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Today: Evolutionary robotics

Why evolutionary robotics

Basics of evolutionary optimization
— IN3050 will discuss algorithms in detall

lllustrating examples

— ROBIN in-house robotic platforms and
experiments

Research challenges
— Reality gap
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DyRET:
Dynamic Robot for Embodied Testing
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Evolutionary robotics!?!
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Need for resilient and adaptive robots!
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Future robots & scenarios
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Why evolutionary robotics?

« Adaptation to changes in environment or robot
— Robot may break or deteriorate
— Environment may change unexpectedly

« Optimizing for efficiency
— Energy, speed weight, actuators

* Unconventional, complex designs

— New materials and actuators make it more
challenging with conventional design approaches

Adaptation, optimization, exploration
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Evolutionary Algorithm (EA)

Initializ
tialize Evaluate

rancljotm individuals
population

Create new Termination
population from criterion
good individuals reached?

Verify and

apply
solution(s)
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Evolutionary mechanisms

« Selection

— Good / fit individuals have a higher chance of
reproducing

* |nheritance
— Properties from parents are transferred to offspring

* Variation

— Changes in the genome adjust the behavior of the
offspring, sometimes to the better
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Simulation

» Evolution on a real robot is impractical
— Time consuming
— Requires supervision: can get stuck, fall over
— Mechanical wear

« Simulation should help
— Allows automated evaluation

— Can be much faster
« especially with parallel computation

11
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Example: Quadratot
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Quadratot: Hardware and model
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3D printed parts NVIDIA PhysX
AX12/18 servos Revolute motor joints
Silicone rubber socks Rigid bodies (boxes) °
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(mapping)
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For each joint:
— Curve shape

parameters (4) "
— Phase E
— Amplitude §
— Center angle ' '
t0 t1 2 t3 t4
time
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Genome length 314 bits
Quad I'atOt: Population size 200
Genetic algorithm (GA) Number of generations 300
Mutation rate 1/314
. Crossover rate 0.2
Initialize _ Ev_a_luate
e individuals
lati simulator
POPHEHON ( ) 200 x 300 =

60 000 tests per
evolutionary run!

Create new Termination Verify
population from criterion SIS \ution(s)

good individuals reached? on robot
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Quadratot:
Evolved gait

simulator
real 1 -
real 2 -
real 3 -

-50
X position (cm)
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Challenge: Reality gap

* A simulator cannot capture all aspects of
reality

« Evolved solutions may exploit features of the
simulator not present in reality

- The solutions evolved in simulation behave
differently when applied to the real robot!
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Quadratot:
Reality gap

simulator
real 1 -
real 2 ---
real 3 -

0
X position (cm)
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How to deal with the reality gap?

 |deas?
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How to deal with the reality gap

1. Increase simulation fidelity

— Manually: do more precise measurements, increase solver
accuracy

— Automatically: measure deviation simulation-reality, auto-
tune simulator for smaller deviation

2. Do not allow for solutions using badly simulated
behaviour
— Manually: E.g. Encourage slow, static movements, add noise
— Automatically: Avoid solution types that transfer poorly

3. Online learning after deployment on real robot

— Can use more evolution, reinforcement learning, or other
method

20
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1. Automatic simulator tuning

« Sample from real world

— Test selected solutions
on real robot

« Tune (evolve) simulator
to fit all samples

Evolve new solutions
using tuned simulator
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Self Model synthesis Exploratory Action synthesis
\
Self-modeling e {
robot F. N
(Cornell U.) \.j D
| <f" S

» Creates self-model
through exploratory ...
actions ,'.1f ;

« Uses evolution to
search for walking
pattern using self-
model

« If the robot is |
broken, a new self- o
model is "
constructed

Target Behavior symhes\
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http://youtu.be/gDPbXvADyio
http://youtu.be/MSwdmC0dZ74

2. Transferability (UPMC, Paris)

+ population
in simulation
# points known
in reality

fitness function
in reality
{unknown)

realistic parts
of the simulation

_’_,-""/ \ + population
o \‘ in simulation
1

1
solution efficient a nd!
transferable:

no significant
performance
loss in reality

interpolation of the transferahility
function from the points known in reality

ﬁ

Transferability

looking far a solution efficient in simulation
and transferable from simulation to reality

-

Fitness

interpolated transferability function

] transferable zones

# points known
in reality

non-transferable
Zones

X

which parts]of the

realistic parts . . L
P simulation are Jrealistic ?

+ of the simulation
— i

\ + population
in simulation

wunrealistic parts |
iof the simulation;
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3. Adaptation after transferral (VIDEO)

* Reality gap is
«accepted» R L

« Adaptation // A=
algorithm is carried .|
out on the real robot -~ .«

* Needs to take into =

T S

account lower ; ;
number of tests and i.. E — —
more noise o ] ;

R2 raw R2 SA1 R2 OPL8
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Evolving shape and control

* Physics simulation allows
evolution of shape and
control simultaneously

— More efficient designs for
complex problems?

o

-
— New designs for new
environments?

— Allows for offloading

computation to the body?
Sims: http://youtu.be/JBgG VSP7f8
GOLEM: http://youtu.be/sLtXXFw_g8c 25
Soft robot: http://youtu.be/z9ptOeByLA4
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Example: «hox» body evolution

 Generative approach T Gt

— A program builds the robot " uefilonl] |

plan rather than all
parameters directly coded H

— Allows a variety of bodies &
from a compact code i@ -C0-07-
N

* Designed for production

with 3D printer and
commercial servos

2
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Results: different bodies
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stability

Evolving shape and control for DyRET
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Example MSc project: Karkinos

* Hybrid automatic / engineered

Speed

2.5

1.5

0.5~

design of robot shape and control

= Dominated solutions
o Pareto set

Weight

2.05

2.1

2.15
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university ot oslo Example MSc project: Reality gap
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Summary

« Evolutionary robotics can be useful for
adaptation, optimization, design exploration

« Simulation is useful for evolutionary search

* The reality gap remains a research challenge
— Simulator tuning, transferability, online adaptation

» Co-evolution of body and control gives new
possibilities
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