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Evolutionary and adaptive robotics (ER)

« Motivation
« Some basic concepts of evolutionary algorithms and other
Al concepts with applications to robotics

— More details about the algorithms in IN3050
— Only a small taste of what’s possible with Al and ML in robotics?

 Connections to our research in ROBIN
— Robots and experiments

1) E.g. check this site to stay updated: https://spectrum.ieee.org/tag/robotics



https://spectrum.ieee.org/tag/robotics
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Need for resilient and adaptive robots!
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Motivation

* New building blocks

— Large space of robot body-
behavior configurations

« Unseen and changing
environments

— Robots could / should adapt
both body and behavior
« We need automatic design

— To efficiently explore the
design space

— To autonomously adapt to
the environment
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How can we automatically design a
range of body-behavior approaches?
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—~ Evolutionary robotics

Objective/fitness function:
Forward movement
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select different concepts

Discarded* 10 24 3% 40

« Multi-objective
evolution

— Tradeoffs speed
and weight

« Evolve diversity

— Morphological
distance metric

— Clustering to pick
morphologically
diverse solutions
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Challenge: Reality gap

 Simulators are fast and can evaluate solutions in
parallel, but:

« A simulator cannot capture all aspects of reality

« Evolved solutions may exploit features of the
simulator not present in reality

- The solutions evolved in simulation behave differently
when applied to the real robot!



Reality gap example

simulator
real 1
real 2 -
real 3
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How to deal with the reality gap?

 |deas?
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How to deal with the reality gap

1. Increase simulation fidelity

— Manually: do more precise measurements, increase
computation spent on solving physics equations

— Automatically: measure deviation simulation-reality, auto-tune
simulator for smaller deviation

2. Encourage robustness
— Manually: E.g. Encourage slow, static movements, add noise
— Automatically: Avoid solution types that transfer poorly

3. Online learning after deployment on real robot
— Can use evolution, reinforcement learning, or other method
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Deep reinforcement learning

* Noise encourages robust
behaviors

* Progressively adding more
«noise» / variation in the
simulation

— E.g. changing the cube size

« Lots of computation!

— 64 V100 GPUs and 920 32-
core CPUs training for several
months

— 13 000 «years of experience»

OpenAl Solving Rubik's Cube with a Robot Hand
https://arxiv.org/abs/1910.07113

Reality gap: adding noise /
_domain randomization
(OpenAl)
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(d) Blanket occlusion and perturbation. (¢) Plush giraffe perturbation."” (f) Pen perturbation.


https://arxiv.org/abs/1910.07113
https://openai.com/research/solving-rubiks-cube
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Reality gap: Evaluate and adapt solutions in the real

world
-

e Learn to turn for
arena evaluation

* Check real world
performance

« Continued learning
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Morphology evolution challenges

* Reality gap can be large
due to exploitation of
simulator

« Time-consuming to
produce one real-world
Instance of body+controller

23.05.2024
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Can we automatically search for bodies
exploiting real-world characteristics?
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Our approach (Nygaard et al.)

23.05.2024
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DyRET:
Dynamic Robot for
Embodied Testing

« Self-reconfiguring robot platform

— Reconfiguration mechanism too
slow to be actively used in gait

 Allows testing multiple
morphological combinations
using the same robot

 Real world evolution of
morphology and control

« Adaptation to environment

« Open source and hardware
https://github.com/dyret-robot/dyret documentation



https://github.com/dyret-robot/dyret_documentation
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Optimization for multiple solution criteria

Turning amount (lower is better)
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— No solution is better on all criteria

— A pareto front

Multi-objective evolutionary algorithms (MOEA)
Pareto optimal or nondominated solutions

Maintain a variety of solutions (tradeoffs)

Displacement (lower is better)

o Dominated solutions
| | | | | | | | | ° Pareto set
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Real world morphology and control evolution
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Evolution finds different bodies for different surfaces

23.05.2024
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Challenges of real-world evolution

 |deas?
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Challenges of real-world evolution

« Evaluation budget

— One evaluation takes
time!

— This restricts the
algorithms

« Wear and tear
— Robot characteristics
may change
* Less exploration

— Morphology — cannot
vary too much

— Control / gait — cannot
fall all the time

23.05.2024 24



UiO ¢ Department of Informatics
University of Oslo

How to adapt a robot’s body on the fly
using machine learning
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« Terrain sensing &
characterization

* Choose body
configuration

» Measure performance
» Update model
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UiO & Department of Informatics Different morphologies preferred
In different environments

Concrete

* Morphology can be a
part of problem solving
— Embodied Al

« Demonstrated on a
real robot / real terrain

« Better than using the
best fixed morphology

80

60

Cost of transport (COT)

Step

Cost of transport (COT)
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Grass (1st) Road Grass (2nd)
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Alternatives to evolutionary robotics

« Bayesian optimization
— Builds models of performance based on observed data
(surrogate models)
— Can be much more data efficient, but less exploration
— Often used for real-world optimization of robot controllers

» (Deep) reinforcement learning
— Typically uses a neural network to control for each time step
— Makes use of data from each simulation time step
— More data efficient, but less exploration

23.05.2024
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Bonus: Can we make robots dance? (sorovszy)
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Choose platform according to task

 Variable realism and
evaluation cost

— E.g. 2D vs. 3D
simulation

— Hardware in the loop?

e Al gym s" — Simple » ; —";__» Todban
taSk-SpeCIfiC Setup “ :: ‘ ” : 1: Microcontroller

GPS antenna

+ ROS - complete A

Force sensors

23.05.2024 Linear actuators
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Simulation systems

* Rigid body physics simulations
— PhysX, Bullet, MuJoCo, DART, Box2D, ...

» Other simulation systems
— Voxcad Rt r—— =

— Custom mass-spring-damper systems
— Soft models incorporated in rigid-body
engines
« Higher realism (slower)
— FEM simulations
— SOFA framework: rigid, deformable, fluid

» High-level wrappers

— Robot-centric: Isaac Sim, Coppeliasim,
Gazebo

— Game-centric: Unreal Engine, Unity
— «Gyms»: Gymnasium, evolution-gym
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New simulators leverage
GPUs for speedups

 E.g. BRAX, IsaacSim

 Simulation code rewritten
to work well on GPU
architecture

 1000s of simulations in

H Typical Workstation Data Center Brax Workstation
parallel on a single GPU A2 CRU+1 GPU) (Thousand of CHYGPLI mochives) (1 P+ 1 801y TR0

« The learning algorithm can
run on the same GPU -
reduced latency

https://research.google/blog/speeding-up-reinforcement-learning-with-a-new-physics-simulation-engine/

23.05.2024
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Multi-function swarm (Engebraten et al.)

Exploration (search) Networking (maintaining coverage)
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Controller repertoire generation
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Example MSc project: Evolving modular robots

« Simulation only
— Building blocks based loosely on
real modular robot
* Investigating impact of control
mechanisms on evolved robots

— Centralized vs decentralized S A 0 e 0D
control approach

— Effects on morphology evolution

Kvalsund: Search Space Traversal in Co-Optimized Modular Robots https://www.duo.uio.no/handle/10852/95656 %



https://www.duo.uio.no/handle/10852/95656
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« Evolutionary robotics can be useful for adaptation,
optimization, design exploration
— Optimization
— Exploring many different solutions
— Exploring trade-off solutions

« Co-evolution of body and control is possible
— Wholistic design for given tasks / environments

* From simulation to hardware
— Sample cost
— The reality gap

23.05.2024 40
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Questions

23.05.2024
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Bonus material

23.05.2024
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[Submitted on 23 Sep 2023]

Extreme Parkour with Legged Robots CO Rl_ . Qu ad ru p ed p ar kO ur (CM U)

Xuxin Cheng, Kexin Shi, Ananye Agarwal, Deepak Pathak https://extreme-parkour.github.io/
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« Single end-to-end NN
‘ * Vision backbone + policy
& | A W » Depth image + proprioception
Daepcopy | Suparves « Train 20hrs RTX3090
oy « Run Jetson NX 50Hz
:?:t;::;d = L ‘iﬁ % ¥ Phase 2
Proprioception J& M Yaru

Figure 2: Training overview. In phase 1, we use RL to learn a locomotion policy with access to privileged
information like environment parameters and scandots [2] in addition to heading direction from waypoints. We
use Regularized Online Adaptation (ROA)[9] to train an estimator to recover environmental information from
the history of observations. In phase 2, we distill from scandots into a policy that operates from onboard depth
and automatically decides its heading (yaw) direction conditioned on the obstacle.

45



https://robotics-transformer2.github.io

@ Google DeepMind 28 July 2023

RT-2: Vision-Language-Action Models
Transfer Web Knowledge to Robotic Control

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,

Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,

Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander Herzog,
Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,

Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk Michalewski, Igor Mordatch,
Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo, Grecia Salazar, Pannag Sanketi,

Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran, Vincent Vanhoucke, Quan Vuong,
Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich

Google DeepMind. Authors listed in alphabetical order, with contributions listed in Appendix A.
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Robotic
foundation
models

https://robotics-transformer2.qgithub.io/
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Prompt: Prompt:
Given <img> Instruction:

Bring me a drink.
Prediction:

Plan: pick 7up can.

together.

Prediction:

Action: 1 143 129 123 145 Plan: move green can near

114 115 127 green rice chip bag.

Action: 1 128 126 127 135

123 119 127

Given <img> Instruction:
Move all the objects

Prompt:

Given <img> Instruction:
Pick the object that is
different from all other
objects

Prediction:

Plan: pick rxbar
chocolate. Action: 1 128
129 125 131 125 128 127

rFrompt:

Given <img> Instruction:
Move the green objects
together.

Prediction:

Plan: move green can near
green rice chip bag.
Action: 1 130 129 121 131
127 128 127

Prompt:

Given <img> I need to
hammer a nail, what
object from the scene
might be useful?
Prediction:

Rocks. Action: 1 129 138
122 132 135 106 127

23.05.2024
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Internet-Scale VQA + Robot Action Data Vision-Language-Action Models for Robot Control Closed-Loop

Q: What is h i a Robot Control
. at I1s happening : What should the robot RT 2

in the image? do to <tasia? A; ... arge Language Mode

|

A grey donkey walks
down the street.

Q: Que puis-je faire avec
ces objets?

I
o i | Sled—
e

IFaire cuire un gé‘ceau.l )

A:132 114 128 5 25 156

...r Q: What should the robot De-Tokenize T
& do to ? Robot Action
¥

' ATranslation = [0.1, -0.2, 0] T | >
ARotation = [10°, 25] -77] Co-Fine-Tune Deploy

-q

Pick object that is different

Figure 1 | RT-2 overview: we represent robot actions as another language, which can be cast into text tokens and
trained together with Internet-scale vision-language datasets. During inference, the text tokens are de-tokenized
into robot actions, enabling closed loop control. This allows us to leverage the backbone and pretraining
of vision-language models in learning robotic policies, transferring some of their generalization, semantic
understanding, and reasoning to robotic control. We demonstrate examples of RT-2 execution on the project
website: robotics-transformer2.github.io.

23.05.2024 48
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