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Ch. 3: Forward and Inverse 
Kinematics
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Industrial robots
High precision and repetitive tasks

Pick and place, painting, etc

Hazardous environments
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Common configurations: elbow 
manipulator
Anthropomorphic arm: ABB IRB1400 or KUKA

Very similar to the lab arm NACHI (RRR)
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Simple example: control of a 2DOF 
planar manipulator

Move from ‘home’ position and follow the path AB with a constant contact 
force F all using visual feedback
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Coordinate frames & forward kinematics
Three coordinate frames: 

Positions:

Orientation of the tool frame:
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Ch. 2: Rigid Body Motions and 
Homogeneous Transforms
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Rotation matrices as projections

Projecting the axes of from o1 onto the axes of frame o0

Alternate approach
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Properties of rotation matrices
Summary:

Columns (rows) of R are mutually orthogonal

Each column (row) of R is a unit vector

The set of all n x n matrices that have these properties are called the Special Orthogonal 
group of order n
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3D rotations
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Properties of rotation matrices 
(cont’d)

SO(3) is a group under multiplication

Closure: 

Identity: 

Inverse:

Associativity:

In general, members of SO(3) do not commute  
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Rotating a vector
Another interpretation of a rotation matrix:

Rotating a vector about an axis in a fixed frame

Ex: rotate v0 about y0 by π/2
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Rotation matrix summary
Three interpretations for the role of rotation matrix:

Representing the coordinates of a point in two different frames

Orientation of a transformed coordinate frame with respect to a 
fixed frame

Rotating vectors in the same coordinate frame
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Compositions of rotations
w/ respect to the current frame

Ex: three frames o0, o1, o2

This defines the composition law for successive rotations about the current
reference frame: post-multiplication
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Compositions of rotations
Ex: R represents rotation about the current y-axis by φ followed by θ about 

the current z-axis
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Compositions of rotations
w/ respect to a fixed reference frame (o0)

Let the rotation between two frames o0 and o1 be defined by R1
0

Let R be a desired rotation w/ respect to the fixed frame o0

Using the definition of a similarity transform, we have:

This defines the composition law for successive rotations about a fixed reference frame: pre-
multiplication
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Compositions of rotations
Ex: we want a rotation matrix R that is a composition of φ about y0 (Ry,φ) and then θ about z0

(Rz,θ)

the second rotation needs to be projected back to the initial fixed frame

Now the combination of the two rotations is:
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Compositions of rotations
Summary:

Consecutive rotations w/ respect to the current reference frame:

Post-multiplying by successive rotation matrices

w/ respect to a fixed reference frame (o0)

Pre-multiplying by successive rotation matrices

We can also have hybrid compositions of rotations with respect to the 
current and a fixed frame using these same rules
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Parameterizing rotations
There are three parameters that need to be specified to create 

arbitrary rigid body rotations

We will describe three such parameterizations:

Euler angles

Roll, Pitch, Yaw angles

Axis/Angle 
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Parameterizing rotations
Euler angles

Rotation by φ about the z-axis, followed by θ about the current y-axis, then ψ about the 
current z-axis
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Parameterizing rotations
Roll, Pitch, Yaw angles

Three consecutive rotations about the fixed principal axes:

Yaw (x0) ψ, pitch (y0) θ, roll (z0) φ
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Parameterizing rotations
Axis/Angle representation

Any rotation matrix in SO(3) can be represented as a single rotation about a suitable axis 
through a set angle

For example, assume that we have a unit vector: 

Given θ, we want to derive Rk,θ:

Intermediate step: project the z-axis onto k:

Where the rotation R is given by:
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Parameterizing rotations
Axis/Angle representation

This is given by:

Inverse problem:

Given arbitrary R, find k and θ
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Rigid motions
Rigid motion is a combination of rotation and translation

Defined by a rotation matrix (R) and a displacement vector (d)

the group of all rigid motions (d,R) is known as the Special Euclidean group, SE(3)

Consider three frames, o0, o1, and o2 and corresponding rotation matrices R2
1, and 

R1
0

Let d2
1 be the vector from the origin o1 to o2, d1

0 from o0 to o1

For a point p2 attached to o2, we can represent this vector in frames o0 and o1:
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Homogeneous transforms
We can represent rigid motions (rotations and translations) as matrix 

multiplication

Define:

Now the point p2 can be represented in frame o0:

Where the P0 and P2 are:
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Homogeneous transforms
The matrix multiplication H is known as a homogeneous 

transform and we note that 

Inverse transforms: 

( )3SEH ∈
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Homogeneous transforms
Basic transforms:

Three pure translation, three pure rotation
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Ch. 3: Forward and Inverse 
Kinematics
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Recap: rigid motions
Rigid motion is a combination of rotation and translation

Defined by a rotation matrix (R) and a displacement vector (d)

the group of all rigid motions (d,R) is known as the Special Euclidean group, SE(3)

We can represent rigid motions (rotations and translations) as matrix multiplication

The matrix multiplication H is known as a homogeneous transform and we note that 

Inverse transforms: 
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Recap: homogeneous transforms

Basic transforms:

Three pure translation, three pure rotation
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Example
Euler angles: we have only discussed ZYZ Euler 

angles.  What is the set of all possible Euler 
angles that can be used to represent any rotation 
matrix?
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Answer - Euler

XYZ, YZX, ZXY, XYX, YZY, ZXZ, XZY, YXZ, 
ZYX, XZX, YXY, ZYZ

ZZY cannot be used to describe any arbitrary 
rotation matrix since two consecutive 
rotations about the Z axis can be composed 
into one rotation
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Example
Compute the homogeneous transformation 

representing a translation of 3 units along the x-
axis followed by a rotation of π/2 about the 
current z-axis followed by a translation of 1 unit 
along the fixed y-axis
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Answer – Homogeneous 
Transforms
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Forward kinematics introduction
Challenge: given all the joint parameters of a manipulator, determine the position 

and orientation of the tool frame

Tool frame: coordinate frame attached to the most distal link of the manipulator

Inertial (base) frame: fixed (immobile) coordinate system fixed to the most proximal 
link of a manipulator

Therefore, we want a mapping between the tool frame and the inertial frame

This will be a function of all joint parameters and the physical geometry of the 
manipulator

Purely geometric: we do not worry about joint torques or dynamics

(yet!)
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Convention

A n-DOF manipulator will have n joints (either revolute or prismatic) and n+1 links 
(since each joint connects two links)

We assume that each joint only has one DOF.  Although this may seem like it does not 
include things like spherical or universal joints, we can think of multi-DOF joints as a 
combination of 1DOF joints with zero length between them

The o0 frame is the inertial frame (or base frame)

on is the tool frame

Joint i connects links i-1 and i

The oi is connected to link i

Joint variables, qi





=
prismatic is joint  if
revolute is joint  if

id
i

q
i

i
i

θ
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Convention

We said that a homogeneous transformation allowed us to express the position and 
orientation of oj with respect to oi

what we want is the position and orientation of the tool frame with respect to the inertial 
frame

An intermediate step is to determine the transformation matrix that gives position and 
orientation of oi with respect to oi-1: Ai

Now we can define the transformation oj to oi as:

( ) ij
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Convention

Finally, the position and orientation of the tool frame with respect to the 
inertial frame is given by one homogeneous transformation matrix:

For a n-DOF manipulator

Thus, to fully define the forward kinematics for any serial manipulator, all we 
need to do is create the Ai transformations and perform matrix 
multiplication

But there are shortcuts…
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The Denavit-Hartenberg (DH) 
Convention

Representing each individual homogeneous transformation as the 
product of four basic transformations:
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The Denavit-Hartenberg (DH) 
Convention

Four DH parameters:

ai: link length

αi: link twist

di: link offset

θi: joint angle

Since each Ai is a function of only one variable, three of these will be constant for 
each link 

di will be variable for prismatic joints and θi will be variable for revolute joints

But we said any rigid body needs 6 parameters to describe its position and orientation

Three angles (Euler angles, for example) and a 3x1 position vector

So how can there be just 4 DH parameters?...
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Existence and uniqueness
When can we represent a homogeneous transformation using the 4 DH parameters?

For example, consider two coordinate frames o0 and o1

There is a unique homogeneous transformation between these two frames

Now assume that the following holds:

DH1: perpendicular -> 

DH2: intersects ->

If these hold, we claim that there

exists a unique transformation A:  
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Existence and uniqueness
Proof:

We assume that R1
0 has the form:

Use DH1 to verify the form of R1
0

Since the rows and columns of R1
0 must be unit vectors:

The remainder of R1
0 follows from the properties of rotation matrices

Therefore our assumption that there exists a unique θ and α that will give us R1
0

is correct given DH1
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Existence and uniqueness
Proof:

Use DH2 to determine the form of o1
0

Since the two axes intersect, we can represent the line between the two frames 
as a linear combination of the two axes (within the plane formed by x1 and 
z0)
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Physical basis for DH 
parameters

ai: link length, distance between the z0 and z1 (along x1)

αi: link twist, angle between z0 and z1 (measured around x1)

di: link offset, distance between o0 and intersection of z0 and x1 (along z0)

θi: joint angle, angle between x0 and x1 (measured around z0)

positive convention:
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Assigning coordinate frames
For any n-link manipulator, we can always choose coordinate frames such that DH1 and DH2 

are satisfied

The choice is not unique, but the end result will always be the same

Choose zi as axis of rotation for joint i+1

z0 is axis of rotation for joint 1, z1 is axis of rotation for joint 2, etc

If joint i+1 is revolute, zi is the axis of rotation of joint i+1

If joint i+1 is prismatic, zi is the axis of translation for joint i+1
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Assigning coordinate frames
Assign base frame

Can be any point along z0

Chose x0, y0 to follow the right-handed convention

Now start an iterative process to define frame i with respect to frame i-1

Consider three cases for the relationship of zi-1 and zi:

zi-1 and zi are non-coplanar

zi-1 and zi intersect

zi-1 and zi are parallel
zi-1 and zi are coplanar
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Assigning coordinate frames
zi-1 and zi are non-coplanar

There is a unique shortest distance between the two 
axes

Choose this line segment to be xi

oi is at the intersection of zi and xi

Choose yi by right-handed convention
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Assigning coordinate frames

zi-1 and zi intersect

Choose xi to be normal to the plane defined by zi
and zi-1

oi is at the intersection of zi and xi

Choose yi by right-handed convention 
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Assigning coordinate frames
zi-1 and zi are parallel

Infinitely many normals of equal length between zi
and zi-1

Free to choose oi anywhere along zi, however if we 
choose xi to be along the normal that intersects at 
oi-1, the resulting di will be zero

Choose yi by right-handed convention 
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Assigning tool frame
The previous assignments are valid up to frame n-1

The tool frame assignment is most often defined by the axes n, 
s, a:

a is the approach direction

s is the ‘sliding’ direction (direction along which the grippers open/close)

n is the normal direction to a and s
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Example 1: two-link planar 
manipulator

2DOF: need to assign three coordinate frames

Choose z0 axis (axis of rotation for joint 1, base frame)

Choose z1 axis (axis of rotation for joint 2)

Choose z2 axis (tool frame)

This is arbitrary for this case since we have described no wrist/gripper

Instead, define z2 as parallel to z1 and z0 (for consistency)

Choose xi axes

All zi’s are parallel

Therefore choose xi to intersect oi-1
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Example 1: two-link planar 
manipulator

Now define DH parameters

First, define the constant parameters ai, αi

Second, define the variable parameters θi, di

The αi terms are 0 because all zi are parallel

Therefore only θi are variable

link ai αi di θi

1 a1 0 0 θ1

2 a2 0 0 θ2
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Example 2: three-link 
cylindrical robot

3DOF: need to assign four coordinate frames

Choose z0 axis (axis of rotation for joint 1, base frame)

Choose z1 axis (axis of translation for joint 2)

Choose z2 axis (axis of translation for joint 3)

Choose z3 axis (tool frame)

This is again arbitrary for this case since we have described no wrist/gripper

Instead, define z3 as parallel to z2
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Example 2: three-link 
cylindrical robot

Now define DH parameters

First, define the constant parameters ai, αi

Second, define the variable parameters θi, di

link ai αi di θi

1 0 0 d1 θ1

2 0 -90 d2 0

3 0 0 d3 0
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Example 3: spherical wrist
3DOF: need to assign four coordinate frames

yaw, pitch, roll (θ4, θ5, θ6) all intersecting at one point o (wrist center)
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Example 3: spherical wrist
link ai αi di θi

4 0 -90 0 θ4

5 0 90 0 θ5

6 0 0 d6 θ6

Now define DH parameters

First, define the constant parameters ai, αi

Second, define the variable parameters θi, di
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Next class…
More examples for common configurations

Link to movie that explains how to set-up the Denavit-Hartenberg 
parameters : 

http://en.wikipedia.org/wiki/File:Denavit-
Hartenberg_Tutorial_Video.ogv#file

http://en.wikipedia.org/wiki/File:Denavit-Hartenberg_Tutorial_Video.ogv
http://en.wikipedia.org/wiki/File:Denavit-Hartenberg_Tutorial_Video.ogv
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