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COMPUTER. VISION

If a robot is to interact with its environment, then the robot must be able
to sense its environment. Computer vision is one of the most powerful sens-
ing modalities that currently exist. Therefore, in this chapter we present a
number of basic concepts from the field of computer vision. It is not our .
- intention here to cover the now vast field of computer vision. Rather, we aim
to present a number of basic techniques that are applicable to the highly con-
strained problems that often present themselves in industrial applications.
The material in this chapter, when combined with the material of previous
‘chapters, should enable the reader to implement a rudimentary vision-based
robotic manipulation system. For example, using techniques presented in
this chapter, one could design a system that locates objects on a conveyor
belt and determines the positions and orientations of those objects. This
information could then be used in conjunction with the inverse kinematic
solution for the robot to enable it to grasp these objects

We begm by examining the geometry of the image formatlon process.

Th1s will provide us with the fundamental geometric relationships between -

objects in the world and their projections in an image. We then describe a
calibration process that can be used to determine the values for the various

camera parameters that appear in these relationships. We then consider

image segmentation, the problem of dividing the image into distinct regions
corresponding to the background and to objects in the scene. When there
are multiple objects in the scene, it is often useful to deal with them indi-
vidually; therefore, we present an approach to component labelling. Finally,
we describe how to compute the posztzons and orientations of objects in the h

image.
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11.1 THE GEOMETRY OF IMAGE FORMATION

. A digital image is a two-dimensional array whose elements are called pixels
(derived from picture element). In this chapter, we will denote by Image
the array of dimension Npows X Neois that contains the image. The image is
formed by focusing light onto a two-dimensional array of sensing elements,
and each pixel’s value corresponds to the intensity of the light incident on
a particular sensing element. A lens with focal length A is used to focus
the light onto the sensing array, which is often composed of CCD (charge- .
coupled device) Sensors. The lens and sensing array are packaged together
in a camera, thch is: connected to a dlgltlzer or frame grabber {n the '
output by the camera mto discrete ve}ues that are then transferred to the
pixel array by the frame grabber. In the case of digital cameras, a frame
grabber merely transfers the digital data from the camera to the pixel array.

- In robotics applications, it is often sufficient to consider only the geomet-
ric asypects of i image formatlon Therefore, in this section we will describe
only the geometry of the 1mage formation process. We will not deal with
the photometrlc aspects of image formatlon such as issues related to depth
' of field, lens models or radlometry .

N We begm by asszgmng a coordmate frame to the lma.gmg syst;em We
then dlscuss the pmhole model of image formation, and derive the corre-
s;;)ondmg equatlons relating the coordinates of a point in the world to its
image coordmates Finally, we descrlbe camers, calibration, the process by
which all of the relevant parameters assocmted with the i 1magmg process can

be determlned

11.1.1° The Camera Coordinate Frame

In order to simplify many of the equations of this chapter, it is useful to
express the coordinates of objects relative to a camera centered coordinate
frame. For this purpose we define the camera coordinate frame as follows.
We define the image plane as the plane that contains the sensing array. The
axes x. and y. form a basis for the image plane and are typically taken to be
parallel to the horizontal and vertical axes (respectively) of the image. The
axis z is perpendicular to the image plane and aligned with the optical axis
of the lens, that is, it passes through the focal center of the lens. The origin
of the camera frame is located at a distance A behind the image plane. This
‘point is also referred to as the center of projection. The point at which

‘the optical axis intérsects the image plane is known as the principal pomt
' ThlS coordinate frame is illustrated in Figure 11.1.
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- P=(xyz)

Optical Axis

Figure 11.1: Camera coordinéte frame.

 With this assignment of the camera frame, any point in the image plane
will have coordinates (u,v, ). Thus, we can use (u,v) to parameterize the
image plane and we will refer to (u,v) as inage plane coordinates.

11 1. 2 Perspectlve Pro Jectlon

The image formation process is often modeled by the pmhole Iens model
With this approximation, the lens is considered to be an ideal pinhole that is
located at the focal center of the lens.! Light rays pass through this pznhole
and intersect the image plane.
4 Let P be a point in the world with coordlnates (z,y,% ) relative to t;he
camera frame. Let p denote the projection of P onto the image plane with
coordinates (u,v,A). Under the pinhole assumption, the points P, p, and
the origin of the camera frame will be collinear. This is illustrated in Figure
11.1. Thus, for some unknown positive constant & we have

| = u
k:yzv
z A

. *Note that.in our mathematical model, illustrated m Fzgurelll, we _have pf&éed the
pinhole behind the image plane in order to simplify the model. :
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which can be rewritten as the system of equations

kz o= u (L)

kz_ = '/\V I | - (11.3)

This gives k = Xz, ‘which can be substltuted into Equatlons (11 1) and
(11.2) to obtam |

w=X2  w=XY a1
These are the well-known equations for perspective projection.

11.1.3 The Image Plane and the Sensor Array

As described above, the image is a discrete array of gray level values. We
will denote the row and column indices for a pixel by the pixel coordinates
(r,¢). In order to relate digital images to the 3D world, we must determine
the relationship between the 1mage plane coordma,tes (u,v) and the pixel
coordinates(r, c). - | :

- We typlcaliy deﬁne the orlgln of the plxel array to be located at a corner
of the image rather than at the center of the image. Let the pixel array
coordinates of the pixel that contains the principal point be given by (o, 0.).
In general, the sensing elements in the camera will not be of unit size, nor
will they necessarily be square. Denote by s, and s, the horizontal and
vertical dimensions, respectively, of a pixel. Finally, it is often the case that

‘the horizontal and vertical axes of the pixel array coordinate system point

in opposite directions from the horizontal and vertical axes of the camera
‘coordinate frame.?2 Combining these, we obtain the following relationship
between Image plane coordlnates and plxel a.rray coordma‘ces

" Note that the coordinates (r, ¢) will be integers, since they are the dis-
crete indices into an array that is stored in computer memory. Therefore,
this relationship is only an approximation. In practice, the value of (r,¢)
can be obtained by trunca,tmg or roundmg the ratio on the left-hand szde of
these equatzons . :

2T}us is-an artifact’ of our: ch01ce to- pla/ce the: center of pro;ectaon behmd the 1ma,ge
plane The directions of the pixel array axes may vary, depending on the frame grabber. -
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11.2 CAMERA CALIBRATION

The objective of camera calibration is to determine all of the parameters that
are necessary to relate the pixel coordinates (r, ¢) to the (, y, z) coordinates
of a point in the camera’s field of view. In other words, given the coordinates
of P relative to the world coordinate frame, after we have calibrated the
camera we will be able to predict (7, ¢), the image pixel coordinates for the
projection of this point.

- 11.2.1 Extrinsic Camera Parameters

To this point in our derivations of the equations for perspective projection,
we have dealt only with coordinates expressed relative to the camera frame.
In typical robotics applications, tasks are expressed in terms of the world
coordinate frame. If we know the position and orientation of the camera
frame relative to the world coordinate frame we have

= Ry x4+ Ow
or, if we know z* and wish to solve for z¢, |
2= RS(z¥ —O¥)
In the remainder of this section; to simplify nOtatian, we Will déﬁhe
R=R, T=—R.0Y

-and we write = SRR -
| o ¢ = Rz¥ + T-
Together 'R and T are called the extrinsic camera parameters }
Cameras are typically mounted on tripods or on mechanical posxtionxng
units. In the latter case, a popular configuration is the pan/tﬂt head. A.
pan/ tilt head has two degrees of freedom: a rotation about the world z
axis and a rotation about the pan/tilt head’s = axis. These two degrees of
freedom are analogous to those of a human head, which can easily look up
or down, and can turn from side to side. In this case, the rotation matrix
R is given by
R RRzeRxa; I
where 9 is the pan angle and o is the tilt angle More precxsely, 9 18 the
angle between the world z-axis and the camera z-axis, about the world 2-
axis, while « is the angle between the world z-axis and the camera z-a.ms,
about the camera z-axis.. - : el
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11.2.2 Intrinsic Camera Parameters

The mapping from 3D World coordinates to pucel coordinates is obtained by.
combmmg Equatlons (11 4) and (11:5) to obtain :

. .'T'z —“-)"\-f"l*orﬁ, o mr'.\_y +6€ :: o : (11.6)

Thus, once we know the values of the parameters A, Sgy Ory Sy; Oc We can
determine (r,c) from (z,y, z), where (z,y, 2) are coordinates relative to the

camera frame. In fact, we don’t need to know all of A, sg, 8y; it is sufficient
to know the ratios -

These parameters fm,or, f J,oc are known as the 1ntr1ns1c parameters of the
camera. They are oonstant for a g}ven camera and do not change when the

camera moves,

11. 2 3 Determmmg the Camera Parameters

We wxll first determine the parameters assocxated thh the 1mage center and
then solve for the remaining parameters

Of all the camera parameters, o, 0c (the image plxel coordinates of the
principal pomt) are the easiest to determine. This can be done by using the -
idea of vanishing points. _A_Ithough a full treatment of vanishing points is
beyond the scope of this text, the idea is simple: a set of parallel lines in the
world will project onto image lines that intersect at a single point, and this
intersection point is known as a vanishing point. The vanishing points
for three mutually orthogonaj sets of parallel lines in the world will define
a trra,ngle in the 1mage The orthocenter of thrs tmangle (tha,t is, the point
: at whxch the three altltudes mtersect) is the i zmage prmmpal pomt (Problem
o 11- 9) Thus, a sunple Way to compute the prmcxpal pomt is to posxtlon a
cube in the Workspace find the edges of the cube in the image (thzs will
produce the three sets of mutually orthogonal parallel .hnes) compute the
mtersectlons of the Image lines that correspond to each set of parallel hnes
in the world, and determine the orthocenter for the resulting triangle '_ '

Once we know the prmmpal pomt we proceed to determine the remain-
ing camera parameters. This is ‘done’ by constructing a linear system of
‘equations in terms of the known coordinates of pomts in the world and the
~ pixel coordinates of their: projections in the image. The unknowns in this
system are the camera parameters: The: first step is to acquire a data set
~of the form {r; ¢, i, yi, 2 f for &= 1---N, in which r;; ¢; ‘are the image
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pixel coordinates of the projection of a point in the world with coordinates
i, Yi, % relative to the world coordinate frame. This acquisition is often
done manually, for example, by placing a small bright light at known (2, , 2)
coordinates in the world and then hand selecting the corresponding image
point.

Once we have acquired the data set, we proceed to set up the linear
system of equations. The extrinsic parameters of the camera are given by

11 712 T13 T,
R=|ra r ro3 |, T=|T,
31 32 733 T,

With respect to the camera frame, the coordinates of a point in the world
are thus given by '

¢ = rpz-+ry+rize+ Iy
y© = rozt rogy + r23z + Ty
2 = rq1z+ 30y + 1332 + T,

Combining these three equations with Equation (11.6) we obtain

z° r11x + roy + ri32 + 1 :
T =0p = _fa:_c = —fx = (11°7)
z° r31% -+ 130y + r3zz + 1,
o = ;-fgfz; T+ Ty +razz+ 1Ty (118)
o e Yoz + raoy +razz + T |

Since we know the coordinates of the pr1nc1pa1 point, we can sxmphfy
“these equations by using the coordinate transformation

P e=T—=0p, C—C—O0p

We now write the two transformed projection equations as functions of
~ the unknown variables r;;, T, Ty, 1%, fu, fy. This is done by solving Equa- -
tions (11.7) and (11.8) for z°, and setting the resulting equations to be equal
to one another. In particular, for the data points r;, ¢;, i, ¥s, 2 we have

i fy(ra12; + rooyi + rosz; + Tyl) = ¢ifo(rinzi + ri2yi + r132i + T)
Defining a = f./ f,, we can rewrite this as
?'irgia:g + nrggy@ + nrggzz- + r,;T :—ﬂ aczruxt | aczrigyz — OUC,,’F}gzz - ac@Tx = 0
| We can combme the N such equatzons into the matrix equatxon S

CAe—0 uzm
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in which - -~ ..

[ Tz Ty Tz T —aZi —ayn -z O
| ToT9 Tyl ToZo T9  —CoT3 ~ (92 —Cp29 —Cp

| INZN TNYN TNEZN TN —CNEN —CNYN —CNZN —CN |
and’

[ ro1 ]
722
23
Ty
1L Oyt
ari2
Oﬁ?’lg
oly |

If 7 = [Z1,...,3g]% is'a solution for Equation (11.9) we only know that
this solution is some scalar multiple of the desired solution z, namely,

E : k{’/’gl, 7’22, T23) Ty, arlla arlZa Cfr137 QT:I:]
in Whlch k is an unknown scale factor S :
In order to solve for the true values of the camera parameters, we can
exploit constraints that arise from the fact that R is a rotation matrix. In
partlcular

Nb—& :

o («’91 + 132 +$3)2 = (k2(7‘21 + "”22 +?"23))
and hkewzse - _ e e
(x5 + fﬁ + 7)2 = (a2k2(T21 + 15y + 7“23))2 = 04|k|

Notethatbydeﬁmtwn a>0 RIS : ' SER
Our next task is to deteriine the sign of I<: Usmg Equatlon (11 6) we
 see that ra¢ < O (recall that we have used the coordinate transformation
r « r—or). Therefore, we choose k such that r(r112 +ri2y+ri32+T) < 0.
. At this point we know the values for k, a, 121, T2z, 723, 11, 712, 7135 Ty Ty
and all that remains is to determine Ty, fz, fy, since the third column of
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R can be determined as the vector cross product of its first two columns.
Since a = fz / fy, we need only determine T and f,. Returning again to the
projection equations, we can write

xt riz b riey +risz+ Ty
gz 4 ragy + a3z + T

Using an approach similar to that used above to solve for the first eight
parameters, we can write this as the linear system

| T(ré'lzt + ragy + T332 + T,) = — fo(riie + 712y + 1132 + Tp)
which can easily be solved for T, and f,.

11.3 SEGMENTATION BY THRESHOLDING

Segmentation is the process by which an image is divided into meaningful
components.. Segmentation has been the topic of computer vision research
since its earliest days, and the approaches to segmentation are far too numer-
ous to survey here. These approaches are sometimes concerned with finding
features in an image, such as edges, and sometimes concerned with par-
titioning the image into homogeneous regions (region-based segmentation).
In many practical applications the goal of segmentation is merely to divide
the image into two regions: one region that corresponds to an object in the
scene and one region that corresponds to the background. The resulting im-
age is called a binary image since each pixel belongs to one of two classes:
object or background. In many industrial applications this segmentation
can be accomplished by a straightforward thresholding approach. For light
objects against a dark background, pixels whose gray levels are greater than
the threshold are considered to belong to the object and pixels whose gray -
level is less than or equal to the threshold are considered to belong to the
background. For dark objects against a light background, these categories
are reversed. _

In this section we will describe an algorithm that automatically selects a
threshold. The basic idea behind the algorithm is that the pixels should be
divided into two groups, background and object, and that the intensities of-
the pixels in a particular group should all be fa1r1y similar. To quantify this |
idea, we will use some standard techniques from statistics: Thus; we begin
the section with a quick review of the necessary concepts from statistics and _
then proceed to describe the threshold selection algorithm.: .
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11.3.1 A Brief Statistics Review

Many approaches to segmentation exploit statistical information contained
in the image. The basic premise for most of these statistical concepts is
that the gray level value associated with a pixel in an image is a random
variable that takes on values in the set {0,1,... N — 1}. Let P(z) denote
the probability that a pixel has gray level value 2. In general, we will not
know this probability, but we can estimate it with the use of a histogram.
A hastogram is an array H that encodes the number of occurrences of each
gray level value in the image. In particular, the entry H|z] is the number of -
times gray level value z occurs in the image. Thus, 0 < H|z ] < Nrows X Neols
for all z. A simple algorithm to compute the histogram for an image is as
follows.

. FORi=0TON-1 .

1

2 Hli] « O

3. FOR7=0TO Nyows =1
4. FORe¢=0TO Negis —1
5 . Index « Image|r,c]
6

H(Index] — H|[Index] + 1

Given the histogram for the image, we estimate the probability that a
pixel will have gray level z by :

ppy e

_ Nrows % Ncols;

“(1'1.10:)

" Thtis the image histogram is a scaled version of our approximation of P.
“Given P we can compute the average or mean value of the gray level :
values in the 1mage We denote the mean by u and compute it as

2=0 ' | |

.. In many applications the image will consist of one or more objects against
some background. - In such applications, it is often useful to compute the
mean: for each object in the image and also for the background. This com-
putation can be effected by constructing individual histogram arrays for each
object and for the ‘background in. the image.- If we denote by H; the his-
togram for the i* object in theimage, Where i=0 denotes the background
themean for the 3% object is: given by L e e
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N, M i
P = ey v s 11.12

whmh is a stralghtforward generahzamon of Equatmn (11 11). The term

Hilz]
| TG HE |
is in fact an estimate of the probability that a pixel will have gray level value
z given that the pixel is a part of object ¢ in the image. For this reason, y;
is sometimes called a conditional mean. :

The mean conveys useful but limited information about the distribution
of gray level values in an image. For example, if half of the pixels have
gray value 127 and the remaining half have gray value 128, the mean will
be p = 127.5. Likewise, if half or the pixels have gray value 255 and the
remaining half have gray value 0, the mean will be y = 127.5. Clearly, these
two images are very different, but this difference is not reflected by the mean.
One way to capture this difference is to compute the average deviation of
gray values from the mean. This average would be small for the first example
and large for the second. We could, for example, use the average value of
|z — p]. It is more convenient mathematically to use the square of this value
mstead The resulting quantity is known as the variance, which is denoted
by o2 and is defined by

| N-1 |
o= Y (= u?PG) (11.13)
_ z={} . : '
'As with the mean, we can also compute the conditional variance af for each
object in the image as '

"' 0 _ 5 — 2 Hilz]
: ;( 1i) ZN IH[}

11.3.2 Automatic Thresho'ld Selection - - - |

We are now prepared to develop an automatic threshold selection algorithm.
We will assume that the image consists of an object and a background and
that the background pixels have gray level values less than or equal to some
threshold while the object pixels are above the threshold. Thus, for a given
threshold value z; we divide the image pixels into two groups: those pixels
with gray level value z < 2 and those pixels with gray level value z > z.
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We can compute the mean and variance for each of these groups using the
equations of Section 11.3. 1. Clearly, the conditional means and variances
depend on the choice of z, smce it is the choice of 2; that determines which
pixels will belong to each of the two groups. The approach that we take in
this section is to determine the value for z; that minimizes a function of the
variances of these two groups of pixels.

It is convenient to rewrite the conditional means and variances in terms
of the pixels in the two groups. To do this, we define ¢;(2;) as the probability
that a pixel in the image will belong to group ¢ for a particular choice of-
threshold z¢. Since all plxels in the background have gray value less than or
equal to 2 and all pxxels in the object have gray value greater than zt, we

can deﬁne qz(zt) for i = 0 1 by

QO(Zt) i L z—-() H[ ] (zt) Ez—zﬁd H[z]
. (N'rows X Ncols) (Nrmas X Ncols)
We now rewrxte Equatzon (11 12) G

e -1 Hz{ ] --.M_N 1 :'[z]/(N;;;;ch;zs)
: l‘z. Z{) Zz*(} H[z] ;:% 22--0 H[z]/( rows XNcozs)

' Usmg agam the fact that the two pmel groups are deﬁned by the threshold
z¢, we have: - Coe o _ .

i (Ve X Not)P() 255
Hole] = { 0 o otherwise

and |
0 : ' - 2Ll z

kel = {(Nw'x"zv@zs)fv(z) - otherw1se R
Thus, we can write the condztlona,l means for the two groups as

2t . N1 | )
po(2t) = Zzp(z - m(zt)““ Z zP(z) o (1114)

= o(z) S n(®)

- Similarly, we can write the eqUa_ut_io_rzs‘-' for the conditional va_riancés by

B '_"V"'Z«‘f’ f‘“zﬂ)?f 553 S

M zwzt+}.
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“We now turn to the selection of z¢. If nothing is known about the true
Values of ji; or o2, how can we determine the optimal value of 2? To
answer this question, recall that the variance is a measure of the average
deviation of pixel intensities from the mean. Thus, if we make a good
choice for z;, we would expect that the variances ¢7(z;) would be small.
This reflects the assumption that pixels belonging to the object will have
intensity values that are clustered closely about u; and that pixels belonging
to the background will have intensity values that are clustered closely about
to. We could, therefore, select the value of z; that minimizes the sum of
these two variances. However, it is unlikely that the object and background
will occupy the same number of pixels in the image; merely adding the
variances gives both regions equal importance. A more reasonable approach
is to weight the variances o2 by the probability that a pixel will belong to
the corresponding region

qﬁ,(zt) : q0(z) 08 () + a1 (_zt)f_ff(%) |

" The value ¢ is known as the within-group variance. The approach that
we will take minimizes this within-group variance, gwmg a threshold that
divides the image into two groups, S

At this point we could implement a threshold selection algorithm. The
naive approach would be to simply iterate over all possible values of z; and
select the one for which 02,(z;) is smallest. Such an algorithm performs an
enormous amount of calculation, much of which is identical for successive
candidate values of the threshold. As we will see, most of the calculations
required to compute ¢2(z;) are also required to compute o2 (z + 1); the
summations that are required change only slightly from one iteration to the
next. _ ‘

To develop a more efficient algorithm, we take two steps. First, we will
derive the between-group variance 03, which depends on the within-
group variance and the variance over the entire image. The between-group
variance is a bit simpler to deal with than the within-group variance, and
we will show that maximizing the between-group variance is equivalent to
minimizing the within-group variance. Then, we will derive a recursive
formulation for the between-group variance that lends itself to an efficient
implementation.

To derive the between-group variance, we begin by expanding the equa- -
tion for the total variance of the image and then simplifying and grouping
terms. The total variance for the image o? is a constant, and does not de-
pend on the choice of threshold value. The total variance of the gray level
values in the image is given by Equation (11. 13), which can be rewritten
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as two: su}:nrda‘cions,’.E one for the backgri)und pixels, and one for the object
pixels o : . _

B Z(?“‘ ECH

= Z(z—ﬂo+uo-—' )QP(2)+ Z (z-m+uz )QP(Z) N
'-'."-'z-0 o z""zt«l-l o -
e Z[(z #0) +2(Z—#0)(Mow' )+ (Mo—u)z]P(z)
SR z=0 o | B ST .
N-1 Sl ' : N :
o+ Z [(z— Mi)z + 2(»’3 - #1)(#1 M) + (Nl - )2]P(Z) |
zZ==zp41 TR I
We have not explicitly“ heted the dependence on 2 hére." In the remainder
of this section, to simplify notation, we will refer to the group probabilities
and conditional means and variances as ¢;, u;, and a , without explicitly
noting the dependence on Zz. The ﬁnai expression in the derivation above
can be further simplified b‘y examining the cross-terms . S

- XG-m - wPG) o B
B = E zp,tP(z) Zsz(z) Z,u,fP(z) + Zﬂzﬂp(z)
: uzZzP(z) pZzP(z) M?ZP(Z’) +1u,¢‘uZP(z)

ﬁ%(ﬂz%) U(I%Qz) - IJ'@ ¢; + /J-zHQz
i o

inwhich the suﬁxﬁati'c)ﬁé-*aré' taken for z from 0 to Zt{' for t—he backgrminci
pixels (that is, = 0) and z from 2z + 1 to N — 1 for the object pixels (that
is, 4= 1) Therefore we can sxmphfy our expressmn for o2 to obtam S
qz.- = Z[(z ~- uo) + (uo - )Z}P(z) + Z (2~ m)z + (m u)_Q.]P(Z)

z=0 L A

QO00+9'0(#0— ) +QI0'1 +9‘1(M1 M)g | G |

= {qOog+q101}+{qO(uo-—u) +Q1(u1 u)g} o
s m el +or§._.._ il .

in WhICh R RTRE T L T e

TITET AR = qo{t0 i +qu-w? o (1115)
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Since 02 does not depend on the threshold value, minimizing o2, is equiv-
alent to maximizing of. This is preférable because of is a function only of
the ¢; and y;, and is thus simpler to compute than o2, which depends also
on the o2. In fact, by expanding the squares in Equa,txon (11.15), using the
facts that g1 =1 —go and u = qy o + q1 141, we obtain '

of = (Io(l - QO)(MO - m) o (1L16)

The szmpiest aigorlthm to ma,xnmze ob is to 1terate over all possible -
threshold values, and select ‘the one that maximizes crg However, as dis-
cussed above, such an algorlthm performs many redundant calculations,
since most of the calculations required to compute o7 (z) are also required
to compute oj 2(z +1). A more efficient algorithm would reuse the com-
putations needed for o2(2;) when computing o?(z + 1). In particular, we
will derive expressions for the necessary terms at iteration z; + 1 in terms
of expressions that were computed at iteration z;. We begin with the group

probabilities, and determine the 'r_ecursive expression for ¢ as

ze+1 ' '
QO(Zt“E_l) Y. P(x)= P(zt"‘l)‘l"ZP z) = P(zt+1)+%(zt) (11.17)

z=0 il :‘ i =0

In this expression, P(z + 1) can be obtained directly from the hlstogram
array, and qo(2;) is directly available because it was computed on the pre-
vious iteration of the algorithm. Thus, given the results from iteration z,
very little computation is required to compute the value for ¢y at iteration
2t 1.

For the conditional mean ,ug(zt) we have

, . P
polze+1) = ;}z%(zwi) o |
(z+1DP(z+1) o~  P(2)
 qla ) ;Oz%(zt**'l) |
(z¢+1)P(zt+1) - qolz) i’: P(z)
go(ze + 1) qo (2t +1) <= qo zt)
(ZtA:*‘FI)P(Zt::* 1) golz) S
W@t a0 () QL1

Agam, a,ll of the qua,ntltles in this expressmn ‘are avallable elther from the
hzstogram or as the results of calculations performed at 1terat10n z¢ of the
algorithm.. RN O AT =
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To compute uy(2z; + 1), we use the relationship p = gopto + q11, which -
can be easily obtained using Equations (11.11) and (11.14). Thus, we have

#= g0z + Dpo(ae + 1)
a1z +1) o

_ B qo(z+ Dpo(z + 1) | | ‘(11-'19)
1~ qO(zt +1) ' _
_ We can now construct an efficient algorlthm to automatically select a
threshold that minimizes the within-group variarice. This algorithm sim-
ply iterates from 0 to N = 1 (where N is the total number of gray level
values), computing qo, pg, #i and of at each iteration using the recursive
formulations given in Equations (11.16), (11.17), (11.18), and (11.19). The
algorithm returns the value of z; for which o is largest. Figure 11.2 shows
a gray level image and the binary thresholded image that results from the
application of this algorithm, along Wlth the hzstogram and Wl’shm—group '

variance for the gray level i lmage R

_ul (Zt +1)

' 11.4 CONNECTED COMPONENTS N

Tt is often the case that multiple objects will be present in a single image.
When this occurs, there will be multiple connected components with gray
level valiies that are above the threshold. In this section, we will first make
precise the notion of a connected component and then describe an algo-
rithm that assigns a unique label to each connected component, that is, all |
pixels within & single connected component have the same label, but pixels
in different connected components have different labels. | |
In order to define what is meant by a connected component, it is first
necessary to define what is meant by connectivity. For our purposes, it is
sufficient to say that a pixel with image pixel coordinates (r, ¢) is adjacent to
four pixels, those with image pixel coordinates (r—1,c¢), (r+1,c¢), (r,c+1),
and (r,c—1). In other words, each image pixel, except those at the edges
of the image, has four neighbors: the pixel directly above, directly below,
directly to the right and directly to the left of the pixel. This relationship
is sometimes referred to as 4~connectivity. Two pixels are 4-connected if
they are adjacent by this definition. If we expand the definition of adjacency
to include those pixels that are dlagonally adjacent, that is, the pixels with
coordinates (r—1,c=1); (r—1,yc+1), (r+1,¢—1), and (r+1,c+1), then
we say that adjacent pixels are 8-connected In this text, we will consider
only the case of 4-connectivity. R T D e
* = A connected component is a set of pixeis S buch that for any tWO plxels o
‘ say P and P'in S, there is a 4-connected path between them and this path
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Figure 11.2: (a) An image with 956 gray levels. (b) Thresholded version of
the image. (c¢) Histogram for the image. (d) Within-group variance for the
image shown.

is contained in S. Intuitively, this definition means that it is possible to
move from P to P’ by “taking steps” only to adjacent pixels without ever
leaving the region S. The purpose of a component labeling algorithm is to
assign a unique label to each such §.

There are many component labeling algorithms that have been developed
over the years. Here, we describe a simple algorithm that requires two passes
over the image. This algorithm performs two raster scans of the image. A
raster scan visits each pixel in the image by traversing from left to right
and top to bottom, in the same way that one reads a page of text. On the
first raster scan, when an object pixel P, that is, a pixel whose gray level is
above the threshold value, is encountered, its previously visited neighbors,
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the pixel immediately above and the pixel 1mmed1&telyito the left of P, are
examined. If they'have”gra value that is below the threshold, so0 that they
are background pixels, g label is gwen to . P ThlS done by usmg

the neigh ;rs have received ]
; .xample 1n

is replaced by ‘the smallest label to Wthh it is equwalent Thus,' in the -
example of Figure 11.3, at the end of the second raster scan labels 3 and 4
have been replaced by the label 2.

After this algorithm has assigned Iabels to the components in the image,
it is not necessanly the case that the labels will be the consecutive integers
(1,2,...). Therefore, a second stage of rocessmg is sometimes used to
: relabel the components to achieve this. -In other cases, it is desirable to
give each component a label that is vetry different from the labels of the
other components. For example, if the onent labeled image is to be
displayed, it is useful to increase the cont ‘50 that distinct components
will actua,lly appear distinct in the im component with the la,bel 2
will appear almost indistinguishable fro. | .
component labels are used as pixel gray v ‘the dlsplayed omponent
labeled image. The results of applying this process to the image in Flgure
11.2 are shown in Figure 11.4. '
' When there are multiple connected ob ject components, it is often useful-
to process each component mdlvzdually For example We might like ‘co
compute the sizes of the various components For this purpose, it i is useful to
introduce the indicator function for a component. The indicator function
for component ¢, denoted by Z;, is a function that takes on the value 1 for
pixels that are cont_ain_e_d in component 2 and the va.lue 0 for all oi:her p_ixel_'s;'

AN E =Yg otherwzse L

' We WIH make use of the Indlca,tor functlon below, When we dzscuss computmg "
statzstxcs assocmted Wlth the various objects in the 1mage L

POSITION AND ORIEN TATION

The uItlmate goal of a robotlc system is to mampulate ob Jects in the World _'
In order to achieve this; it is necessary to know the positions and orientations



395

POSITION AND ORIENTATION

11.5.

000003322?0
OO OMMMNNND
O OOoOOoOCOoOOoONMNNMNO
,0000.000222__0
OO NNENMNO
D = OO OO YO
O H~HOOCOO IO
o S
DO O OKMKKKKO
COC O OMNKMKK O
o 000 CooKKKO
DO L OO M MHK O
OO DO KM KKK o
..OXXXUOOUXVAO
_UXXXOGOOXXO
O M N IHKOOO O KXo

(b)

(a)

00 000 00 0

10 6 0 6 0O
10 0 0 0 0O

1
1

1
1
1

110 0 06 0O

0 000 0 0 0 0]

0O 06 0 2 0 0 2 2

g 0 6 2 0 0 2 2

c 0 0 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0 00 0 0 0 0 O

00 0 0 00 00

0 0 0 0 O

1
1
1

1
1

1
000 0 0 0 0 0

g 0 06 2 0 0 3 3

0 0 0 2

i1

0 0 0 0 0

G 0 6 0 O

0 ¢ 3 3

0o 0 0 2 2 2 X 2
4 4 4 X 2 2 2 2

4 4 4 2

2 2

2 2

0O 0 0 6 0 0 0 0

(d)

4

Figure 11.3: The image in (a) is a simple binary image. Background pixels
are denoted by 0 and object pixels are denoted by X. Image (b) shows the

assigned labels after the first raster scan. In image (¢) an X denotes those -

pixels at which an equivalence is noted during the first raster scan. Image

(d) shows the final component labeled image.
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Flgure 11. 4 The 1mage of Flgure 11. 2 aﬂ:er connected components have
been labeled. -

of th'e 'obje'Cts'that" are to be manipulated. In this section, we address the
problem of determining the position and orientation of objects in the image.
Once the camera has been calibrated, it is then possible to use these image
positions and orientations to infer the 3D positions and orientations of the
objects. In general, this problem of inferring the 3D position and orientation
from image measurements can be a difficult problem; however, for many ,
cases that are faced by industrial robots we can obtain adequate solutions.
- For example, when grasping parts from a conveyor belt, the depth z is fixed
and the perspective projection equations can be inverted if z is known..

- We begin the section with a general discussion of moments, which' will
be used in the computatlon of both position and orientation of objects in

the i nnage

11 51 'Moit_:ehts_} o | |
Moments are functions defined on the image that can be used to summarize
various aspects of the shape and size of objects in the image. The 4,  moment
for the kth obgec‘s denoted by m;;(k), is deﬁned by

mzj(k) >3 %cfzk(r c)

. L » r,c__ .
From th1s deﬁmtlon 11; is evxdent that Mmoo is merely the number of pxxels
in the object. The order of a moment is defined to be the sum i + j. The -
first order moments are of partlcular mterest when computing the centroid
of an obJect and they are given by

- (k) = erk(r c), mgl(k ZcIk('r c)

e
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Figﬁre 11.5: The segmehted .co.mp(.)neht—labe.léd. imagé of vFigur.e 11.2 show-
ing the centroids and orientation of each component.

11.5.2 The Centroid 't')'_f"ain :Ovbj'ec't"'a_vrid'Ceritral Moménté |

It is convenient to define the position of an object to be the object’s center
of mass or centroid. By definition, the center of mass of an object is that
point (7, ¢) such that, if all of the object’s mass were concentrated at (7, &),
the first moments would not change. Thus, we have

B 5 . | o Z TL(?” C) . (Z) .
;”L(“c)“;m(r’@ RO S AN mZZ(z‘) |

— _ X _— Zr,cczﬁ(r?c} _ mﬁi(i)
gcﬂi(r, c) = %:Gfi(r, c) = G= S eZilr,e)  moo(i) |

Figure 11.5 shows the centrozds for the connected components of the lmage _'
of Figure 11.2. -

It is often useful to compute moments with respect to the object center of
mass. By doing so, we obtain characteristics that are invariant with respect
to translation of the object. These moments are called central moments
The 4, j central moment for the k:th object is defined by

Cij(k) = Z('r - 'F;c)i(c — ffk)jl']c(?“,' c) | | (1120)

in which (7, ¢) are the coordinates for the centroid of the kP object. -
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11.5.3 The Orlentatzon of an Ob;ect

We will define the 0r1entat10n of an object in the i image to be the orientation
of an axis passing through the: object such that the second moment of the
object about that axis is mmlmal This ax1s is merely the two-dimensional

equivalent of the axis of Ieast inertia. .
For a given line in the image, the second moment of the object about

that line is given by

in which d(r,c) is the minimum distance from the pixel with coordinates =
(r,c) to the line. Our task is to minimize £ with respect to all possible lines
in the image plane. To do this, we will use the p, # parameterization of lines
and compute the partial derivatives of £ with respect to p and 8. We find
the minimum by setting these partldl derlvatzves to zero..

With the p,@ parameterization, a line conSISts of all those pomts x, y
that safslsfy o |
- xcosﬂ+y31n9 p= (}

Thus, (cosé’ sin B) gives the unit normal to the line and p gives the per-
pendicular distance to the line from the origin. This parameterization is
illustrated in Figure 11.6. Under this parameterization the distance from
the line to the pomt Wlth coordinates (r,c) is glven by

d(fr c) = 7 cosf -+ csind — P
| Thus the value £* that minimizes £ is given by

LF = mmZ(rcos@ +csinf — p)QI(r c)
0

We cdsmputevthe partial derivative of L With 'respect'to pas -
e [ E(rcos@+cszn9 p)QI(r c)

= WQCOSGZT‘I(T c) — 281119201(7’ c) +2p21'(r c)
m wQWQQ(T_CQ_S,Q“*TC.SmG _ p) R ‘ o (11.21)
" Now, Settihg'thié .t'd'z‘ei.‘b 'ﬁ.v"e"o.b\ﬁa;in |
 Feosf4Esind—p=0
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zcosf + ysind = p
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, \ -
Figure 11.6: The p, 8 parameﬁefization_df a line

But this is just the equation of a line that passes through the point (7,¢),
and therefore we conclude that the inertia is minimized by a line that passes
through the center of mass. We can use this knowledge to simplify the
remaining computations. In particular, define the new coordinates (', ¢’} as

The line that minimizes £ passes through the point' =0, =0, and
therefore its equation can be written as

' cos® + ¢ sinf = 0

Before computing the partial derivative of £ (expressed in the new coor-
dinate system) with respect to 8, it is useful to perform some simplifications.

L = Z(fr'cos@ch'sinG)?I(r,c)
r.c

= COS 92(7‘ Y Z(r,c) +2c086?sm9 Z(r'c’)I r, c) + sin QZ(C Y2 Z(r, c)

e e

e C’zo cos? 6 + 2011 cos fsin 6 + Cpa sin? 6

in which the C;; are the central moments given in Equatlon (11 20) Note

that the central moments depend on neither p nor 6.
The final set of simplifications that we will make all rely on the double

angle identities:

1 1
cos’d = 2 + 5 cos 20
. 9 _ = 1
sin“f 575 cos 29
cosfsinf = % sin 26
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Substituting these into our expression for £ we obtain
1 1 ; | |
_L — 5((;‘20 + Cog) + :2-(020 — Cypa) cos 28 + Cy1 sin 26

It is now easy to Computé the paftial' derivative with respect to §:

a .

86[' = —(Cyp — Cp2)sin26 + 2Cy; cos 26
and setting this to zero we obta,in_'
tan 20 = ———in
| Cao ~ Cog

Figure 11. 5 shows the orientations for the connected components of the
1mage of Flgure 11 2 L o :

‘SUMMARY

" In this chapter we studied basic image formation and processing. We be-
gan with the geometry of the image formation process, which is typically
modeled using perspective projection. In this case, the projection onto the
image plane of a point with coordinates (z,y, 2) is given by the perspective
projection equations _ |

u_'\g vm’\y

| The actual dxscrete image array coordma,tes are related to the U,V COOI‘dI-
nates by ' ' - a
u= ——sm(r——or), v = msy(cMoc)

'm Wthh the prlnczpal pomt has coordinates (o, oc) a,nd Sz a,nd 3y are the
horizontal and vertical dimensions, respectively, of a pixel. The parameters
Or, Oc, 8z and 8, along with the focal length of the camera imaging system,
are known as intrinsic camera parameters. The position and orientation
of the camera frame with respect to the world coordinate frame comprise
the extrinsic parameters. All of these parameters can be estimated by the
process of camera calibration. S =

Segmentation is the process of partitioning an image mto foreground
“and background components. We described a threshold-based segmentation
method, in which the threshold is automatzcally selected by maximizing the
between-group variance ngen by '

C’b qu(l B qO)(Mo - #1)2
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in which gg is the fraction of background pixels, and pg and pq are the mean
gray level values of the background and foreground pixels, respectively. This
maximization can be achieved by an efficient recursive scheme.

Once the image has been segmented into foreground and background,
pixels can be grouped together using a connected components algorithm. If
the segmentation algorithm is effective, this gives an image in which each
individual object has a unique label. It is then possible to compute prop-
erties of the objects using moments. In this chapter, we demonstrated how
first and second order moments can be used to determine position and ori-
entation of a 2D object in an image. The moments for the k" object are
“given by

mij (k) = > ridTi(r,c)

The centroid of an object has coordinates given by

_omae(d)  _ mo(d)
T e P moeold) |

The 4, j central moments for an object are defined with respect to the ob ject’s
centroid. For the k' object the central moments are defined by

Cig(k) =D _(r — ) (c — &) Ti(r,c) o

The orientation of an object can be determined from its central moments as

201'1 !

tan 260 = —————
Cop — Copg

PROBLEMS

11-1 For a camera with focal length A = 10, find the image plane coordi-
nates for the 3D points whose coordinates with respect to the camera
frame are given below. Indicate if any of these points will not be visible
to a physical camera. ' '

1. (25,25,50)
2. (—25,-25,50) - -
3. (20,5, -50) o

4. (15,10,25)  §
. (0,0,50) - |

o1
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6. (0,0,100)

Repeat problem 11 1 for the ca.se when the coordmates of the pomts
are given Wlth respect to the world frame. Suppose the optical axis of
the camera is ahgned with the world x-axis, the camera x-axis is par-

__ | allel to the world y-axis, and the center of projection has coordmates
'(0 0, 100)

11-3
- field of view. By using two cameras, stereo vision methods can be used

A stereo camera syStem' consists of two cameras that share a common

~to compute 3D properties of the scene. Consider stereo cameras with

coordinate frames ojz1y; 21 and 09z9y229 such that

1.0 0 B
1|0 100
H=1o001 0
000 1

R He‘ré', B is called the baseline distance between the two cameras.

114
11-5

Suppose that a 3D point P projects onto these two images with image

‘plane coordmates (u1,v1) in the first camera and (ug, v2) in the second

camera. Determine the depth of the point P.
Show that the projection of a 3D line is a line in the image.
Cpﬁ_:sider_two parallel lines in 3D, given parametrically by L

T T
vi=\|wy |+ru
A 25

in which v € R, u; is a unit vector and (=z;,¥;,2;) is a point on the
line. Show that if two lines are parallel, that is, if u; = ug, then the

~_ projections of these two lines in an image intersect at a single point.
. This point is called the vamshmg point. .

16

11-7

Show that the vamshmg poxnts for all 3D homzonta,l lines must lie on -
the line v = 0 of the image plane o "

Suppose the va,mshmg point for two parallel lines hé's the image co-

~ ordinates (Ueo, Voo). Show that the direction vector for the 3D line is

givenby

= _ v
C VU v+ M2 ;o
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in which A is the focal length of the imaging system.

11-8 Two parallel lines define a plane. Consider a set of pairs of parallel
lines such that the corresponding planes are all parallel. Show that -
the vanishing points for the images of these lines are collinear. Hint:
let 7 be the normal vector for the parallel planes and exploit the fact
that u; - n = 0 for the direction vector u; associated to the ith line.

11-9 A cube has twelve edges, each of which defines a line in three space.
We can group these lines into three groups, such that in each of the
groups there are four parallel lines. Let (a1,a2,as), (b1, b2,b3), and
(c1, €2, ¢3) be the direction vectors for these three sets of parallel lines.
Each set of parallel lines gives rise to a vanishing point in the image.
Let the three vanishing points be V, = (ug,vs), Vo = (up,vp), and
Ve = (ue, ¢c), respectively.

1. IfCis thé optical center of the camera, show that the three axigles
LVoCVy, LV,CV, and £LV,CV, are each equal to §. Hint: In the
world coordinate frame, the image plane is the plane z = A.

2. Let hy be the altitude from V, to the line defined by V; and V..

Show that the plane containing both h, and the line through
points C and V, is orthogonal to the line defined by V; and V..

3. Let hy be the altitude from V, to the line defined by V; and V,,
hy the altitude from V, to the line defined by V, and V,, and h,
the altitude from V. to the line defined by V, and V;,. We deﬁne
the following three planes:

e P, is the plane containing both h, and the line through points
C and V.
e [, is the plane contammg both hb and the line through points
C and V.
e P, is the plane containing both A, and the hne through points
C and V..
Show that each of these planes is orthogonal to the image plane
(it is sufficient to show that F; is orthogonal to the image plane
for a spemﬁc value of z)

4. The three vanishing pomts Va, Vg‘,, V deﬁne a. trzangle, and the
three altitudes hq, hy, he intersect at the orthocenter of this tri-

angle. For this special case, where the three direction vectors are

mutually orthogonal, what is the significance of this point? .
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11-10 Use your results on vanishing points to draw a nice cartoon scene with
a road or two, some houses and maybe a roadrunner and coyote.

11 11 Suppose that a c1rcle hes in a plane pcztrallel to the i 1mage plane Shew
that the perspective projection of the circle is a circle in the image
plane and determine its radius.

11-12 Show that |

Z(X )ZP(X) [ZXQP(X) } A
i=1 " _‘ .
In other Words show that the variance of X is equal to the dlﬁ'erence
between the expected value of X2 and the square of the mean.

11-13 Verify Equation (11.21).

11~ 14 Suppose that an image consists of a hght object on a dark background
" Further, suppose that the image is hand segmented, giving histograms
for both the object and background. Thus; it is a simple matter to
compute Fy(z) (the probability that a pixel with intensity value z
belongs to the background) and P;(z) (the probability that a pixel
with intensity value z belongs to the object). Give an expression for
the probability that a plxel will be mzscia,sslﬁed if the threshold value

~of tis selected

11-15 Suppose a;gain that an image consists of a light object on a dark back-
ground and that the image has been hand segmented, giving Fy(z) and
Pi{z). Give an algorithm that determines ¢*, the optimal threshold
value, that is, the threshold value that minimizes the probability of
misclassification of an image pixel. Your algorithm should employ a
recursive formulation whenever possible. | ‘

NOTES AND REFERENCES

Computer vision research dates back to the early sixties. In the early eighties
several computer vision texts appeared. These books approached computer
vision from the perspective of cognitive modeling of human vision [87}, image
processing [109], and applied robotic-vision [54]. A comprehensive review
of computer vision techniques through the early nineties (including the seg-
mentation method described in'this chapter) can be found in [50], and an
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introductory treatment of methods in 3D vision can be found in [133]. De-
tailed treatments of the geometric aspects of computer vision can be found
in [33] and [83]. A comprehensive review of the state of the art in computer
vision at the turn of the century can be found in [38].



