
IN3140/IN4140 - Assignment 4

Due: Monday, May 10th 2021, 23:59 (24h)

Introduction

In this assignment we will look more closely at control of a robot. We will con-
tinue to work with the CrustCrawler robot, and by the end of this assignment
you will get to test your controller in a simulation environment modeling the
real robot.

We will design controllers for a single joint of the simplified three-link CrustCrawler
robot. Since Joint 2 does most of the work, it has the most important controller
to tune and will therefore be the one we are working with in this assignment.
We can imagine the link of the CrustCrawler robot as an inverted pendulum
(Figure 2).

For this assignment you will need to use the virtual machine (VM) with
ROS installed. The VM has all required packages installed, but you may need
to download custom assignment packages. You can also use your own computer,
but there will be no time allocated for ROS installation. At the end of this
assignment, you will have relevant experience for working with robotic systems
in the real world.

Figure 1: Control of CrustCrawler Joint

i

https://github.uio.no/INF3480/ros_tutorial/wiki/Connecting-to-VM


Figure 2: Inverted pendulum model

Task 1: Control Theory (40%)

We begin where we left off in Task 2 (Dynamics II) of Assignment 3. There,
you derived an equation of motion for Joint 2. We shall now work further with
this equation.

a) 10% Make the equation of motion for Joint 2 independent (of other joints).
Justify your method.

HINT Besides figuring out which variables are constant, remember from chap-
ter 7.3 that the quadratic terms represent the effect induced on Joint i by
other joints.

If you are unable to solve this task for some reason related to Assignment
3, you are allowed to use the generic inverted pendulum torque equation
in place of τ2 for all later tasks (by doing so, you will get no points for
this subtask and make controller tuning more difficult for yourself):

τpendulum = ml2θ̈ −mgl sin (θ) (1)

where m = m2 +m3 and l = L2 + L3.

b) 10% Transform the following independent joint control equation from time
domain to Laplace domain:

u(t) = Jθ̈(t) +Bθ̇(t) +D(t) (2)

Next, write out the terms in the equation you obtained in (a) that corre-
spond to the terms J, B and D in the above equation.

c) 10% Draw a closed-loop block diagram for equation (2) in Laplace domain,
using only simple blocks. Add a PD-controller to the block diagram and
derive the transfer function between the input θd(s) and the output θ(s).

d) 10% With the PD-controller, the closed-loop system is now second order,
and hence the step response is given by the closed-loop natural frequency
ω and damping ratio ζ. Given the requirements of a natural frequency of
6 and a critically damped system, find values for KP and KD.

ii



HINT See Chapter 6.3 (which you should read thoroughly) in the textbook.

Next, we will implement the PD-controller and test the values for KD and
KP that you just calculated. A bit of preparation is in order before we can
begin.

Task 2: Setup (5%)

We assume that you have initialized your workspace in accordance with the
lectures. The first thing we will need is to download dependencies for the as-
signment code. We can discover the dependencies of a package by reading the
package.xml . Most of our dependencies are already installed, but we still need
to download these packages:

cd /path/to/your/workspace/src/
git clone https://github.uio.no/INF3480/crustcrawler simulation.git
git clone https://github.uio.no/INF3480/crustcrawler pen.git

This will download the CrustCrawler simulation packages containing a de-
scription of the robot and how to simulate it within Gazebo. The second package
is a helper package for our reduced robot arm with a pen attachment.

The next step is to copy the pid assignment folder, which is part of the
assignment code, into our source directory. You will find the zipped package
on the course page, in the ”Mandatory assignments” section. You
should now be ready to simulate CrustCrawler.

a) 5% We will start by testing the simulation. Run

roslaunch pid assignment setup.launch

Do not forget to build and source the workspace. You should now see
Gazebo starting with the CrustCrawler inside. To run the assignment
code launch

roslaunch pid assignment pid.launch

This should open an rqt window where we can tune the controller. If you
try to change values now, nothing will happen because the controller is not
implemented. Your delivery on this task should be a screenshot
showing the functioning setup.

Task 3: Simulation I (35%)

We will now work with controlling the position of Joint 2. In the file ‘pid.py’
you will find the skeleton implementation which is called by the simulation.

a) 15% Implement the PD-controller. The return value from the function
‘ call (...)’ should be your computed control effort. Plot the model
with the PD-controller. Did the response of the model have a settling
time as expected? Why or why not? Include an image of the plot.

iii

https://github.uio.no/INF3480/ros_tutorial/wiki/Creating-a-package
https://github.uio.no/INF3480/ros_tutorial/wiki/Creating-a-package


Figure 3: CrustCrawler robot in simulation environment

HINT The settling time is the time the response takes to settle withing 5% of
the steady state value, and is given by the following equation

ts =
4

ζω
(3)

b) 10% Tune your controller so that the model has the lowest possible settling
time without overshooting. What is the new values of KP and KD? What
is the steady state error of the system? Include an image of the plot after
tuning.

c) 5% Decide if the steady state error in task 3 b) is sufficiently small, or if the
controller needs further improvement. Justify your answer.
If the steady state error is regarded as too large, use your knowledge of
control theory to implement a controller that will adjust for steady state
error, tune it and add an image of the plot.
If the steady state error is regarded as small enough then briefly describe
what controller you would have implemented if it wasn’t.

d) 5% Expand the closed-loop block diagram and function you made earlier in
Task 1, with regards to Task 3c).

Task 4: Simulation II (20%)

Until now, we have worked with a PD-controller. For many industrial purposes,
the improvement of the derivative term comes at a cost. In factories, the process
value signal is often noisy, and the derivative of noise leads to instability (re-
member that the derivative action works on the rate of change of the error). In
figure 4 you can see that the derivative action on Joint 6 of the full CrustCrawler
robot causes instability. Here, the gray graph is the position of Joint 6, plotted
over time.

iv



Figure 4: Instability caused by derivative term on Joint 6 of six-link
CrustCrawler (with KP = 2 and KD = 0.5)

For processes that do not benefit from the derivative action, a PI-controller
is often chosen instead. In fact, it is the most used controller in the industry as
well as the focus of this task.

We have already used the dynamics of the system to calculate controller
gains, but we are not always so fortunate as to have a model of the system
to compute controller gains from. We will now assume that we know nothing
about the system other than that overshoot and oscillations are tolerated.

One popular method that can be used to tune our controller experimentally
is called Ziegeler-Nichol’s first method . This method gives us rough esti-
mates of what the different parameters should be. The reason for its popularity
is that it can be used without having a model of the system, which is just what
we need.

This method uses another form of PID called standard form which gives
the parameters a clear physical meaning:

H(s) = Kp(e(s) + e(s)
1

Tis
+ e(s)Tds) (4)

where we have that

• Kp: The proportional constant is the controller gain .

• Td: The derivative time is the length of time into the future for which
the error is estimated and taken into account. In other words, we predict
the error value at Td seconds (or samples) in the future, assuming that
the loop control remains unchanged.
The relationship to derivative gain: Kd = KpTd

v



• Ti: The integral time is the length of time for which past errors has been
taken into account. In other words, the integral component adjusts the
error value to compensate for the sum of all past errors, with the intention
of completely eliminating them in Ti seconds (or samples).

The relationship to integral gain: Ki =
Kp

Ti

• The equation only holds when Td << Ti.

Ziegeler-Nichol’s first method can briefly be described as follows:

1. Time parameters are set to; Ti ≈ ∞ and Td = 0. The regulator is then a
P-regulator.

2. The gain Kp is gradually increased, while small disturbances are applied
to the process (as steps), until the output signal is a harmonic oscillation
(or at least a weakly damped oscillation).

3. We note the value of the proportional constant which gives harmonic os-
cillations (often also called critical oscillations) as critical gain , Kpk.

4. The period of the harmonic oscillation is noted as

Tk =
1

fk
=

2π

ω180
(5)

where ω180 is the frequency of the harmonic oscillation. In other words,
Tk is the time of one period of the harmonic oscillation.

5. Based on the noted values Kpk and Tk, the time parameters can be cal-
culated according to table 1 (see appendix), and thus the method works
like an autotune for the controller.

a) 10% Implement a PI-controller in the standard form.

NOTE The Ziegeler-Nichol’s transfer function is designed for continuous sig-
nals, while the signal from the simulation actually is discrete. For dis-
cretization, multiply Ti by the sampling time ∆t. It’s not necessary for
this assignment; but if you were to implement the derivative action in a
discrete system in the future, the discretization will be (current error −
previous error)/∆t.

b) 10% Tune the controller using Ziegeler-Nichol’s first method.

vi



Appendix

• Measured masses of links, with motors included.

– cm1 = 0.3833 kg

– cm2 = 0.2724 kg

– cm3 = 0.1406 kg, with pen.

• Inertia tensors

I1 =

2.5135 0 0
0 0.9198 0
0 0 1.8316

 (6)

I2 =

3.0675 0 0
0 0.2234 0
0 0 2.9577

 (7)

I3 =

0.1171 0 0
0 2.1680 0
0 0 2.1680

 (8)

Controller Kp Ti Td
P 0.5Kpk ∞ 0
PI 0.45Kpk 0.85Tk 0

PID 0.6Kpk 0.5Tk 0.12Tk

Table 1: Formulas for Ziegeler-Nichol’s first method

vii



REQUIREMENTS:

Obtain a total score of at least 40%.
Each student must hand in their own assignment, and you are required to have
read the following declaration on student submissions at the department of
informatics: https://www.uio.no/studier/eksamen/obligatoriske-aktiviteter/mn-ifi-
obliger-retningslinjer.html

IMPORTANT! Name the pdf file;

“in3140 oblig4 your username.pdf ”

Submit your assignment at https://devilry3.ifi.uio.no.
Your submission must include:

1.) A pdf-document with answers to the questions.

2.) The code asked for in Task 3 and 4.

3.) A README.txt containing a short reflection on the assignment; what
was dificult, what was easy, was there anything you could have done better?

Where you have used MATLAB, Python or other tools to compute an answer, your
approach and solution must be illustrated and explained thoroughly in the pdf file.
By illustrating, it’s meant that you must paste the block diagrams, the images of
the functions you were asked to implement, and the images of the output printed to
terminal, in the PDF file .
The files containing the code must also be delivered and named;

“in3140 oblig4 taskXX your username.py .m .cpp etc”

You are free to use whatever programming languages and tools you are famil-
iar with, but for this assignment we recommend using Python, as the provided
simulator is built using Python. ROS supports only Python and C++ nodes, so you
are limited to these two languages for creating ROS nodes.

Deadline: Monday, May 10th 2021, 23:59 (24h)

You can use the mattermost channel IN3140 for general questions about the assign-
ment and for discussion. mattermost team domain is; https://mattermost.uio.no/ifi-
undervisning/channels/in3140
Do not hesitate to contact us if you have any further questions.

Artem Chernyshov - artemch@uio.no
Tony Nguyen - hpnguyen@ifi.uio.no
Kristian Roa gran - krisrgra@ifi.uio.no

viii

https://www.uio.no/studier/eksamen/obligatoriske-aktiviteter/mn-ifi-obliger-retningslinjer.html
https://www.uio.no/studier/eksamen/obligatoriske-aktiviteter/mn-ifi-obliger-retningslinjer.html
https://devilry3.ifi.uio.no/
https://mattermost.uio.no/ifi-undervisning/channels/in3140
https://mattermost.uio.no/ifi-undervisning/channels/in3140
mailto:artemch@uio.no
mailto:hpnguyen@ifi.uio.no
mailto:krisrgra@ifi.uio.no

