Group Seminar Week 2: Homogeneous Transform

Tony Nguyen

- Responsible for correcting the mandatory assignment
- Backup Group-teacher

Email: hpnguyen@ifi.uio.no

Session's plan

-Brief talk on mandatory assignments

- A short example on homogeneous transform
- Walkthrough on weekly exercise 2.10-2.11, 2.38.

Delivery

- Start early on the assignments, each task becomes solvable for each lecture
- All assignments must be "PASSED" in order to take exam
- Devilry -
- Postponing the delivery, send an e-mail to one of us
- Preferably early and couple of days beforehand

Delivering the assignment

- Do one of these two methods:

1 Rotation and Translation

A rotation matrix is a matrix that is used to perform a rotation in euclidean space. In 3 dimensional space a basic rotation is a rotation about one of the axes of a coordinate system. As such we can perform a single rotation θ along one of three different axis which are following x, y, z in the respective coordinate frame.
Rotation matrix for rotation around x-axis with θ degree and observe that x-axis every axis are perpendicular with one another. This is equal for all of the rotation matrices.

$$
\operatorname{Rot}_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1}\\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right]
$$

Rotation matrix for rotation around y-axis with θ degree

$$
\operatorname{Rot}_{y, \theta}=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \tag{2}\\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

Rotation matrix for rotation around z-axis with θ degree

$$
\operatorname{Rot}_{z, \theta}=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

LaTeX

Translation matrix is a very useful matrix because its linearity allows for selec-
tive translation in 3d in either one, two or all of the three of axis'. For example,
if we only want translation along z-axis we can extract only the rotation matrix, a $3 x 3$ diagonal matrix in the translation matrix (4) and setting the t_{x} and t_{y} to 0 and only replace t_{z} with the designated translation.

$$
\operatorname{Trans}_{x}=\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \tag{4}\\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Combining the rotation and translation matrices we can then

$$
\begin{equation*}
A_{i}= \tag{5}
\end{equation*}
$$

A_{i} is represented as a product of four basic transformations and it is known as Denavit Hartenberg parameters.

$$
\begin{equation*}
A_{i}^{i-1}=\text { Rot }_{z, \theta} \text { Trans }_{z, d_{i}} \text { Trans }_{x, a_{i}} \text { Rot }_{x, \alpha}= \tag{6}
\end{equation*}
$$

$\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & a_{x} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta\end{array}\right] \quad(7)$

LaTeX

- Download on your personal laptops
- Use Overleaf.com \rightarrow I highly recommend this

Question to you guys:

- Raise your hand if you want me to put out a simple template on LaTeX on the course page.

Word

- Intuitively simple to use, but can be tedious on long equations.

Raise your hand if you want me to put out a simple template on Word on the course-page or type in chat if you guys want me to create a template

Before Scan

After Scan

Programming Code:

import numpy as np

- Don't

```
"""This Function solves x+y+z and returns it
    params: x = x-coordinates
        y = y-coordinates
        z = z-coordinates
```

- Write simila

Examp
"""This Function counts how many pancakes there are if there exists some on the moon and returns the amount.
params: cool_param1 = boolean value, if there are pancakes at the moment cool_param2 $=$ How many pancakes on the moon at the moment
etc..."
" " "
def foo(cool_param1, cool_param2):

- You $\mathrm{M}^{17} \quad$ if cool_parami:
return cool_param2
return cool_param1
def function1 (x, y, z) :
return $x+y^{*} z$
and

Homogeneous Transform

Represents position and orientation of rigid-body relative to another frame

$$
\begin{aligned}
\mathrm{H}=\left[\begin{array}{ll}
R & d \\
0 & 1
\end{array}\right], & \mathrm{R} \text { is rotation matrix }(3 \times 3), \\
& \mathrm{d} \text { is translation vector }(1 \times 3)
\end{aligned}
$$

$$
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

$$
H_{1}^{0}=\left[\begin{array}{cc}
R_{1}^{0} & d_{1}^{0} \\
0 & 1
\end{array}\right]
$$

$$
R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] H_{0}^{1}=\left(H_{1}^{0}\right)^{-1}=\left[\begin{array}{cc}
R_{1}^{0^{T}} & -R_{1}^{0^{T}} d_{1}^{0} \\
0 & 1
\end{array}\right]
$$

$$
R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Homogeneous Transform Cont.

Robot Coordinate Frame

- A robot performs task in its own coordinate frame.
- The next lecture will focus on modeling a robotic manipulator using forward-kinematics

Two coordinate frames

- A robot is placed on another coordinate frame. Let's call this world coordinate frame.

Three Coordinate frames

- With homogeneous transforms we can represent the points amongst the different coordinate frames

Find H_{T}^{R}
One way:
Find $H_{\text {Robot }}^{\text {World }}$
Remember
$H_{0}^{1}=\left(H_{1}^{0}\right)^{-1}$
Find $H_{\text {Task }}^{\text {World }}$

$$
\begin{aligned}
H_{T}^{R}=\left(H_{R}^{W}\right)^{-1} H_{T}^{W} & =H_{W}^{R} H_{T}^{W} \\
& =H_{w}^{R} H_{T}^{W} \\
& -\Delta R
\end{aligned}
$$

$$
H_{R}^{T}=\left(H_{T}^{R}\right)^{-1}=\left[\begin{array}{cc}
R_{T}^{R^{T}} & -R_{T}^{R^{T}} d_{T}^{R} \\
0 & 1
\end{array}\right]
$$

Second way:

Go directly between Robot and Task

- The distance between the coordinate frames are known
- Axes must be known

2.10

Assume we are operating only in $\mathrm{SO}(3)$ so the rotation-matrices are not commutative

- $\mathrm{R}=R_{y, \varphi} R_{x, \varphi} R_{z, \Theta}$
- Fixed, premultíply
- Current, post-multiply

$$
\mathrm{R}=R_{y, \varphi} R_{x, \phi} R_{z, \Theta} \neq R_{x, \phi} R_{z, \Theta} R_{y, \varphi}
$$

- Read 2.4.3 for a more detailed explanation

2.11
- $\mathrm{R}=R_{z, \Theta} R_{x, \phi} R_{x, \Psi}$
- Fixed, premultiply
- Current, post-multiply
- Read 2.4.3 for a more detailed explanation

BREAK!

2.38

Find $H_{1}^{0}, H_{2}^{0}, H_{2}^{1}$

$$
\begin{aligned}
\mathrm{H}=\left[\begin{array}{ll}
R & d \\
0 & 1
\end{array}\right], & \mathrm{R} \text { is rotation matrix }(3 \times 3), \\
& \mathrm{d} \text { is translation vector }(1 \times 3)
\end{aligned}
$$

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

2.38 cont

Let us start by finding the H_{1}^{0}

$$
\begin{aligned}
& R=R_{x, 90} R_{z, 270} \\
& \mathrm{t}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
H_{1}^{0}=\left[\begin{array}{cc}
R_{x, 90} R_{z, 270} & t \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

2.38 cont

Finding the H_{2}^{0}
$R=R_{y, 270} R_{x, 270}$
$\left(R_{y,-90} R_{x,-90}\right)$
$t=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$
$R_{x}(\theta)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$
$H_{2}^{0}=\left[\begin{array}{cc}R_{y, 270} R_{x, 270} & t \\ 0 & 1\end{array}\right]=\left[\begin{array}{cccc}r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 1 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

First rotation
Second
rotation

2.38 cont

$\xrightarrow{\mathrm{Y}_{4} \mathrm{X}} \mathrm{Z}$

Finding the H_{2}^{1}
$R=R_{z, 90} R_{y,-90}$

$$
\left(R_{z,-270} R_{y, 270}\right)
$$

$$
H_{2}^{1}=\left[\begin{array}{cc}
R_{z, 90} R_{y,-90} & t \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & 1 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The coordinate frames can be considered on the same

$$
t=\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]
$$

$$
R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{llll}
1 & 0 & 0 & t x \\
0 & 1 & 0 & t y \\
0 & 0 & 1 & t z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

2.38 cont

Show that $H_{2}^{0}=H_{1}^{0} H_{2}^{1}$
$H_{1}^{0}=\left[\begin{array}{cc}R_{x, 90} R_{z, 270} & t \\ 0 & 1\end{array}\right]=\left[\begin{array}{cccc}r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
$H_{2}^{1}=\left[\begin{array}{ccc}R_{z, 90} & R_{y,-90} & t \\ 0 & 1\end{array}\right]=\left[\begin{array}{cccc}r_{11} & r_{12} & r_{13} & 1 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & -1 \\ 0 & 0 & 0 & 1\end{array}\right]$

$H_{2}^{0}=H_{1}^{0} H_{2}^{1}=\left[\begin{array}{cc}R_{x, 90} R_{z, 270} & t \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}R_{z, 90} R_{y,-90} & t \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}R_{y, 270} R_{x, 270} & t \\ 0 & 1\end{array}\right]$
2.39

- Try to solve 2.39 by hand. Get an idea how to rotate the coordinate frames using right hand rule.

Find $\boldsymbol{H}_{\mathbf{1}}^{\mathbf{0}}, \boldsymbol{H}_{\mathbf{2}}^{\mathbf{0}}, \boldsymbol{H}_{\mathbf{3}}^{\mathbf{0}}$ and $\boldsymbol{H}_{\mathbf{3}}^{\mathbf{2}}$

2.39 cont

Find $\boldsymbol{H}_{1}^{\mathbf{0}}$
$t=[T x, T y, T z]=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$
$H_{1}^{0}=\left[\begin{array}{cc}R & t \\ 0 & 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
$R_{x}(\theta)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]$
$R_{y}(\theta)=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$
$R_{z}(\theta)=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

2.39 cont

Find $\boldsymbol{H}_{\mathbf{2}}^{\mathbf{0}}$

$$
T=[T x, T y, T z]=[-0.5,1.5,1.0]
$$

2.39 cont

 Z

Find $\boldsymbol{H}_{\mathbf{3}}^{\mathbf{0}}$
$\mathrm{R}=R_{z, 90} R_{x, 180}$

$$
R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \quad R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

$$
T=[T x, T y, T z]=[-0.5,1.5,3.0]
$$

$$
H_{3}^{0}=\left[\begin{array}{cc}
R_{z, 90} R_{X, 180} & d \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & -0.5 \\
r_{21} & r_{22} & r_{23} & 1.5 \\
r_{31} & r_{32} & r_{33} & 3.0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

2.39 cont

Find $\boldsymbol{H}_{\mathbf{3}}^{\mathbf{2}}$

$$
\mathrm{R}=R_{z, 90} R_{X, 180}
$$

$$
R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \quad R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

$$
T=\left[\begin{array}{ll}
T x & T y \\
T z
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 2
\end{array}\right]
$$

$$
H_{3}^{2}=\left[\begin{array}{cc}
R_{z, 90} R_{X, 180} & d \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Next week

- Forward kinematics, Denavit Hartenberg

