Plan:

- Velocities
- Jacobian
- Example: Spherical manipulator
- Singularities
- Want to find the velocity of the tool relative to the base.
- We can only measure the changes in the joint variables.
--> So how?
Velocity:
- Rigid body rotates about a fixed axis: $-k$ is the unit vector in the direction of the axis.

$$
\begin{aligned}
& w=\dot{\theta} k \\
& v=w \times r
\end{aligned}
$$

- Translation for a rigid body:
- All points attached to the body moves with the same velocity.
- End effector velocity:
$-\xi=J \dot{q}$ ($q=$ joint variables)
- J, Jacobian: Transformation from joint variables to end-effector velocities.

$$
\begin{aligned}
& J=\left[\begin{array}{c}
J_{v} \\
J_{w}
\end{array}\right] \quad J_{v_{i}} \begin{cases}z_{i-1} \times\left(O_{n}-O_{i-1}\right) & \text { revolute } \\
J_{w_{i}} i & \text { prismatic } \\
z_{i-1} & \text { revolute } \\
0 & \text { prismatic }\end{cases} \\
& J=\left[\frac{\partial F}{\partial x_{1}} \cdots \frac{\partial F}{\partial x_{n}}\right] \text { (Alternatively) }
\end{aligned}
$$

Jacobian:

- Useful for:
- Calculation and execution of smooth movement.
- Calculation of singularities.
- Deriving the dynamical equations.
- Translate joint variables to force and moment in the tool.

$$
\left.\begin{array}{l}
v_{i}=v_{v} \dot{q} \\
w_{i}=v_{w} \dot{q}
\end{array}\right\} \quad \xi=\left[\begin{array}{l}
v_{i} \\
w_{i}
\end{array}\right]
$$

Example: Spherical manipulator

$$
\begin{aligned}
& T_{3}^{0}=\left[\begin{array}{cccc}
-s_{1} & c_{1} s_{2} & c_{1} c_{2} & c_{1} c_{2}\left(L 2+L 3^{*}\right) \\
c_{1} & s_{1} s_{2} & s_{1} c_{2} & s_{1} c_{2}\left(L 2+L 3^{*}\right) \\
0 & c_{2} & -s_{2} & L 1-s_{2}\left(L 2+L 3^{*}\right) \\
0 & 0 & 0 & 1
\end{array}\right] \\
& J=\left[\begin{array}{ccc}
z_{0} \times\left(O_{3}-O_{0}\right) & z_{1} \times\left(O_{3}-O_{1}\right) & z_{2} \\
z_{0} & z_{1} & 0
\end{array}\right] \\
& z_{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad c_{1}=\left[\begin{array}{c}
-s_{1} \\
c_{1} \\
0
\end{array}\right] \quad z_{2}=\left[\begin{array}{c}
c_{1} c_{2} \\
s_{1} c_{2} \\
-s_{2}
\end{array}\right] \\
& O_{3}-O_{0}=O_{3}=\left[\begin{array}{ll}
c_{1} c_{2}\left(L_{2}+L_{3}\right) \\
s_{1} c_{2}\left(L_{2}+L 3\right) \\
L 1-S_{2}(L 2+L J)
\end{array}\right]\left[\begin{array}{c}
c_{2} \\
b \\
c
\end{array}\right. \\
& O_{3}-O_{1}=\left[\begin{array}{ll}
c_{1} c_{2}\left(L_{2}+L 3\right) \\
s_{1} c_{2}(L 2+L 3) \\
-S_{2}(L 2+L J)
\end{array}\right] \begin{array}{l}
d \\
e \\
f
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 20 \times\left(O_{3}, O_{0}\right)=\left\{\begin{array}{llll}
\phi & 0 & 1 & 0 \\
b & c & a & b
\end{array}\right. \\
& {\left[\begin{array}{c}
-b \\
a \\
0
\end{array}\right]=\left[\begin{array}{c}
-s_{1} c_{2}(L 2+L 3) \\
c_{1} c_{2}(L 2+L 3) \\
0
\end{array}\right]} \\
& 2_{0} \times\left(O_{3}-O_{1}\right)=\begin{array}{cccc}
-j_{1} & c_{1} & 0 & -s_{1} \\
e_{1} & \phi \\
e & f & d & e
\end{array} f \\
& {\left[\begin{array}{l}
e_{1} f \\
s_{1} f \\
-s_{1} e-e_{1} d
\end{array}\right]=\left[\begin{array}{l}
-e_{1} s_{2}(L 2+L Z) \\
-s_{1} s_{2}(L 2+L J) \\
-\underbrace{\left(s_{1}^{2}+c_{1}^{2}\right)}_{1}\left(c_{2}(L 2+L Z)\right)
\end{array}\right]} \\
& J=\left[\begin{array}{ccc}
-s_{1} c_{2}(L 2+L 3) & -c_{1} s_{2}(L 2+L 3) & c_{1} c_{2} \\
c_{1} c_{2}(L 2+L 3) & -s_{1} s_{2}(L 2+L 3) & s_{1} c_{2} \\
0 & -c_{2}(L 2+L 3) & -s_{2} \\
0 & -s_{1} & 0 \\
0 & c_{1} & 0
\end{array}\right]
\end{aligned}
$$

Singularities:

- Configuration where motion in some directions is impossible.
- Minor movement of the tool could require infinite force in the joints.
- "Does not mean that joints will fly off into the stratosphere at superluminal speeds, but the joints might strain and break."
- Mathematically: rang $\mathrm{J}(\mathrm{q})<\max$
- Appears when the manipulator loses a degree of freedom.
$-|J|=0$
- $|\mathrm{Jv}|=0$ (arm singularities)

