```
entity XXX is
  port (Clock : in Std_logic;
  Reset : in Std_logic;
  Enable: in Std_logic;
  Load : in Std_logic;
  Mode : in Std_logic;
  Data : in Std_logic_vector(7 downto 0);
  X : out Std_logic_vector(7 downto 0));
end;
```

Enable	Load	Mode	Х
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

TASK

Fill in what X is based on the input signals (in the table)

How many FF's are created here?

What type of circuit is this / What does it do?

```
architecture doulos model solution of XXX is
  constant nibble max : Unsigned(3 downto 0) := "1111";
  constant decade max : Unsigned(3 downto 0) := "1001";
  constant zero nibble : Unsigned(3 downto 0) := "0000";
  constant zero byte : Unsigned(7 downto 0) := "000000000";
                       : Unsigned (7 downto 0);
  signal Q
begin
  process (Clock, Reset)
  begin
    if Reset = '0' then
      Q <= zero byte;
    elsif RISING EDGE (Clock) then
      if Enable = '0' then
        if Load = '0' then
          Q <= Unsigned(Data);</pre>
        elsif (Mode = '0' and Q(3 downto 0) /= nibble max) or
               (Mode = '1' and Q(3 downto 0) /= decade max) then
          Q(3 \text{ downto } 0) \le Q(3 \text{ downto } 0) + 1;
        else
          Q(3 downto 0) <= zero nibble;
          if (Mode = '0' and Q(7 downto 4) /= nibble max) or
             (Mode = '1' and Q(7 downto 4) /= decade max) then
            \bigcirc (7 downto 4) <= \bigcirc (7 downto 4) + 1;
          else
            Q(7 downto 4) <= zero nibble;
          end if;
        end if;
      end if;
    end if:
  end process;
  X <= Std logic vector(Q);</pre>
end;
```