L2

0%.C £ Y% » < p=-
a:;i e R

UiO $ University of Oslo

IN3140
Open-Source Robotics

IN3140 - Introduction to
Robot Operating System (ROS): Part Il

Abbas Tariverdi
abbast@uio.no

Spring 2021 Bekkeng 09.04.2021

mailto:abbast@uio.no

UiO ¢ University of Oslo

Recap of the previous lecture

e \Whatis ROS?

e Concepts: Nodes, Messages, Topics, Services,
roscore(ROS Master)

e RQT Tools: rqt_plot and rqt_graph.

(‘e Setting up a new ROS Installation Hands-on\
e Creating workspace

e Creating packages
e Working with Nodes, Topics, Messeges
* Simple Subscriber/Publisher -

1. Tutorials On GitHub
2. http://wiki.ros.org/ROS/Tutorials

UiO ¢ University of Oslo

Main Tasks in Robotics

 Motion/Trajectory Planning (Manipulator kinematics: Forward
and Inverse Kinemtaics)- Collision/obstacle avoidance

e Control (Position and Force Control)

https://andyzeng.github.io
https://www.ros.org/

UiO ¢ University of Oslo

Lecture Plan

Going through

e Movieit!

e Gazebo

e |ntegration

e ROS-Industrial: Universal Robot (UR5) & ROS Control

UiO ¢ University of Oslo

Implementation a Robotic Tasks

OpenRAVE or Moveit!

[X N
eoe R OS MOTION PLANNING
oee
-~ - o
>) penRAVE]"
A
Y PERCEPTION
Y Algorithms 0 =
ros_control [« > Frameworks < ou Fo pcl
7y Robotic Applications Opency LPointCloud Library
/ \ f

' J \
@ Manipulator FT Sensor Gripper Camera

CAZEBC

Gazebo or Real-world Robot

http://osrobotics.org/osr/

UiO ¢ University of Oslo

Overview of Motion Planning Procedure

Motion query
(start and goal configurations / poses)

OpenRAVE

./ Moveit!

l Motion planning

OpenRAVE trajectory

l Conversion

ROS trajectory

Sending to Gazebo Sending to robot controller

Simulated robot motion Physical robot motion

http://osrobotics.org/osr/

UiO ¢ University of Oslo

> Movelt

Review of Technical Capabilities

https://moveit.ros.org

UiO ¢ University of Oslo

UiO ¢ University of Oslo

Motion Planning

Movelt! includes a variety of robust and state-of-the-art motion
planners:

e Sampling-based motion planning algorithms (OMPL)

e Covariant Hamiltonian optimization for motion planning
(CHOMP)

e Stochastic Trajectory Optimization for Motion Planning
(STOMP)

e TrajOptis a sequential convex optimization algorithm

UiO ¢ University of Oslo

You can specify the following kinematic constraints:

e Position constraints — restrict the position of a link to lie
within a region of space

e Orientation constraints — restrict the orientation of a link to
lie within specified roll, pitch or yaw limits

e Visibility constraints — restrict a point on a link to lie within
the visibility cone for a particular sensor

e Joint constraints — restrict a joint to lie between two values

e User-specified constraints — you can also specify your own
constraints with a user-defined callback.

UiO ¢ University of Oslo

Scene Collision Objects

You can specify the following kinematic constraints:
e static objects (objects rigidly fixed on the robot workspace)

e dynamic objects (objects with which the robot can interact,
i.g. pick, place, push ...etc)

e Moveit Collision Objects published through
moveit_msgs/CollisionObject messages

 mesh (.stl or .dae) or primitive objects (Boxes, Spheres,
Cylinders, and Cones), OctoMap

UiO ¢ University of Oslo

Scene Collision Objects

Collision Objects:

 mesh (.stl or .dae) or primitive objects
* (Boxes, Spheres, Cylinders, and Cones), OctoMap

UiO ¢ University of Oslo

How to Use 1t?!

To simulate and play around with Universal Robot UR5:
e Have ROS installed.
e Create a work-space: mkdir -p ~/ws _moveit/src

e From ROS-Industrial GitHub Page:

git clone -b melodic-devel https://github.com/ros-
industrial/universal robot

e Install any new dependencies that may be missing:

rosdep install -y --from-paths . --ignore-src --
rosdistro noetic

e Re-build and re-source the workspace and enjoy:

catkin make and source devel/setup.bash

roslaunch ur5 moveit config moveit rviz.launch

ros-planning.github.io/moveit_tutorials/doc/realtime_servo/realtime__
servo_tutorial.html?highlight=ur5

UiO ¢ University of Oslo

%

3 GAZEBO

Review of Technical Capabilities
http://gazebosim.org/

UiO ¢ University of Oslo

%

simulation using Gazebo within a ROS environment:

e Gazebo basics: understanding the Gazebo simulation
infrastructure

e Integration to ROS: understanding how Gazebo is integrated
within ROS by means of the gazebo ros package

e Configuring launch files
e Modeling robots for Gazebo

https://sir.upc.edu/projects/rostutorials/8- http://gazebosim.org/tutorials/?tut=ros
gazebo_basics_tutorial/index.html#basics-label _urdf#Sharingyourrobotwiththeworld

UiO ¢ University of Oslo

%

simulation using Gazebo within a ROS environment:

e Gazebo basics: understanding the Gazebo simulation
infrastructure

e Integration to ROS: understanding how Gazebo is integrated
within ROS by means of the gazebo ros package

e Configuring launch files
e Modeling robots for Gazebo

https://sir.upc.edu/projects/rostutorials/8- http://gazebosim.org/tutorials/?tut=ros
gazebo_basics_tutorial/index.html#basics-label _urdf#Sharingyourrobotwiththeworld

UiO ¢ University of Oslo

Gazebo basics, Gazebo files

To run a Gazebo simulation you need:

e A world file: A file with extension .world that contains all
the elements in a simulation, including robots, lights, sensors,
and static objects, formatted using the Simulation
Description Format (SDF). Some world files can be found at
/usr/share/gazebo-9/worlds).

https://sir.upc.edu/projects/rostutorials/8- http://gazebosim.org/tutorials/?tut=ros
gazebo_basics_tutorial/index.html#basics-label _urdf#Sharingyourrobotwiththeworld

UiO ¢ University of Oslo

Gazebo basics, Gazebo files

To run a Gazebo simulation you need:

e Model files: SDF files used to describe objects and robots (a

single <model> .. </model>). Models are included in world files
using the include tag:

<include> <uri>model://model file name</uri> </include>

The components of a model are:

e Links: A link contains the physical properties of one body of the
model.

e Joints: A joint connects two links.

https://sir.upc.edu/projects/rostutorials/8- http://gazebosim.org/tutorials/?tut=ros
gazebo_basics_tutorial/index.html#basics-label _urdf#Sharingyourrobotwiththeworld

UiO ¢ University of Oslo

Gazebo plugins

A plugin is a chunk of code that is compiled as a shared library and
inserted into the simulation. There are currently 6 types of plugins:

e World: Attached to the world to control world properties.
e Model: Attached to a model to control the joints and the state.

e Sensor: Attached to a sensor to acquire sensor information and
control sensor properties.

e Visual: A plugin to access the visual rendering functions.

https://sir.upc.edu/projects/rostutorials/8- http://gazebosim.org/tutorials/?tut=ros
gazebo_basics_tutorial/index.html#basics-label _urdf#Sharingyourrobotwiththeworld

UiO ¢ University of Oslo

rrbot example

RRBot, or "Revolute-Revolute Manipulator Robot", is a simple 3-
linkage, 2-joint arm.

cd ~/catkin_ws/src/
git clone https://github.com/ros-simulation/gazebo ros demos.git

cd ..
catkin make

rosed rrbot description rrbot.xacro

roslaunch rrbot gazebo rrbot world.launch

https://sir.upc.edu/projects/rostutorials/8- http://gazebosim.org/tutorials/?tut=ros
gazebo_basics_tutorial/index.html#basics-label _urdf#Sharingyourrobotwiththeworld

UiO ¢ University of Oslo

Robot Control: ros_control overview

Understand the structure of the ros_control framework.
Available controllers and concepts.

with 3rd party tools decoupled from robot not exposed by robot

Controller lifecycle
management

[Out_of_the box compatibility] [Controllers] [Hardware access]

3rd party ros_control & friends
; """"""""""""" |
.| navigation ______: base_controller RobotHW :

!
1

kill ')

- AR Movelt! | _____1| arm_controller :
1
|

7 I

1| foo_controller .

....................... s - ‘

) I

' |

‘ ’ controller_manager !

- Leverage existing controllers hardware interfaces f
- Implement custom ones @—@ clocity control
A—A position control - Leverage simulation backend
- Custom hardware backend
Bl effort control using ready-to-use blocks

https://sir.upc.edu/projects/rostutorials/10-gazebo_control_tutorial/index.html

UiO ¢ University of Oslo

Robot Control: ros_control overview

:::ROS control Controller

e.g. joint_position_controller
Dynamically allocated from loaded controller plugin.

eg.PiD
Controller
_list contolers o | Controller Manager Hardware Resource Interfs

load controller o | | pads, uninads and calls ;

v \\\.\\\\\\\\\\\\\\\\ DO ‘\\\.\\\\\\\\\\\\\\\

unload_contralery, | updates to controllers mn_ihm Joint State Inferface
eg. Effortlointinterface eg.

switch_controller
ORI \mmmx\\\\m\\\k e S

Controller 1 - Robot Commands Robot States
€. joint efforts - M.m| joint states - radians

Data flow of controllers

Controller 2

~ Joint Limits
Enforce limits (optonal)

Controller 3

LLY

Actuaior Efforts Communication Bus Mechanism Et_ates
eg. current &, Ethercat, eg. encoder ficks
Serial, UISB
Real Robot y
Embedded Controllers
eg. PID loop to follow
effort setpaint
Optional Hardware / T
Companents Embedded Actuators Encoders
Servos, eic Sensors on the real
Doawe ColEman robot

Updaed Jun 24, 2013

https://sir.upc.edu/projects/rostutorials/10-gazebo_control_tutorial/index.html

UiO ¢ University of Oslo

ROS Control: Available Controllers

The main ROS controllers are grouped according to the
commands get passed to your hardware/simulator:

- effort controller: efforts commands are used to control
joint positions, velocities or efforts.

- position controllers: position commands are used to
control joint positions.

- velocity controllers: Vvelocity commands are used to
control joint velocities.

https://sir.upc.edu/projects/rostutorials/10-gazebo_control_tutorial/index.html

UiO ¢ University of Oslo

Configuring and launching controllers

Controllers are usually defined with yam1 files

rrbot:
Publish all joint states ---------=----=------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 5@

Position Controllers ------------ccccmmmmmmmeeao
jointl _position_controller:

type: effort_controllers/JointPositionController

joint: jointl

pid: {p: 1ee.e, i: ©.01, d: 10.0}
joint2_position_controller:

type: effort_controllers/JointPositionController

joint: joint2

pid: {p: 1©e.6, i: 0.91, d: 10.0}

https://sir.upc.edu/projects/rostutorials/10-gazebo_control_tutorial/index.html

UiO ¢ University of Oslo

Gazebo and ROS Control

e Run the simulation

roslaunch rrbot gazebo rrbot world.launch
roslaunch rrbot control rrbot control.launch

e Manually send example commands

rostopic pub -1 /rrbot/jointl position controller/command std msgs/Float64 "data: 1.5"
rostopic pub -1 /rrbot/joint2 position controller/command std msgs/Float64 "data: 1.0"

e Use RQT To Send Commands

rosrun rqgt gui rqt gui

https://sir.upc.edu/projects/rostutorials/10-gazebo_control_tutorial/index.html

UiO ¢ University of Oslo

Thanks for your attention!

