
Chapter 11 

COMPUTER VISION 

If a robot is to interact with its environment, then the robot must be able 
to sense its environment. Computer vision is one of the most powerful sens-
ing modalities that currently exist. Therefore, in this chapter we present a 
number of basic concepts from the field of computer vision. It is not our 
intention here to cover the now vast field of computer vision. Rather, we aim 
to present a number of basic techniques that are applicable to the highly con-
strained problems that often present themselves in industrial applications. 
The material in this chapter, when combined with the material of previous 
chapters, should enable the reader to implement a rudimentary vision-based 
robotic manipulation system. For example, using techniques presented in 
this chapter, one could design a system that locates objects on a conveyor 
belt and determines the positions and orientations of those objects. This 
information could then be used in conjunction with the inverse kinematic 
solution for the robot to enable it to grasp these objects. 

We begin by examining the geometry of the image formation process. 
This will provide us with the fundamental geometric between 
objects in the world and their projections in an image. We then describe a 
calibration process that can be used to determine the values for the various 
camera parameters that appear in these relationships. We then consider 
image segmentation, the problem of dividing the image into distinct regions 
corresponding to the background and to objects in the scene. When there 
are multiple objects in the scene, it is often useful to deal with them indi-
vidually; therefore, we present an approach to component labelling. Finally, 
we describe how to compute the positions and orientations of objects in the 
image. 
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11.1 THE GEOMETRY OF IMAGE FORMATION 

A digital image is a two-dimensional array whose elements are called pixels 
(derived from picture element). In this chapter, we will denote by Image 
the array of dimension Nrows X Ncols that contains the image. The image is 
formed by focusing light onto a two-dimensional array of sensing elements, 
and each pixel's value corresponds to the intensity of the light incident on 
a particular sensing element. A lens with focal length ..\ is used to focus 
the light onto the sensing array, which is often composed of CCD (charge-
coupled device) sensors. The lens and sensing array are packaged together 
in a camera, which is connected to a digitizer or frame grabber. In the 
case of analog cameras, the digitizer converts the analog video signal that is 
output by the camera into discrete values that are then transferred to the 
pixel array by the frame grabber. In the case of digital cameras, a frame 
grabber merely transfers the digital data from the camera to the pixel array. 

In robotics applications, it is often sufficient to consider only the geomet-
ric aspects of image formation. Therefore, in this section we will describe 
only the geometry of the image formation process. We will not deal with 
the photometric aspects of image formation, such as issues related to depth 
of field, lens models, or radiometry. 

W';' begin by assigning a coordinate frame to the imaging system. We 
then discuss the pinhole model of image formation, and derive the corre-
sponding equations relating the coordinates of a point in the world to its 
image coordinates. Finally, we describe camera calibration, the process by 
which all of the relevant parameters associated with the imaging process can 
be determined. 

11.1.1 · The Camera Coordinate Frame 

In order to simplify many of the equations of this chapter, it is useful to 
express the coordinates of objects relative to a camera centered coordinate 
frame. For this purpose we define the camera coordinate frame as follows. 
We define the image plane as the plane that contains the sensing array. The 
axes Xc and Yc form a basis for the image plane and are typically taken to be 
parallel to the horizontal and vertical axes (respectively) of the image. The 
axis Zc is perpendicular to the image plane and aligned with the optical axis 
of the lens, that is, it passes through the focal center of the lens. The origin 
of the camera frame is located at a distance ..\ behind the image plane. This 
point is also referred to as the center of projection. The point at which 
the optical axis intersects the image plane is known as the principal point. 
This coordinate frame is illustrated in Figure 11.1. 
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Optical Axis 

Figure 11.1: Camera coordinate frame. 

With this assignment of the camera frame, any point in the image plane 
will have coordinates (u, v, ..\). Thus, we can use (u, v) to parameterize the 
image plane and we will refer to ( u, v) as image plane coordinates. 

11.1.2 Perspective Projection 

The image formation process is often modeled by the pinhole lens model. 
With this approximation, the lens is considered to be an ideal pinhole that is 
located at the focal center of the lens. 1 Light rays pass through this pinhole 
and intersect the image plane. 

Let P be a point in the world with coordinates (x, y, z) relative to the 
camera frame. Let p denote the projection of P onto the image plane with 
coordinates ( u, v, .\). Under the pinhole assumption, the points P, p, and 
the origin of the camera frame will be collinear. This is illustrated in Figure 
11.1. Thus, for some unknown positive constant k we have 

1 Note that in our mathematical model, illustrated in Figure 11.1, we have placed the 
pinhole behind the image plane in order to simplify the model. 
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which can be rewritten as the system of equations 

kx u 
ky = v 
kz = .\ 

This gives k = .\j z, which can be substituted into Equations 
(11.2) to obtain 

X 
u = .\-z' 

y 
v = .\-

z 

(11.1) 
(11.2) 
(11.3) 

(11.1) and 

(11.4) 

These are the well-known equations for perspective projection. 

11.1.3 The Image Plane and the Sensor Array 

As described above, the image is a discrete array of gray level values. We 
will denote the row and column indices for a pixel by the pixel coordinates 
(r, c). In order to relate digital images to the 3D world, we must determine 
the relationship between the image plane coordinates ( u, v) and the pixel 
coordinates(r, c). 

We typically define the origin of the pixel array to be located at a corner 
of the image rather than at the center of the image. Let the pixel array 
coordinates of the pixel that contains the principal point be given by (or, oc)· 
In general, the sensing elements in the camera will not be of unit size, nor 
will they necessarily be square. Denote by Sx and Sy the horizontal and 
vertical dimensions, respectively, of a pixel. Finally, it is often the case that 
the horizontal and vertical axes of the pixel array coordinate system point 
in opposite directions from the horizontal and vertical axes of the camera 
coordinate frame. 2 Combining these, we obtain the following relationship 
between image plane coordinates and pixel array coordinates 

u 
- Sx = (r-or), 

v -- = (c-oc) 
Sy 

(11.5) 

Note that the coordinates (r, c) will be integers, since they are the dis-
crete indices into an array that is stored in computer memory. Therefore, 
this relationship is only an approximation. In practice, the value of (r, c) 
can be obtained by truncating or rounding the ratio on the left-hand side of 
these equations. 

2This is an artifact of our choice to place the center of projection behind the image 
plane. The directions of the pixel array axes may vary, depending on the frame grabber. 
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11.2 CAMERA CALIBRATION 

The objective of camera calibration is to determine all of the parameters that 
are necessary to relate the pixel coordinates (r, c) to the (x, y, z) coordinates 
of a point in the camera's field of view. In other words, given the coordinates 
of P relative to the world coordinate frame, after we have calibrated the 
camera we will be able to predict (r, c), the image pixel coordinates for the 
projection of this point. 

11.2.1 Extrinsic Camera Parameters 

To this point in our derivations of the equations for perspective projection, 
we have dealt only with coordinates expressed relative to the camera frame. 
In typical robotics applications, tasks are expressed in terms of the world 
coordinate frame. If we know the position and orientation of the camera 
frame relative to the world coordinate frame we have 

xw = 
or, if we know xw and wish to solve for xc, 

In the remainder of this section, to simplify notation, we will define 

and we write 

R = R':,;, T=-Rcow w c 

xc =Rxw+T 

Together, R and T are called the extrinsic camera parameters. 
Cameras are typically mounted on tripods or on mechanical positioning 

units. In the latter case, a popular configuration is the pan/tilt head. A 
pan/tilt head has two degrees of freedom: a rotation about the world z 
axis and a rotation about the pan/tilt head's x axis. These two degrees of 
freedom are analogous to those of a human head, which can easily look up 
or down, and can turn from side to side. In this case, the rotation matrix 
R is given by 

R = Rz,oRx,a 
where 0 is the pan angle and a is the tilt angle. More precisely, 0 is the 
angle between the world x-axis and the camera about the world z-
axis, while a is the angle between the world z-axis and the camera z-axis, 
about the camera x-axis. 
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11.2.2 Intrinsic Camera Parameters 

The mapping from 3D world coordinates to pixel coordinates is obtained by 
combining Equations (11.4) and (1L5) to obtain 

.\x 
r =---+or, 

Bx Z 

.\y 
c=---+oc 

By Z 
(11.6) 

Thus, once we know the values of the parameters .\, Bx, Or, By, Oc we can 
determine (r, c) from (x, y, z), where (x, y, z) are coordinates relative to the 
camera frame. In fad, we don't need to know all of .\, Bx, sy; it is sufficient 
to know the ratios 

.\ fx=-
Bx 

.\ /y=-
By 

These parameters fx, Or, /y, Oc are known as the intrinsic parameters of the 
camera. They are constant for a given camera and do not change when the 
camera moves. 

11.2.3 Determining the Camera Parameters 

We will first determine the parameters associated with the image center and 
then solve for the remaining parameters. 

Of all the camera parameters, or, Oc (the image pixel coordinates of the 
principal point) are the easiest to determine. This can be done by using the 
idea of vanishing points. Although a full treatment of vanishing points is 
beyond the scope of this text, the idea is simplE,; a set of parallel lines in the 
world will project onto image lines that intersect at a single point, and this 
intersection point is known as a vanishing point. The vanishing points 
for three mutually orthogonal sets of parallel Jines in the world will define 
a triangle in the image. The orthocenter of this triangle (that is, the point 
at which the three altitudes intersect) is the image principal point (Problem 
11-9). Thus, a simple way to compute the principal point is to position a 
cube in the workspace, find the edges of the cube in the image (this will 
produce the three sets of mutually orthogonal parallel Jines), compute the 
intersections of the image lines that correspond to each set of parallel lines 
in the world, and determine the orthocenter for the resulting triangle. 

Once we know the principal point, we proceed to determine the remain-
ing camera parameters. This is done by constructing a linear system of 
equations in terms of the known coordinates of points in the world and the 
pixel coordinates of their projections in the image. The unknowns in this 
system are the camera parameters. The first step is to acquire a data set 
of the form {ri, Ci, Xi, Yi, Zi} for i = 1· · · N, in which ri, Ci are the image 
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pixel coordinates of the projection of a point in the world with coordinates 
Xi, Yi, Zi relative to the world coordinate frame. This acquisition is often 
done manually, for example, by placing a small bright light at known (x, y, z) 
coordinates in the world and then hand selecting the corresponding image 
point. 

Once we have acquired the data set, we proceed to set up the linear 
system of equations. The extrinsic parameters of the camera are given by 

T= [ 

With respect to the camera frame, the coordinates of a point in the world 
are thus given by 

xc rnx + r12Y + r13Z + Tx 
yc r21 x + + r23Z + Ty 
zc = r31X + r32Y + r33Z + Tz 

Combining these three equations with Equation (11.6) we obtain 

r- Or -f xc _ -f rnx + r12Y + r13Z + Tx 
X - X zc r31 x + r32Y + r33Z + Tz 

(11.7) 

C-Oc = -f Yc _ -f rzJX + rzzY + rz3z + Ty 
y - y 

zc r31 x + r"32Y + r33Z + Tz 
(11.8) 

Since we know the coordinates of the principal point, we can simplify 
these equations by using the coordinate transformation 

We now write the two transformed projection equations as functions of 
the unknown variables· Tij, Tx, Ty, TzJx,Jy. This is done by solving Equa-
tions (11.7) and (11.8) for zc, and setting the resulting equations to be equal 
to one another. In particular, for the data points ri, Ci, Xi, y;, z; we have 

rdy(rzlXi + r22Yi + rz3Zi + Ty) = cdx(rnx; + r12Yi + r13Zi + Tx) 

Defining a= fx/ jy, we can rewrite this as 

We can combine the N such equations into the matrix equation 

Ax=O (11.9) 



384 

in which 

A= 

and 
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r1X1 r1Y1 r1Z1 r1 -C!Xl 
r2x2 r2Y2 r2z2 r2 -czxz 

X= 

r21 
r22 
r23 
Ty 

aru 
ar12 

ar13 
aTx 

-CIYl -ClZl -C! 
-C2Y2 -CzZz -C2 

If x = [x1, ... , x8]T is a solution for Equation (11.9) we only know that 
this solution is some scalar multiple of the desired solution x, namely, 

in which k is an unknown scale factor. 
In order to solve for the true values of the camera parameters, we can 

exploit constraints that arise from the fact that R is a rotation matrix. In 
particular, 

and likewise 

( -2 + -2 + -2)1 ( 2k2( 2 2 + 2 ))l lkl Xs x6 x7 2 = a r21 + r22 rzg 2 = a 

Note that by definition, a > 0. 
Our next task is to determine the sign of k. Using Equation (11.6) we 

see that rxc < 0 (recall that we have used the coordinate transformation 
r +- r-or)· Therefore, we choose k such that r(rux+r1zy+r13z+Tx) < 0. 

At this point' we know the values for k, a, r21, r22, r23, ru, n2, r13, Tx, Ty, 
and all that remains is to determine T., fx, jy, since the third column of 
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R can be determined as the vector cross product of its first two columns. 
Since a= fx/ fv, we need only determine Tz and fx· Returning again to the 
projection equations, we can write 

r = - fx xc = - fx rnx + r12Y + r13Z + Tx 
zc r31X + r32Y + r33Z + Tz 

Using an approach similar to that used above to solve for the first eight 
parameters, we can write this as the linear system 

which can easily be solved for Tz and fx· 

11.3 SEGMENTATION BY THRESHOLDING 

Segmentation is the process by which an image is divided into meaningful 
components. Segmentation has been the topic of computer vision research 
since its earliest days, and the approaches to segmentation are far too numer-
ous to survey here. These approaches are sometimes concerned with finding 
features in an image, such as edges, and sometimes concerned with par-
titioning the image into homogeneous regions (region-based segmentation). 
In many practical applications the goal of segmentation is merely to divide 
the image into two regions: one region that corresponds to an object in the 
scene and one region that corresponds to the background. The resulting im-
age is called a binary image since each pixel belongs to one of two classes: 
object or background. In many industrial applications this segmentation 
can be accomplished by a straightforward thresholding approach. For light 
objects against a dark background, pixels whose gray levels are greater than 
the threshold are considered to belong to the object and pixels whose gray 
level is less than or equal to the threshold are considered to belong to the 
background. For dark objects against a light background, these categories 
are reversed. 

In this section we will describe an algorithm that automatically selects a 
threshold. The basic idea behind the algorithm is that the pixels should be 
divided into two groups, background and object, and that the intensities of 
the pixels in a particular group should all be fairly similar. To quantify this 
idea, we will use some standard techniques from statistics. Thus, we begin 
the section with a quick review of the necessary concepts from statistics and 
then proceed to describe the threshold selection algorithm. 
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11.3.1 A Brief Statistics Review 

Many approaches to segmentation exploit statistical information contained 
in the image. The basic premise for most of these statistical concepts is 
that the gray level value associated with a pixel in an image is a random 
variable that takes on values in the set {0, 1, ... N- 1}. Let P(z) denote 
the probability that a pixel has gray level value z. In general, we will not 
know this probability, but we can estimate it with the use of a histogram. 
A histogram is an array H that encodes the number of occurrences of each 
gray level value in the image. In particular, the entry H[z] is the number of 
times gray level value z occurs in the image. Thus, 0 :S H[z] :S Nrows X Ncols 
for all z. A simple algorithm to compute the histogram for an image is as 
follows. 

1. FOR i = 0 TO N _: 1 
2. H[i] <-- 0 
3. FOR r = 0 TO Nrows - 1 
4. FOR c = 0 TO Ncots - 1 
5. Index <-- I mage[r, c] 
6. H[Index] <-- H[Index] + 1 

Given the histogram for the image, we estimate the probability that a 
pixel will have gray level z by 

P(z) = H[z] 
Nrows X Ncols 

(11.10) 

Thus, the image histogram is a scaled version of our approximation of P. 
Given P we can compute the average or mean value of the gray level 

values in the image. We denote the mean by I" and compute it as 

N-1 

I"= L zP(z) (11.11) 
z=O 

In many applications the image will consist of one or more objects against 
some background. In such applications, it is often useful to compute the 
mean for each object in the image and also for the background. This com-
putation can be effected by constructing individual histogram arrays for each 
object and for the background in the image. If we denote by Hi the his-
togram for the ith object in the image, where i = 0 denotes the background, 
the mean for the i'h object is given by 
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Hi[z] 
f-Li=L...,z N1 

z=O l:::z=O Hi[z] 
(11.12) 

which is a straightforward generalization of Equation (11.11). The term 

Hi[z] 
Hi[z] 

is in fact an estimate of the probability that a pixel will have gray level value 
z given that the pixel is a part of object i in the image. For this reason, i'i 
is sometimes called a conditional mean. 

The mean conveys useful but limited information about the distribution 
of gray level values in an image. For example, if half of the pixels have 
gray value 127 and the remaining half have gray value 128, the mean will 
be I' = 127.5. Likewise, if half or the pixels have gray value 255 and the 
remaining half have gray value 0, the mean will be f-L = 127.5. Clearly, these 
two images are very different, but this difference is not reflected by the mean. 
One way to capture this difference is to compute the average deviation of 
gray values from the mean. This average would be small for the first example 
and large for the second. We could, for example, use the average value of 
lz- I' I· It is more convenient mathematically to use the square of this value 
instead. The resulting quantity is known as the variance, which is denoted 
by CJ2 and is defined by 

N-1 

CJ
2 = L (z- f-L? P(z) (11.13) 

z=O 

As with the mean, we can also compute the conditional variance CJ[ for each 
object in the image as 

N-1 
2 "" 2 Hi[z] 

CJi = L..., (z- !'i) "N 1 H-[z] 
z=O L..iz=O 

11.3.2 Automatic Threshold Selection 
We are now prepared to develop an automatic threshold selection algorithm. 
We will assume that the image consists of an object and a background and 
that the background pixels have gray level values less than or equal to some 
threshold while the object pixels are above the threshold. Thus, for a given 
threshold value z1 we divide the image pixels into two groups: those pixels 
with gray level value z :S: z1 and those pixels with gray level value z > Zt. 
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We can compute the mean and variance for each of these groups using the 
equations of Section 11.3.1. Clearly, the conditional means and variances 
depend on the choice of Zt, since it is the choice of z, that determines which 
pixels will belong to each of the two groups. The approach that we take in 
this section is to determine the value for Zt that minimizes a function of the 
variances of these two groups of pixels. 

It is convenient to rewrite the conditional means and variances in terms 
of the pixels in the two groups. To do this, we define q;(zt) as the probability 
that a pixel in the image will belong to group i for a particular choice of 
threshold z,. Since all pixels in the background have gray value less than or 
equal to Zt and all pixels in the object have gray value greater than z,, we 
can define q;(zt) fori= 0, 1 by 

( ) H[z] 
Qozt=( , 

Nrows X Ncols) 

We now rewrite Equation (11.12) as 

. _ H;[z] _ H;[z]/(Nrows X Ncols) 
J.t,- L.Jz N 1 - L.Jz N 1 

z,;O L:z=O H;[z] z=O L:z=O H;[z]/(Nrows X Ncols) 

Using again the fact that the two pixel groups are defined by the threshold 
z,, we have 

Ho[z] = { rrows X Ncols)P(z) 

and 

H1[z] = { 
0 
(Nrows X Ncols)P(z) 

Z $ Zt 
otherwise 

Z $ Zt 
otherwise 

Thus, we can write the conditional means for the two groups as 

zt P(z) 
J.to(zt) = L z-(-), 

z=O Qo Zt 

N-1 P(z) 
J.t1(z,) = L z-( -) 

z=zt+l ql Zt 
(11.14) 

Similarly, we can write the equations for the conditional variances by 

z, 2 P(z) 
= L(z- tto(z,)) -(-) 

z=O QO Zt 
N 

" 2 P(z) L.J (z- J.t1(z,)) -( -) 
z=zt+l ql Zt 
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We now turn to the selection of z,. If nothing is known about the true 
values of J-li or af, how can we determine the optimal value of z,? To 
answer this question, recall that the variance is a measure of the average 
deviation of pixel intensities from the mean. Thus, if we make a good 
choice for z,, we would expect that the variances a[(z,) would be small. 
This reflects the assumption that pixels belonging to the object will have 
intensity values that are clustered closely about l-'1 and that pixels belonging 
to the background will have intensity values that are clustered closely about 
f-lO· We could, therefore, select the value of Zt that minimizes the sum of 
these two variances. However, it is unlikely that the object and background 
will occupy the same number of pixels in the image; merely adding the 
variances gives both regions equal importance. A more reasonable approach 
is to weight the variances a[ by the probability that a pixel will belong to 
the corresponding region 

The value is known as the within-group variance. The approach that 
we will take minimizes this within-group variance, giving a threshold that 
divides the image into two groups, 

At this point we could implement a threshold selection algorithm. The 
naive approach would be to simply iterate over all possible values of Zt and 
select the one for which (zt) is smallest. Such an algorithm performs an 
enormous amount of calculation, much of which is identical for successive 
candidate values of the threshold. As we will see, most of the calculations 
required to compute are also required to compute + 1); the 
summations that are required change only slightly from one iteration to the 
next. 

To develop a more efficient algorithm, we take two steps. First, we will 
derive the between-group variance which depends on the within-
group variance and the variance over the entire image. The between-group 
variance is a bit simpler to deal with than the within-group variance, and 
we will show that maximizing the between-group variance is equivalent to 
minimizing the within-group variance. Then, we will derive a recursive 
formulation for the between-group variance that lends itself to an efficient 
implementation. 

To derive the between-group variance, we begin by expanding the equa-
tion for the total variance of the image and then simplifying and grouping 
terms. The total variance for the image a 2 is a constant, and does not de-
pend on the choice of threshold value. The total variance of the gray level 
values in the image is given by Equation (11.13), which can be rewritten 
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as two summations, one for the background pixels, and one for the object 
pixels 

N-1 
a2 = L)z- 1')2 P(z) 

z=O 
• N-1 
L)z--' !'o + l'o -11)2 P(z) + L (z -111 + 111 -11) 2 P(z) 
z=O 
Zt 

L[(z -l'o)2 + 2(z -l'o)(l'o -!') + (!'o- 11)2]P(z) 
z=O 

N-1 

+ L [(z -111)2 + 2(z- 1'1)(/11- !') + (1'1 -11?JP(z) 
z=zt+l 

We have not explicitly noted the dependence on z1 here. In the remainder 
of this section, to simplifY notation, we will refer to the group probabilities 
and conditional means and variances as qi, !'i, and a{, without explicitly 
noting the dependence on z1• The final expression in the derivation above 
can be further simplified by examining the cross-terms 

L(z -l'i)(l'i -11)P(z) 

LZI'iP(z)- LZI'P(z)- LI'TP(z) + Ll'ii'P(z) 

l'i L zP(z) -11 L::zP(z) -!'T L P(z) + l'il' L P(z) 

= l'i(I'Ni)- !'(l'iqi)- I'Iqi + l'il'qi 
0 

in which the summations are taken for z from 0 to z1 for the background 
pixels (that is, i = 0) and z from Zt + 1 toN- 1 for the object pixels (that 
is, i = 1). Therefore, we can simplifY our expression for a2 to obtain 

Zt N-1 

a2 L[(z -l'o)2 + (l'o -11)2]P(z) + L [(z -111)2 + (1'1- 11?JP(z) 
z=O Z=Zt+l 

= qoa5 + qo (!'o - I' )2 + qwi + q1 (!'1 - I' )2 

= {qoa5 + q1arl +{qo(l'o -11)2 + q1(111 -11)2} 
= + 

in which 
(11.15) 
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Since cr2 does not depend on the threshold value, minimizing cr; is equiv-
alent to maximizing crl. This is preferable because crt is a function only of 
the qi and Jl.i, and is thus simpler to compute than cr;, which depends also 
on the crf. In fact, by expanding the squares in Equation (11.15), using the 
facts that q1 = 1 - qo and J1. = ql/lO + q1J1.1, we obtain 

(11.16) 

The simplest algorithm to maximize erg is to iterate over all possible 
threshold values, and select the one that maximizes erg. However, as dis-
cussed above, such an algorithm performs many redundant calculations, 
since most of the calculations required to compute crt(zt) are also required 
to compute crs ( Zt + 1). A more efficient algorithm would reuse the com-
putations needed for crt(z1 ) when computing crs(zt + 1). In particular, we 
will derive expressions for the necessary terms at iteration z1 + 1 in terms 
of expressions that were computed at iteration z1• We begin with the group 
probabilities, and determine the recursive expression for qo as 

zt+l Zt 

qo(zt + 1) = L P(z) = P(zt + 1) + L P(z) = P(z1 + 1) + qo(Zt) (11.17) 
z=O z=O 

In this expression, P(zt + 1) can be obtained directly from the histogram 
array, and qo(z1) is directly available because it was computed on the. pre-
vious iteration of the algorithm. Thus, given the results from iteration Zt, 

very little computation is required to compute the value for qo at iteration 
Zt + 1. 

For the conditional mean Jl.o(zt) we have 

zt+l P(z) 
L z qo(zt + 1) 
z=O 

(zt + 1)P(zt + 1) P(z) 
qo(Zt + 1) z=O qo(zt + 1) 

= (, Z;:__t )'-P-'-( Z;:__t +-'-----'-1) qo ( Zt) p ( Z) - + LJz--
qo(zt + 1) qo(Zt + 1) z=O qo(zt) 

(zt + 1)P(zt + 1) qo(zt) ( ) + Jl.O Zt qo(zt + 1) qo(zt + 1) (11.18) 

Again, all of the quantities in this expression are available either from the 
histogram, or as the results of calculations performed at iteration Zt of the 
algorithm. 
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To compute It! (zt + 1), we use the relationship p, = QoP,o + QJ/kb which 
can be easily obtained using Equations (11.11) and (11.14). Thus, we have 

p,- qo(zt + 1)p,o(zt + 1) 
/kJ(Zt+1) = QJ(Zt+1) 

It- Qo(zt + 1)p,o(zt + 1) 
1- qo(zt + 1) 

(11.19) 

We can now construct an efficient algorithm to automatically select a 
threshold that minimizes the within-group variance. This algorithm sim-
ply iterates from 0 to N - 1 (where N is the total number of gray level 
values), computing qo, J.to, f.tl and at each iteration using the recursive 
formulations given in Equations (11.16), (11.17), (11.18), and (11.19). The 
algorithm returns the value of Zt for which O"l is largest. Figure 11.2 shows 
a gray level image and the binary thresholded image that results from the 
application of this algorithm, along with the histogram and within-group 
variance for the gray level image. 

11.4 CONNECTED COMPONENTS 

It is often the case that multiple objects will be present in a single image. 
When this occurs, there will be multiple connected components with gray 
level values that are above the threshold. In this section, we will first make 
precise the notion of a connected component and then describe an algo-
rithm that assigns a unique label to each connected component, that is, all 
pixels within a single connected component have the same label, but pixels 
in different connected components have different labels. 

In order to define what is meant by a connected component, it is first 
necessary to define what is meant by connectivity. For our purposes, it is 
sufficient to say that a pixel with image pixel coordinates (r, c) is adjacent to 
four pixels, those with image pixel coordinates (r -1, c), (r + 1, c), (r, c+ 1), 
and (r, c- 1). In other words, each image pixel, except those at the edges 
of the image, has four neighbors: the pixel directly above, directly below, 
directly to the right and directly to the left of the pixel. This relationship 
is sometimes referred to as 4-connectivity. Two pixels are 4-connected if 
they are adjacent by this definition. If we expand the definition of adjacency 
to include those pixels that are diagonally adjacent, that is, the pixels with 
coordinates (r-1,c-1), (r-l,c+l), (r+l,c-1), and (r+1,c+1), then 
we say that adjacent pixels are 8-connected. In this text, we will consider 
only the case of 4-connectivity. 

A connected component is a set of pixels, S, such that for any two pixels, 
say P and P' in S, there is a 4-connected path between them and this path 
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(a) (b) 

(c) (d) 

Figure 11.2: (a) An image with 256 gray levels. (b) Thresholded version of 
the image. (c) Histogram for the image. (d) Within-group variance for the 
image shown. 

is contained in S. Intuitively, this definition means that it is possible to 
move from P to P' by "taking steps" only to adjacent pixels without ever 
leaving the region S. The purpose of a component labeling algorithm is to 
assign a unique label to each such S. 

There are many component labeling algorithms that have been developed 
over the years. Here, we describe a simple algorithm that requires two passes 
over the image. This algorithm performs two raster scans of the image. A 
raster scan visits each pixel in the image by traversing from left to right 
and top to bottom, in the same way that one reads a page of text. On the 
first raster scan, when an object pixel P, that is, a pixel whose gray level is 
above the threshold value, is encountered, its previously visited neighbors, 
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the pixel immediately above and the pixel immediately to the left of P, are 
examined. If they have gray value that is below the threshold, so that they 
are background pixels, a new label is given to P. This is done by using 
a global counter that is initialized to zero and is incremented each time a 
new label is needed. If either of these two neighbors have already received 
labels, then P is given the smaller of these, and in the case when both of 
the neighbors have received labels, an· equivalence is noted between those 
two labels. For example, in Figure 11.3, after the first raster scan labels 
(2, 3, 4) are noted as equivalent. In the second raster scan, each pixel's label 
is replaced by the smallest label to which it is equivalent. Thus, in the 
example of Figure 11.3, at the end of the second raster scan labels 3 and 4 
have been replaced by the label 2. 

After this algorithm has assigned labels to the components in the image, 
it is not necessarily the case that the labels will be the consecutive integers 
( 1, 2, ... ) . Therefore, a second stage of processing is sometimes used to 
relabel the components to achieve this. In other cases, it is desirable to 
give each component a label that is very different from the labels of the 
other components. For example, if the component labeled image is to be 
displayed, it is useful to increase the contrast, so that distinct components 
will actually appear distinct in the image. A component with the label 2 
will appear almost indistinguishable from a component with label 3 if the 
component labels are used as pixel gray values in the displayed component 
labeled image. The results of applying this process to the image in Figure 
11.2 are shown in Figure 11.4. 

When there are multiple connected object components, it is often useful 
to process each component individually. For example, we might like to 
compute the sizes of the various components. For this purpose, it is useful to 
introduce the indicator function for a component. The indicator function 
for component i, denoted by I;, is a function that takes on the value 1 for 
pixels that are contained in component i and the value 0 for all other pixels: 

{ 
1 : 

I;(r,c) = 0 : 
pixel r, c is contained in component i 
otherwise 

We will make use of the indicator function below, when we discuss computing 
statistics associated with the various objects. in the image. 

11.5 POSITION AND ORIENTATION 

The ultimate goal of a robotic system is to manipulate objects in the world. 
In order to achieve this, it is necessary to know the positions and orientations 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
X X X 0 0 0 0 0 1 1 1 0 0 0 0 0 
X X X 0 0 0 0 0 1 1 1 0 0 0 0 0 
X X X 0 0 0 0 0 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 a· 0 0 0 
0 0 0 X 0 0 X X 0 0 0 2 0 0 3 3 
0 0 0 X 0 0 X X 0 0 0 2 0 0 3 3 
0 0 0 X X X X X 0 0 0 2 2 2 2 2 
X X X X X X X X 4 4 4 2 2 2 2 2 
X X X X X X X X 4 4 4 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(a) (b) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 
1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 
1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 3 3 0 0 0 2 0 0 2 2 
0 0 0 2 0 0 3 3 0 0 0 2 0 0 2 2 
0 0 0 2 2 2 X 2 0 0 0 2 2 2 2 2 
4 4 4 X 2 2 2 2 2 2 2 2 2 2 2 2 
4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(c) (d) 

Figure 11.3: The image in (a) is a simple binary image. Background pixels 
are denoted by 0 and object pixels are denoted by X. Image (b) shows the 
assigned labels after the first raster scan. In image (c) an X denotes those 
pixels at which an equivalence is noted during the first raster scan. Image 
(d) shows the final component labeled image. 
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Figure 11.4: The image of Figure 11.2 after connected components have 
been labeled. 

of the objects that are to be manipulated. In this section, we address the 
problem of determining the position and orientation of objects in the image. 
Once the camera has been calibrated, it is then possible to use these image 
positions and orientations to infer the 3D positions and orientations of the 
objects. In general, this problem of inferring the 3D position and orientation 
from image measurements can be a difficult problem; however, for many 
cases that are faced by industrial robots we can obtain adequate solutions. 
For example, when grasping parts from a conveyor belt, the depth z is fixed 
and the perspective projection equations can be inverted if z is known. 

We begin the section with a general discussion of moments, which will 
be used in the computation of both position and orientation of objects in 
the image. 

11.5.1 Moments 

Moments are functions defined on the image that can be used to summarize 
various aspects of the shape and size of objects in the image. The i, j moment 
for the kth object, denoted by miJ(k), is defined by 

r,c 

From this definition, it is evident that m00 is merely the number of pixels 
in the object. The order of a moment is defined to be the sum i + j. The 
first order moments are of particular interest when computing the centroid 
of an object, and they are given by 

m10(k) = l:>Ik(r,c), m01(k) = I:ak(r,c) 
r,c r,c 
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Figure 11.5: The segmented component-labeled image of Figure 11.2 show-
ing the centroids and orientation of each component. 

11.5.2 The Centroid of an Object and Central Moments 

It is convenient to define the position of an object to be the object's center 
of mass or centroid. By definition, the center of mass of an object is that 
point (r, c) such that, if all of the object's mass were concentrated at (r, c), 
the first moments would not change. Thus, we have 

_ rii(r, c) m10 (i) 
ri = = . c) moo(t) L Tiii(r, c) = L rii(r, c) 

r,c r,c 

r,c r,c 

_ m01 (i) 
c; = = 

c) moo(i) 
L ciii(r, c) = L cii(r, c) 

Figure 11.5 shows the centroids for the connected components of the image 
of Figure 11.2. 

It is often useful to compute moments with respect to the object center of 
mass. By doing so, we obtain characteristics that are invariant with respect 
to translation of the object. These moments are called central moments. 
The i, j central moment for the k'h object is defined by 

(11.20) 
r,c 

in which (fko ck) are the coordinates for the centroid of the k'h object. 
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11.5.3 The Orientation of an Object 

We will define the orientation of an object in the image to be the orientation 
of an axis passing through the object such that the second moment of the 
object about that axis is minimal. This axis is merely the two-dimensional 
equivalent of the axis of least inertia. 

For a given line in the image, the second moment of the object about 
that line is given by 

C = L d2(r, c)T(r, c) 
r,c 

in which d(r, c) is the minimum distance from the pixel with coordinates 
(r, c) to the line. Our task is to minimize C with respect to all possible lines 
in the image plane. To do this, we will use the p, e parameterization of lines 
and compute the partial derivatives of C with respect to p and, e. We find 
the minimum by setting these partial derivatives to zero. 

With the p, e parameterization, a line consists of all those points x, y 
that satisfy 

xcose + ysinll- p = 0 

Thus, (cos e, sin e) gives the unit normal to the line and p gives the per-
pendicular distance to the line from the origin. This parameterization is 
illustrated in Figure 11.6. Under this parameterization the distance from 
the line to the point with coordinates (r, c) is given by 

d(r,c) =rcosB+csinB-p 

Thus, the value £* that minimizes C is given by 

£*=min L(rcose + csinll- pJZT(r, c) p,e r,c 

We compute the partial derivative of C with respect to p as 

!!__£ = ap 
f) '\' . 8 L.,.(rcose + csmll p)2T(r, c) 
p r,c 

= -2cosll L rT(r, c)- 2sinll L cT(r, c)+ 2p LT(r, c) 
r,c 

= -2moo(rcose + csine- p) 

Now, setting this to zero we obtain 
\ 

r,c 

rcosli+ csinll- p = 0 

r,c 

(11.21) 
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y 

xcosO + ysinO = p 

Figure 11.6: The p, 0 parameterization of a line 

But this is just the equation of a line that passes through the point (f, c), 
and therefore we conclude that the inertia is minimized by a line that passes 
through the center of mass. We can use this knowledge to simplify the 
remaining computations. In particular, define the new coordinates ( r', c') as 

r'- r- f - , I -C =C- C 

The line that minimizes £ passes through the point r' 
therefore its equation can be written as 

r' cosO+ c' sinO= 0 

0, r! = 0, and 

Before computing the partial derivative of £ (expressed in the new coor-
dinate system) with respect to 0, it is useful to perform some simplifications. 

r,c 

c,c r,c r,c 

= Czo cos2 0 + 2Cn cos 0 sin 0 + Coz sin2 0 

in which the Cij are the central moments given in Equation (11.20). Note 
that the central moments depend on neither p nor 0. 

The final set of simplifications that we will make all rely on the double 
angle identities: 

cosO sinO 

1 1 
-+-cos20 2 2 
1 1 -- -cos20 
2 2 
1 . 
2sm20 
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Substituting these into our expression for £ we obtain 

£ = +Co2)+ cos2B + Cn sin2B 

It is now easy to compute the partial derivative with respect to B: 

and setting this to zero we obtain 

2Cn 
tan2B= C G 

20 02 

Figure 11.5 shows the orientations for the connected components of the 
image of Figure 11.2. 

11.6 SUMMARY 

In this chapter we studied basic image formation and processing. We be-
gan with the geometry of the image formation process, which is typically 
modeled using perspective projection. In this case, the projection onto the 
image plane of a point with coordinates (x, y, z) is given by the perspective 
projection equations 

u = v =.xi!. 
z z 

The actual discrete image array coordinates are related to the u, v coordi-
nates by 

u = -sx(r- Or), V = -sy(c- Oc) 

in which the principal point has coordinates (or, oc) and Sx and Sy are the 
horizontal and vertical dimensions, respectively, of a pixel. The parameters 
Or, Oc, Sx and Sy, along with the focal length of the camera imaging system, 
are known as intrinsic camera parameters. The position and orientation 
of the camera frame with respect to the world coordinate frame comprise 
the extrinsic parameters. All of these parameters can be estimated by the 
process of camera calibration. 

Segmentation is the process of partitioning an image into foreground 
and background components. We described a threshold-based segmentation 
method, in which the threshold is automatically selected by maximizing the 
between-group variance given by 



PROBLEMS 401 

in which qo is the fraction of background pixels, and l'o and 111 are the mean 
gray level values of the background and foreground pixels, respectively. This 
maximization can be achieved by an efficient recursive scheme. 

Once the image has been segmented into foreground and background, 
pixels can be grouped together using a connected components algorithm. If 
the segmentation algorithm is effective, this gives an image in which each 
individual object has a unique label. It is then possible to compute prop-
erties of the objects using moments. In this chapter, we demonstrated how 
first and second order moments can be used to determine position and ori-
entation of a 2D object in an image. The moments for the kth object are 
given by 

-r,c 

The centroid of an object has coordinates given by 

_ mw(i) 
r·-
'- moo(i)' 

_ mm(i) 
c;= 

moo(i) 

The i, j central moments for an object are defined with respect to the object's 
centroid. For the kth object the central moments are defined by 

r,c 

The orientation of an object can be determined from its central moments as 

2Cn 
tan2B = C c, 

20- 02 

PROBLEMS 

11-1 For a camera with focal length ,\ = 10, find the image plane coordi-
nates for the 3D points whose coordinates with respect to the camera 
frame are given below. Indicate if any of these points will not be visible 
to a physical camera. 

1. (25, 25, 50) 
2. ( -25, -25, 50) 

3. (20, 5, -50) 
4. (15, 10, 25) 
5. (0, 0, 50) 
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6. (0, 0, 100) 

11-2 Repeat problem 11-1 for the case when the coordinates of the points 
are given with respect to the world frame. Suppose the optical axis of 
the camera is aligned with the world x-axis, the camera x-axis is par-
allel to the world y-axis, and the center of projection has coordinates 
(0, 0, 100). 

11-3 A stereo camera system consists of two cameras that share a common 
field of view. By using two cameras, stereo vision methods can be used 
to compute 3D properties of the scene. Consider stereo cameras with 
coordinate frames O!XIYIZ! and o2x2y2z2 such that 

H}e[!ll1l 
Here, B is called the baseline distance between the two cameras. 
Suppose that a 3D point P projects onto these two images with image 
plane coordinates (u1, VI) in the first camera and (u2, v2) in the second 
camera. Determine the depth of the point P. 

11-4 Show that the projection of a 3D line is a line in the image. 

11-5 Co;;sider two parallel lines in 3D, given parametrically by 

in which "'( E JR, Ui is a unit vector and (xi, Yi, Zi) is a point on the 
line. Show that if two lines are parallel, that is, if U! = u2, then the 
projections of these two lines in an image intersect at a single point. 
This point is called the vanishing point. 

11-6 Show that the vanishing points for all 3D horizontal lines must lie on 
the line v = 0 of the image plane. 

11-7 Suppose the vanishing point for two parallel lines has the image co-
ordinates (u00 , v00 ). Show that the direction vector for the 3D line is 
given by 
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in which A is the focal length of the imaging system. 

11-8 Two parallel lines define a plane. Consider a set of pairs of parallel 
lines such that the corresponding planes are all parallel. Show that 
the vanishing points for the images of these lines are collinear. Hint: 
let n be the normal vector for the parallel planes and exploit the fact 
that Ui · n = 0 for the direction vector Ui associated to the ;th line. 

11-9 A cube has twelve edges, each of which defines a line in three space. 
We can group these lines into three groups, such that in each of the 
groups there are four parallel lines. Let (a1,a2,a3), (bt,b2 ,b3 ), and 
( Cj, cz, C3) be the direction vectors for these three sets of parallel lines. 
Each set of parallel lines gives rise to a vanishing point in the image. 
Let the three vanishing points be Va = (ua, va), VI, = (u0, v0), and 
Vc = (ue, ce), respectively. 

1. If C is the optical center of the camera, show that the three angles 
LVaCV0, LVaCVc and LV/,CVc are each equal to l Hint: In the 
world coordinate frame, the image plane is the plane z = A. 

2. Let ha be the altitude from Va to the line defined by VI, and Y;,. 
Show that the plane containing both ha and the line through 
points C and Va is orthogonal to the line defined by VI, and Y;,. 

3. Let ha be the altitude from Va to the line defined by VI, and Y;,, 
hb the altitude from VI, to the line defined by Va and Ve, and he 
the altitude from Vc to the line defined by Va and VI,. We define 
the following three planes: 

• Pa is the plane containing both ha and the line through points 
C and Va. 

• Pb is the plane containing both hb and the line through points 
C and VI,. 

• Pc is the plane containing both he and the line through points 
C and Vc. 

Show that each of these planes is orthogonal to the image plane 
(it is sufficient to show that Pi is orthogonal to the image plane 
for a specific value of i). 

4. The three vanishing points Va, VI,, Vc define a triangle, and the 
three altitudes ha, hb, he intersect at the orthocenter of this tri-
angle. For this special case, where the three direction vectors are 
mutually orthogonal, what is the significance of this point? 
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11-10 Use your results on vanishing points to draw a nice cartoon scene with 
a road or two, some houses and maybe a roadrunner and coyote. 

11-11 Suppose that a circle lies in a plane parallel to the image plane. Show 
that the perspective projection of the circle is a circle in the image 
plane and determine its radius. 

11-12 Show that 

In other words, show that the variance of X is equal to the difference 
between the expected value of X 2 and the square of the mean. 

11-13 Verify Equation (11.21). 

11-14 Suppose that an image consists of a light object on a dark background. 
Further, suppose that the image is hand segmented, giving histograms 
for both the object and background. Thus, it is a simple matter to 
compute Po(z) (the probability that a pixel with intensity value z 
belongs to the background) and P1 ( z) (the probability that a pixel 
with intensity value z belongs to the object). Give an expression for 
the probability that a pixel will be misclassified if the threshold value 
of t is selected. 

11-15 Suppose again that an image consists of a light object on a dark back-
ground and that the image has been hand segmented, giving Po(z) and 
P1(z). Give an algorithm that determines t*, the optimal threshold 
value, that is, the threshold value that minimizes the probability of 
misclassification of an image pixel. Your algorithm should employ a 
recursive formulation whenever possible. 

NOTES AND REFERENCES 

Computer vision research dates back to the early sixties. In the early eighties 
several computer vision texts appeared. These books approached computer 
vision from the perspective of cognitive modeling of human vision [87], image 
processing [109], and applied robotic vision [54]. A comprehensive review 
of computer vision techniques through the early nineties (including the seg-
mentation method described in this chapter) can be found in [50], and an 
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introductory treatment of methods in 3D vision can be found in [133]. De-
tailed treatments of the geometric aspects of computer vision can be found 
in [33] and [83]. A comprehensive review of the state of the art in computer 
vision at the turn of the century can be found in [38]. 


