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Evolutionary and adaptive robotics: 

from simulation to reality



Evolutionary and adaptive robotics (ER)

• Motivation

• Some basic concepts of evolutionary algorithms and other

AI concepts with applications to robotics

– More details about the algorithms in IN3050

– Only a small taste of what’s possible with AI and ML in robotics1

• Connections to our research in ROBIN

– Robots and experiments

31) E.g. check this site to stay updated: https://spectrum.ieee.org/tag/robotics

https://spectrum.ieee.org/tag/robotics


Need for resilient and adaptive robots!



Motivation

• New building blocks

– Large space of robot body-

behavior configurations

• Unseen and changing

environments

– Robots could / should adapt

both body and behavior

• We need automatic design

– To efficiently explore the

design space

– To autonomously adapt to 

the environment



How can we automatically design a 

range of body-behavior approaches?
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Our approach (Samuelsen et al.)



Evaluate
solutions

Good solution 
to problem?

Create new
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good solutions
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no

Evolutionary algorithm

Evolutionary robotics
Objective/fitness function:

Forward movement
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• Multi-objective

evolution

– Tradeoffs speed 

and weight

• Evolve diversity

– Morphological

distance metric

– Clustering to pick

morphologically

diverse solutions

Evolve diverse solutions and 

select different concepts



Challenge: Reality gap

• Simulators are fast and can evaluate solutions in 

parallel, but:

• A simulator cannot capture all aspects of reality

• Evolved solutions may exploit features of the 

simulator not present in reality

→ The solutions evolved in simulation behave differently 

when applied to the real robot!



Reality gap example



How to deal with the reality gap?

• Ideas?



How to deal with the reality gap

1. Increase simulation fidelity

– Manually: do more precise measurements, increase

computation spent on solving physics equations

– Automatically: measure deviation simulation-reality, auto-tune 

simulator for smaller deviation

2. Encourage robustness

– Manually: E.g. Encourage slow, static movements, add noise

– Automatically: Avoid solution types that transfer poorly

3. Online learning after deployment on real robot

– Can use evolution, reinforcement learning, or other method



Reality gap: adding noise / 

domain randomization

(OpenAI)• Deep reinforcement learning

• Noise encourages robust 

behaviors

• Progressively adding more 

«noise» / variation in the

simulation

– E.g. changing the cube size

• Lots of computation!

– 64 V100 GPUs and 920 32-

core CPUs training for several

months

– 13 000 «years of experience»

OpenAI Solving Rubik's Cube with a Robot Hand  

https://arxiv.org/abs/1910.07113

https://openai.com/research/solving-rubiks-cube 

https://arxiv.org/abs/1910.07113
https://openai.com/research/solving-rubiks-cube


Reality gap: Evaluate and adapt solutions in the real 

world

• Learn to turn for 

arena evaluation

• Check real world

performance

• Continued learning
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Morphology evolution challenges

• Reality gap can be large

due to exploitation of 

simulator

• Time-consuming to 

produce one real-world

instance of body+controller

23.05.2024 16



Can we automatically search for bodies

exploiting real-world characteristics?
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Our approach (Nygaard et al.)
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DyRET:

Dynamic Robot for 

Embodied Testing

• Self-reconfiguring robot platform

– Reconfiguration mechanism too

slow to be actively used in gait

• Allows testing multiple 

morphological combinations 

using the same robot

• Real world evolution of

morphology and control

• Adaptation to environment

• Open source and hardware
https://github.com/dyret-robot/dyret_documentation

https://github.com/dyret-robot/dyret_documentation


Optimization for multiple solution criteria

• Multi-objective evolutionary algorithms (MOEA)

• Pareto optimal or nondominated solutions

– No solution is better on all criteria

• Maintain a variety of solutions (tradeoffs)

– A pareto front
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Displacement (lower is better)



Real world morphology and control evolution
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Evolution finds different bodies for different surfaces



Challenges of real-world evolution
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• Ideas?



Challenges of real-world evolution
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• Evaluation budget

– One evaluation takes

time!

– This restricts the

algorithms

• Wear and tear

– Robot characteristics

may change

• Less exploration

– Morphology – cannot

vary too much

– Control / gait – cannot

fall all the time



How to adapt a robot’s body on the fly 

using machine learning
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More terrains at CSIRO
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Building an ML model

• Terrain sensing & 

characterization

• Choose body 

configuration

• Measure performance

• Update model
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Different morphologies preferred

in different environments

• Morphology can be a 

part of problem solving

– Embodied AI

• Demonstrated on a 

real robot / real terrain

• Better than using the 

best fixed morphology
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Alternatives to evolutionary robotics

• Bayesian optimization

– Builds models of performance based on observed data

(surrogate models)

– Can be much more data efficient, but less exploration

– Often used for real-world optimization of robot controllers

• (Deep) reinforcement learning

– Typically uses a neural network to control for each time step

– Makes use of data from each simulation time step

– More data efficient, but less exploration
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Bonus: Can we make robots dance? (Szorkovszky)
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Choose platform according to task

• Variable realism and 

evaluation cost

– E.g. 2D vs. 3D 

simulation

– Hardware in the loop?

• AI “gyms” – simple 

task-specific setup

• ROS – complete 
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Simulation systems
• Rigid body physics simulations

– PhysX, Bullet, MuJoCo, DART, Box2D, …

• Other simulation systems
– Voxcad

– Custom mass-spring-damper systems

– Soft models incorporated in rigid-body 
engines

• Higher realism (slower)
– FEM simulations

– SOFA framework: rigid, deformable, fluid

• High-level wrappers
– Robot-centric: Isaac Sim, Coppeliasim, 

Gazebo

– Game-centric: Unreal Engine, Unity

– «Gyms»: Gymnasium, evolution-gym



New simulators leverage 

GPUs for speedups

• E.g. BRAX, IsaacSim

• Simulation code rewritten 

to work well on GPU 

architecture

• 1000s of simulations in 

parallel on a single GPU

• The learning algorithm can 

run on the same GPU - 

reduced latency

23.05.2024

https://research.google/blog/speeding-up-reinforcement-learning-with-a-new-physics-simulation-engine/

https://research.google/blog/speeding-up-reinforcement-learning-with-a-new-physics-simulation-engine/


QD for linkage robot design 
(Norstein et al.)

23.05.2024 35



23.05.2024 36

Multi-function swarm (Engebråten et al.)

Exploration (search) Networking (maintaining coverage)



Controller repertoire generation
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Real-world testing

23.05.2024 38



Example MSc project: Evolving modular robots 

• Simulation only

– Building blocks based loosely on

real modular robot

• Investigating impact of control

mechanisms on evolved robots

– Centralized vs decentralized

control approach

– Effects on morphology evolution

39Kvalsund: Search Space Traversal in Co-Optimized Modular Robots https://www.duo.uio.no/handle/10852/95656

https://www.duo.uio.no/handle/10852/95656


Summary

• Evolutionary robotics can be useful for adaptation, 

optimization, design exploration

– Optimization

– Exploring many different solutions

– Exploring trade-off solutions

• Co-evolution of body and control is possible

– Wholistic design for given tasks / environments

• From simulation to hardware
– Sample cost

– The reality gap
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Questions
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Bonus material
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CoRL: Quadruped parkour (CMU)
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https://extreme-parkour.github.io/

https://extreme-parkour.github.io/
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Quadruped parkour
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• Single end-to-end NN

• Vision backbone + policy

• Depth image + proprioception

 

• Train 20hrs RTX3090

• Run Jetson NX 50Hz
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https://robotics-transformer2.github.io/

Robotic 

foundation 

models

https://robotics-transformer2.github.io/
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