Forward kinematics: Find the end effector given the joint variables.

All we need is the transformations $\mathrm{H}_{1}^{0}, \mathrm{H}_{2}^{\prime} \ldots$ and multiply them!

DH-convention: Streamlines the process -> "recipe for forward kinematics"

- Provides a universal language to describe a manipulator.
-- As long as we follow the rules set by DH.

Coordinate systems:
Rule 1: $X_{i} \perp 2 i-1$
Rule 2: X_{i} has to intersect $2 i-1$ Lo move oi if not
z in the direction of action.
y from right hand rule.

Example: Coordinate frames for the cylindrical manipulator.

Assignment: Assign coordinate frames to the manipulator from the 2018 exam.

DH parameters: (page 110 step 7)
Θ_{i} : Joint angle, the angle from x_{i-1} to x_{i} measured about z_{i-1}
d_{i} : Link offset, distance from $\mathrm{O}_{\mathrm{i}-\mathrm{l}}$ about $\mathrm{z}_{\mathrm{i}-1}$ to the intersection of x_{i} and $\mathrm{z}_{\mathrm{i}-1}$
a_{i} : Link length, distance from the intersection of x_{i} and $\mathrm{z}_{\mathrm{i}-1}$ to O_{i}
a_{i} : Link twist, the angle from z_{i-1} to z_{i} measured about x_{i}

Example: Parameter table for the cylindrical manipulator

Link	θ_{i}	d_{i}	a_{i}	α_{i}
1				
2				

$子$				

Assignment: Fill in the parameter table for the 2018 manipulator.

--- BREAK ---

The special matrix (page 77)

$$
\begin{align*}
A_{i} & =\operatorname{Rot}_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x, \alpha_{i}} \tag{3.10}\\
& =\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\
s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\
s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{align*}
$$

Example: Forward kinematics for the cylindrical manipulator (two first joints only)

Assignment: Calculate the forward kinematics for the 2018 manipulator (two first joints only)

