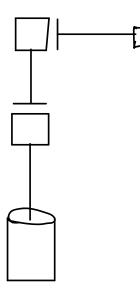
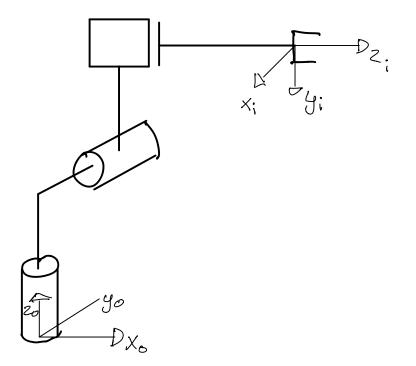
Forward kinematics: Find the end effector given the joint variables.


All we need is the transformations $H^{o}_{I},\,H^{i}_{J}...$ and multiply them!

DH-convention: Streamlines the process -> "recipe for forward kinematics" - Provides a universal language to describe a manipulator. -- As long as we follow the rules set by DH.


Coordinate systems:

z in the direction of action. y from right hand rule.

Example: Coordinate frames for the cylindrical manipulator.

Assignment: Assign coordinate frames to the manipulator from the 2018 exam.

DH parameters: (page 110 step 7) Θ_i : Joint angle, the angle from x_{i-1} to x_i measured about z_{i-1}

- d;: Link offset, distance from O; -1 about z_{i-1} to the intersection of x_i and z_{i-1}
- a_i : Link length, distance from the intersection of x_i and $z_{i\text{--}i}$ to O_i
- α_i : Link twist, the angle from z_{i-1} to z_i measured about x_i

Example: Parameter table for the cylindrical manipulator

Link	Ð;	9	Xi
S			

3		

Assignment: Fill in the parameter table for the 2018 manipulator.

Link	Ø;	4;	a:	Xi
1				
2				
3				

--- BREAK ----

The special matrix (page 77)

$$A_{i} = Rot_{z,\theta_{i}} \operatorname{Trans}_{z,d_{i}} \operatorname{Trans}_{x,a_{i}} Rot_{x,\alpha_{i}}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\times \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(3.10)$$

Example: Forward kinematics for the cylindrical manipulator (two first joints only)

Assignment: Calculate the forward kinematics for the 2018 manipulator (two first joints only)