```
entity XXX is
  port (Clock : in Std_logic;
  Reset : in Std_logic;
  Enable: in Std_logic;
  Load : in Std_logic;
  Mode : in Std_logic;
  Data : in Std_logic_vector(7 downto 0);
  X : out Std_logic_vector(7 downto 0));
end;
```

Enable	Load	Mode	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

TASK

Fill in what X is based on the input signals (in the table)

How many FF's are created here?

What type of circuit is this / What does it do?

```
Architecture function and select of XXX is
  constant zero byte: Unsigned(7 downto 0) := "00000000";
  signal Q
                   : Unsigned (7 downto 0);
                  : std logic vector(2 downto 0);
  signal ELM
  function dec count (input: Unsigned) return Unsigned is
   constant decade max : Unsigned(3 downto 0) := "1001";
   constant zero nibble: Unsigned(3 downto 0) := "0000";
   variable output : unsigned(input'range);
  begin
    output :=
                                            when input(3 downto 0) /= decade max else
     input + 1
     (input(7 downto 4) + 1) & zero nibble when input(7 downto 4) /= decade max else
     zero byte;
    return output;
  end function dec count;
begin
  ELM <= (Enable & Load & Mode);</pre>
  with ELM select Q <=
   dec count (unsigned(X)) when "011",
   unsigned(X) + 1
                            when "010",
   unsigned(Data)
                            when "000" | "001",
    unsigned(X)
                            when others;
  X <= std logic vector(zero byte) when not reset else std_logic_vector(Q) when rising_edge(Clock);
end;
```