
IN3140

Open-Source Robotics

IN3140 - Introduction to

Robot Operating System (ROS): Part II

Bekkeng 09.04.2021Spring 2021

Abbas Tariverdi
abbast@uio.no

mailto:abbast@uio.no

Recap of the previous lecture

• What is ROS?

• Concepts: Nodes, Messages, Topics, Services,
roscore(ROS Master)

• RQT Tools: rqt_plot and rqt_graph.

• Setting up a new ROS Installation

• Creating workspace

• Creating packages

• Working with Nodes, Topics, Messeges

• Simple Subscriber/Publisher

Hands-on

1. Tutorials On GitHub

2. http://wiki.ros.org/ROS/Tutorials

Main Tasks in Robotics

• Motion/Trajectory Planning (Manipulator kinematics: Forward
and Inverse Kinemtaics)- Collision/obstacle avoidance

• Control (Position and Force Control)

https://andyzeng.github.io

https://www.ros.org/

Lecture Plan

Going through

• Movieit!

• Gazebo

• Integration

• ROS-Industrial: Universal Robot (UR5) & ROS Control

Implementation a Robotic Tasks

OpenRAVE or Moveit!

Gazebo or Real-world Robot

http://osrobotics.org/osr/

Overview of Motion Planning Procedure

OpenRAVE

Moveit!

http://osrobotics.org/osr/

Review of Technical Capabilities
https://moveit.ros.org

Motion Planning

MoveIt! includes a variety of robust and state-of-the-art motion
planners:

• Sampling-based motion planning algorithms (OMPL)

• Covariant Hamiltonian optimization for motion planning
(CHOMP)

• Stochastic Trajectory Optimization for Motion Planning
(STOMP)

• TrajOpt is a sequential convex optimization algorithm

Constraints

You can specify the following kinematic constraints:

• Position constraints – restrict the position of a link to lie
within a region of space

• Orientation constraints – restrict the orientation of a link to
lie within specified roll, pitch or yaw limits

• Visibility constraints – restrict a point on a link to lie within
the visibility cone for a particular sensor

• Joint constraints – restrict a joint to lie between two values

• User-specified constraints – you can also specify your own
constraints with a user-defined callback.

Scene Collision Objects

You can specify the following kinematic constraints:

• static objects (objects rigidly fixed on the robot workspace)

• dynamic objects (objects with which the robot can interact,
i.g. pick, place, push ...etc)

• Moveit Collision Objects published through
moveit_msgs/CollisionObject messages

• mesh (.stl or .dae) or primitive objects (Boxes, Spheres,
Cylinders, and Cones), OctoMap

Scene Collision Objects

Collision Objects:

• mesh (.stl or .dae) or primitive objects

• (Boxes, Spheres, Cylinders, and Cones), OctoMap

How to Use it?!

To simulate and play around with Universal Robot UR5:

• Have ROS installed.

• Create a work-space: mkdir –p ~/ws_moveit/src

• From ROS-Industrial GitHub Page:

git clone -b melodic-devel https://github.com/ros-

industrial/universal_robot

• Install any new dependencies that may be missing:

rosdep install -y --from-paths . --ignore-src --

rosdistro noetic

• Re-build and re-source the workspace and enjoy:

catkin_make and source devel/setup.bash

roslaunch ur5_moveit_config moveit_rviz.launch

ros-planning.github.io/moveit_tutorials/doc/realtime_servo/realtime_

servo_tutorial.html?highlight=ur5

Review of Technical Capabilities
http://gazebosim.org/

simulation using Gazebo within a ROS environment:

• Gazebo basics: understanding the Gazebo simulation
infrastructure

• Integration to ROS: understanding how Gazebo is integrated
within ROS by means of the gazebo_ros package

• Configuring launch files

• Modeling robots for Gazebo

http://gazebosim.org/tutorials/?tut=ros

_urdf#Sharingyourrobotwiththeworld
https://sir.upc.edu/projects/rostutorials/8-

gazebo_basics_tutorial/index.html#basics-label

https://sir.upc.edu/projects/rostutorials/8-

gazebo_basics_tutorial/index.html#basics-label

simulation using Gazebo within a ROS environment:

• Gazebo basics: understanding the Gazebo simulation
infrastructure

• Integration to ROS: understanding how Gazebo is integrated
within ROS by means of the gazebo_ros package

• Configuring launch files

• Modeling robots for Gazebo

http://gazebosim.org/tutorials/?tut=ros

_urdf#Sharingyourrobotwiththeworld

https://sir.upc.edu/projects/rostutorials/8-

gazebo_basics_tutorial/index.html#basics-label

To run a Gazebo simulation you need:

• A world file: A file with extension .world that contains all
the elements in a simulation, including robots, lights, sensors,
and static objects, formatted using the Simulation
Description Format (SDF). Some world files can be found at
/usr/share/gazebo-9/worlds).

http://gazebosim.org/tutorials/?tut=ros

_urdf#Sharingyourrobotwiththeworld

Gazebo basics, Gazebo files

https://sir.upc.edu/projects/rostutorials/8-

gazebo_basics_tutorial/index.html#basics-label

To run a Gazebo simulation you need:

• Model files: SDF files used to describe objects and robots (a
single <model> … </model>). Models are included in world files
using the include tag:

<include> <uri>model://model_file_name</uri> </include>

The components of a model are:

• Links: A link contains the physical properties of one body of the
model.

• Joints: A joint connects two links.

http://gazebosim.org/tutorials/?tut=ros

_urdf#Sharingyourrobotwiththeworld

Gazebo basics, Gazebo files

https://sir.upc.edu/projects/rostutorials/8-

gazebo_basics_tutorial/index.html#basics-label

A plugin is a chunk of code that is compiled as a shared library and
inserted into the simulation. There are currently 6 types of plugins:

• World: Attached to the world to control world properties.

• Model: Attached to a model to control the joints and the state.

• Sensor: Attached to a sensor to acquire sensor information and
control sensor properties.

• Visual: A plugin to access the visual rendering functions.

http://gazebosim.org/tutorials/?tut=ros

_urdf#Sharingyourrobotwiththeworld

Gazebo plugins

https://sir.upc.edu/projects/rostutorials/8-

gazebo_basics_tutorial/index.html#basics-label

RRBot, or ''Revolute-Revolute Manipulator Robot'', is a simple 3-
linkage, 2-joint arm.
cd ~/catkin_ws/src/

git clone https://github.com/ros-simulation/gazebo_ros_demos.git

cd ..

catkin_make

rosed rrbot_description rrbot.xacro

roslaunch rrbot_gazebo rrbot_world.launch

http://gazebosim.org/tutorials/?tut=ros

_urdf#Sharingyourrobotwiththeworld

rrbot example

https://sir.upc.edu/projects/rostutorials/10-gazebo_control_tutorial/index.html

Understand the structure of the ros_control framework.

Available controllers and concepts.

Robot Control: ros_control overview

https://sir.upc.edu/projects/rostutorials/10-gazebo_control_tutorial/index.html

Robot Control: ros_control overview

https://sir.upc.edu/projects/rostutorials/10-gazebo_control_tutorial/index.html

ROS Control: Available Controllers

The main ROS controllers are grouped according to the
commands get passed to your hardware/simulator:

• effort_controller: efforts commands are used to control
joint positions, velocities or efforts.

• position_controllers: position commands are used to
control joint positions.

• velocity_controllers: velocity commands are used to
control joint velocities.

https://sir.upc.edu/projects/rostutorials/10-gazebo_control_tutorial/index.html

Configuring and launching controllers

Controllers are usually defined with yaml files

https://sir.upc.edu/projects/rostutorials/10-gazebo_control_tutorial/index.html

Gazebo and ROS Control

• Run the simulation
roslaunch rrbot_gazebo rrbot_world.launch

roslaunch rrbot_control rrbot_control.launch

• Manually send example commands
rostopic pub -1 /rrbot/joint1_position_controller/command std_msgs/Float64 "data: 1.5“

rostopic pub -1 /rrbot/joint2_position_controller/command std_msgs/Float64 "data: 1.0“

• Use RQT To Send Commands
rosrun rqt_gui rqt_gui

Thanks for your attention!

Any Question?

