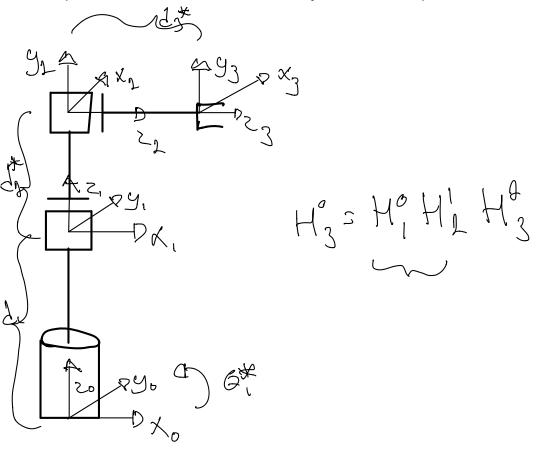
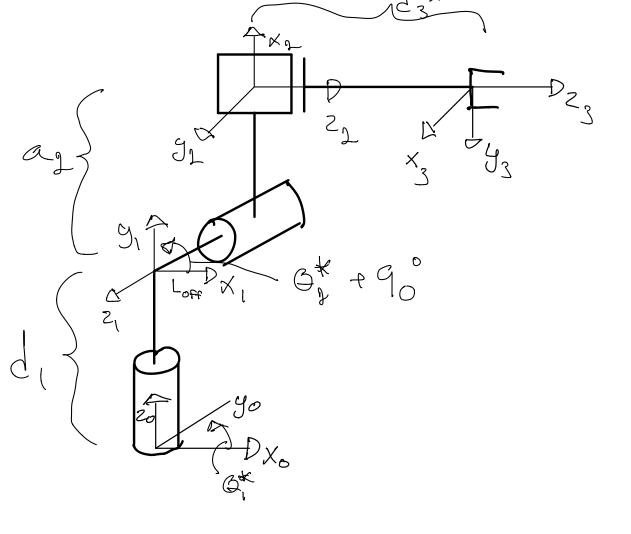
Forward kinematics: Find the end effector given the joint variables.

All we need is the transformations H_1^0 , H_2^1 ... and multiply them!


DH-convention: Streamlines the process -> "recipe for forward kinematics"

- Provides a universal language to describe a manipulator.
- -- As long as we follow the rules set by DH.


Coordinate systems:

z in the direction of action. y from right hand rule.

Example: Coordinate frames for the cylindrical manipulator.

Assignment: Assign coordinate frames to the manipulator from the 2018 exam.

DH parameters: (page 110 step 7)

 Θ_i : Joint angle, the angle from x_{i-1} to x_i measured about z_{i-1}

 d_i : Link offset, distance from O_{i-1} about z_{i-1} to the intersection of x_i and z_{i-1}

 $a_{\boldsymbol{i}} :$ Link length, distance from the intersection of $x_{\boldsymbol{i}}$ and $z_{\boldsymbol{i-1}}$ to $O_{\boldsymbol{i}}$

 α_i : Link twist, the angle from z_{i-1} to z_i measured about x_i

Example: Parameter table for the cylindrical manipulator

Link	Ø;	٠;	a:	Χi
	0,*	d	0	0
2	90	*		90

	7	
3	73	

Assignment: Fill in the parameter table for the 2018 manipulator.

Link	Ø;	٥;	a:	Χi
	G, K	2.	0	90
2	B\$ 290	Loff	aj	00
3		3	3	6

--- BREAK ---

The special matrix (page 77)

$$A_{i} = Rot_{z,\theta_{i}} \operatorname{Trans}_{z,d_{i}} \operatorname{Trans}_{x,a_{i}} Rot_{x,\alpha_{i}}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\times \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: Forward kinematics for the cylindrical manipulator (two first joints only)

Assignment: Calculate the forward kinematics for the 2018 manipulator (two first joints only)

$$A_{1} = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ S_{0} & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -3 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} C_1 & -S_1 & O & O \\ S_1 & C_1 & O & O \end{bmatrix} = \begin{bmatrix} S_1 & O & C_1 & O \\ S_1 & C_1 & O & O \end{bmatrix}$$