
- Increased oscillations
- Proportional term by itself will not eliminate the error



PD controller
- Builds on the P controller by adding a derivative term
- Derivative term represents how fast the error changes - used to "predict" future
error = & :
-U(D) = Kee(t) + K&t = Kye “-kue
- Laplace: U(s) = K(Qq - O) - KysO O
- Write out the error terms, since the desired velocity for theta is 0 (no oscillations)
we can simplify
- Block diagram:
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- Increased K, reduces oscillations, but can make the robot stop before reaching the
desired point

PID controller

- Builds on the PD controller by adding an integral term
- Integral term accumulates past errors over time

- U(t) = Kee(t) + Kie(t) + K Je(t)dt

- Laplace: U(s) = (Ke + K;s + %-)E(s)

- Block diagram:
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- Good choice of K; gives the necessary push to prevent early stopping due to the

derivative term, eliminating the error

- If K; is too big, expect an overshoot, oscillations and instability



