architecture doulos_model_solution of XXX is
entity XXX is
port (Clock : in Std_logic;
Reset : in Std_logic;
Enable: in Std_logic;
Load : in Std_logic;
Mode : in Std_logic;
Data $:$ in Std_logic_vector (7 downto 0);
$X \quad:$ out Std_logic_vector (7 downto 0));
end;

Enable	Load	Mode	\mathbf{X}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

constant nibble_max : Unsigned(3 downto 0) := "1111";
constant decade max : Unsigned(3 downto 0) := "1001";
constant zero_nibble : Unsigned(3 downto 0) := "0000";
constant zero_byte : Unsigned(7 downto 0) := "00000000";
signal Q : Unsigned(7 downto 0);
begin
process (Clock, Reset)
begin
if Reset $=$ ' 0 ' then
Q <= zero_byte;
elsif RISING EDGE (Clock) then
if Enable = '0' then

TASK

Fill in what X is based on the input signals (in the table)

How many FF's are created here?
What type of circuit is this / What does it do?

Q <= Unsigned(Data);
elsif (Mode $=$ ' 0 ' and $Q(3$ downto 0$) /=$ nibble_max) or (Mode = '1' and $Q(3$ downto 0$) /=$ decade max) then $\mathrm{Q}(3$ downto 0$)<=\mathrm{Q}(3$ downto 0$)+1$; else

Q(3 downto 0$)<=$ zero nibble;
if (Mode = '0' and $Q(\overline{7}$ downto 4) /= nibble_max) or
(Mode $=$ ' 1 ' and $Q(7$ downto 4) $/=$ decade_max) then $\mathrm{Q}(7$ downto 4$)<=\mathrm{Q}(7$ downto 4) + 1; else

Q(7 downto 4) <= zero_nibble; end if;
end if;
end if;
end if;
end process;
X <= Std_logic_vector(Q);
end;

