
1

UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Written exam IN3160/4160 and INF3430/4431 - Digital system design

2020 SPRING

Duration: 2. June, 14:30 to 9. June, 14:30

General information:

 Your submission must be uploaded as a zip-file, in addition to filling in each question.

 Remember that your submission need to be anonymous, do not write your name in

your submission.

 All examination support materials are permitted. You need to gather information from

available sources, assess the information quality, and put it together in a submission

based on your own processing of the content. The submission must reflect your

individual level of knowledge.

 For assignments where it is relevant to use sources and citations, it is important that

you do this properly so that you are not suspected of cheating. Read more about

sources and citations.

 You have to read UiO's upload assignment student guide

 You have to read IFI’s rules about cheating on exams.

Digital hand drawing:

 If your submission includes digital hand drawings, you are free to use your preferred

tools (scanning, cellphone-camera etc) as long as everything is readable and delivered

as one PDF. How to make a PDF-file.

 Check out MN's/UiO's recommended solutions for digital hand drawings spring 2020.

NB!

You cannot apply for a postponement of the exam beyond the 7 days the exam is held. If

you submit a self-notification abut illness you will be able to take the continuation exam

in the courses that offer it, or take the exam the next time the course is held (applies to

IN1150, IN1000 and ENT1000).

See: https://www.mn.uio.no/om/hms/koronavirus/eksamen-2020.html (Paragraph 9, 10

and 11)

Contact:

User support for exams in the spring of 2020.

Messages during the exam

If any, messages to everyone during the exam will be posted at the course semester

page: https://www.uio.no/studier/emner/matnat/ifi/IN3160/v20/

Please check for messages regularly.

https://www.uio.no/studier/eksamen/kildebruk/
https://www.uio.no/studier/eksamen/kildebruk/
https://www.uio.no/studier/eksamen/innlevering/levere-besvarelsen/levere-filopplasting.html
https://www.mn.uio.no/ifi/studier/beskjeder/fusk-ved-eksamen-var-2020.html
https://www.uio.no/tjenester/it/lagring-samarbeid/apne-dokformater/pdf/
https://www.uio.no/studier/eksamen/innlevering/alternativer-for-handtegninger.html
https://www.mn.uio.no/om/hms/koronavirus/brukerstotte-og-trosterunde-eksamen-v20.html
https://www.uio.no/studier/emner/matnat/ifi/IN3160/v20/

2

About the exam

The exam consists of 10 exercises. In Exercise 1-3, 5 and 6 the answer shall be VHDL code.

In exercise 4, 7, 8 and 9 diagrams and text. The 10th exercise is for uploading one zip file

containing all your VHDL and pdf files.

Each exercise has a maximum score. The exam as a whole can have a score up to 100. The

scores are noted to give you a chance to prioritize between exercises.

The 10th exercise has no maximum score, as it only serves the purpose of allowing a zip file

to be uploaded. The zip file should only contain VHDL files and a pdf file containing all text

and diagrams used. We ask you to both to fill in answers in exercise 1-9 separately and upload

on exercise 10, for redundancy. The zip file will not be checked unless it is necessary.

To allow for the use of third party tools when working with the exercises, we recommend

solving most of the tasks outside of inspera, and later move the code, text or files into each

exercise. If you need figures that cannot be uploaded in the exercise (1-9), please make a note

in the exercise text that refers to where in the zip file it can be found.

The full exam text can be viewed as a pdf (this document). You can complete the whole exam

outside inspera, then later copy in the relevant VHDL code, text and diagrams.

Good luck!

3

Outline

In this exam, you will implement a serial peripheral interface (SPI) slave device that reads and

writes to an 8-bit register. You will also write test bench code to verify the function of the

device, create an ASM diagram that shows part of the device functionality, and answer

questions in text format.

The implementation shall be able to both send and receive data from the SPI bus. The 8-bit

register shall be connected to output pins on an FPGA. This allows for control of LEDs or

other devices.

The SPI bus

The SPI bus was invented by Motorola in 80’s, and is a common bus used to interface low

speed devices. Normally an SPI interface will consist of four wires:

SCK – Serial Clock

MOSI – Master Out Slave In

MISO – Master In, Slave Out

SS – Slave Select (sometimes also called chip select (CS)).

SPI can have different modes for clock polarity and phase, but in this exam, we will only use

the configuration where data must be valid on the rising edge of SCK.

Figure 1: Simple SPI setup and signaling overview

In the simplest configuration, an SPI bus consist of two devices, a master and a slave. The

master will initiate all transactions by setting slave select (SS) low. A short time after

asserting slave select, the master will activate the SPI clock (SCK), and both the master and

the selected slave can put data on the bus (MOSI/MISO).

4

The digital system

The system main clock (clk) will have a clock frequency of 100 MHz. The SPI bus master

will operate SCK at up to 10MHz. Apart from the signaling on the SPI bus, the SPI interface

will read or write 8 bits in parallel to or from another module running on the same system

clock.

The top level of the design, SPI_top.vhd, will be a structural description to connect the

required components:

library ieee;
use ieee.std_logic_1164.all;

entity spi_top is
 generic(WIDTH : natural := 8);
 port (
 clk : in std_logic;

 SS : in std_logic;
 SCK : in std_logic;
 MOSI : in std_logic;
 MISO : out std_logic;

 data_in : in std_logic_vector(WIDTH-1 downto 0);
 data_out : out std_logic_vector(WIDTH-1 downto 0);
 valid : out std_logic
);
end entity spi_top;
architecture structural of spi_top is

 -- insert structural description here

end architecture structural;

Figure 2: VHDL Entity and architecture template, SPI_top.vhd

The implementation shall connect the following four modules:

edge_detector.vhd : an edge detector module used for SCK,

shifter.vhd : an shift register module used for IO

counter.vhd : a counter module used together with the state machine

fsm.vhd : a state machine controlling the system operation

In addition to the SPI module, a testbench shall be created.

Unless otherwise specified, all input signals are synchronous to the system clock (clk).

5

Exercise 1: 10p
In this exercise, you shall implement the VHDL edge detector module for the system

(edge_detector.vhd). The edge detector shall have three inputs, the system clock (clk), the

slave select signal (SS), and the SPI clock (SCK). The edge detector shall have one ouput,

(SCK_rise) which shall be ‘1’ for exactly one clock cycle when the SPI clock goes high.

When the SS signal goes high, the system shall be set to the s_0 state, regardless of the SCK

signal. All transitions shall be synchronous to the system clock.

SCK

SCK_rise <= 1

SCK
1

SS

s_1

s_0

0

0 1

Figure 3 ASM digram of the edge detector function.

The edge detector shall be implemented as a state machine having two states as shown in

Figure 3.

6

Exercise 2: 10p

In this exercise, you shall design a shift register as shown in Figure 4.

shiftreg

MOSI MISO
7 6 5 4 3 2 1 0

data_in

data_out

Figure 4: Shift-register for the SPI interface

Figure 5: Shifter entity declaration

The shift-register module (shifter.vhd) shall use the entity described in Figure 5, and shall be

implemented as follows:

1. All output shall be synchronous to the rising edge of the system clock.

2. The shift register shall be set to zero when slave select (SS) is high.

3. MISO shall be set to bit 0 in the shift register.

4. As long as SS is low, the following shall happen:

a. When load is high, data_in shall be clocked into the shift register

b. When SCK_rise is high:

i. the MOSI signal shall be shifted into the highest numbered bit in the

shift register

ii. All bits in the shift register shall be shifted to a lower numbered

position (shifted right as shown in Figure 4)

entity shifter is
 generic(WIDTH : natural := 8);
 port (
 clk : in std_logic;
 SS : in std_logic;
 SCK_rise : in std_logic;
 MOSI : in std_logic;
 load : in std_logic;
 data_in : in std_logic_vector(WIDTH-1 downto 0);
 data_out : out std_logic_vector(WIDTH-1 downto 0);
 MISO : out std_logic
);
end entity shifter;

7

Exercise 3: 10p

In this exercise, you will implement the counter module using the entity shown in Figure 6.

Figure 6: The counter module (counter.vhd)

All outputs from the counter module shall be synchronous to the system clock (clk). The

counter shall be set to zero when the reset signal is high, and count when SCK_rise is

high. The counter shall count from 0 to 15 before it wraps around to 0. The signal mincount

shall be high when the counter is 0 and halfcount shall be high when the counter is 8.

entity counter is
 generic(WIDTH : natural := 8);
 port (
 clk : in std_logic;
 reset_count : in std_logic;
 SCK_rise : in std_logic;
 mincount : out std_logic;
 halfcount : out std_logic
);

end entity counter;

8

Exercise 4: 15p

In this exercise, you will implement an ASM diagram that shows the correct function of the

VHDL code for the finite state machine (FSM) module (fsm.vhd) described in Figure 7 and

Figure 8.

The state machine reads and interprets the commands sent over the SPI bus. There are four

commands that the FSM interprets: Fetch, Put, Pass and No-operation (NOP).

When given the Fetch command, the device shall fetch the data present at the input and send

it over the SPI bus. When given the put command, the device shall put the next byte it

receives over SPI, and set the valid flag when the whole byte is received. When given the Pass

command, the next byte shall be sent over the SPI bus, regardless of content. When the NOP

command is sent, the device shall be ready to receive a new command on the next byte.

Figure 7: FSM module part I, VHDL entity

library ieee;
use ieee.std_logic_1164.all;

entity fsm is
 generic(WIDTH : natural := 8);
 port (
 clk : in std_logic;
 SS : in std_logic;
 halfcount : in std_logic;
 mincount : in std_logic;
 data : in std_logic_vector(WIDTH -1 downto 0);
 load : out std_logic;
 valid : out std_logic;
 reset_count : out std_logic
);

end entity fsm;

9

Figure 8: FSM module part II, VHDL architecture

architecture RTL of fsm is
 constant OP_NOP : std_logic_vector(WIDTH-1 downto 0) := x"00";
 constant OP_FETCH : std_logic_vector(WIDTH-1 downto 0) := x"01";
 constant OP_PUT : std_logic_vector(WIDTH-1 downto 0) := x"02";
 constant OP_PASS : std_logic_vector(WIDTH-1 downto 0) := x"03";

 type t_state is (read_op, put, transmit);
 signal fsm_state, next_state : t_state;

begin

 fsm_state <= next_state when rising_edge(clk);

 process(all)
 begin
 next_state <= fsm_state;
 if SS then
 next_state <= read_op;
 else
 case fsm_state is
 when read_op =>
 if halfcount then
 with data select next_state <=
 put when OP_PUT,
 transmit when OP_FETCH,
 read_op when OP_NOP,
 transmit when others;
 end if;
 when put | transmit =>
 next_state <= read_op when mincount;
 when others =>
 next_state <= read_op;
 end case;
 end if ;
 end process;

 process(all)
 begin
 load <= '0';
 valid <= '0';
 reset_count <= SS;
 case fsm_state is
 when read_op =>
 load <= '1' when halfcount = '1' and data = OP_FETCH;
 reset_count <= '1' when halfcount = '1' and data = OP_NOP;
 when put =>
 valid <= '1' when mincount;
 when others =>
 null;
 end case;
 end process;

end architecture RTL;

10

Exercise 5: 10p

In this exercise, you will create the structural architecture of the SPI top module.

The entity is for the top module is given in Figure 2.

Create a VHDL module, SPI_top.vhd, that connects all four modules as indicated by the

names in each entity. Signals necessary to connect the modules must be created.

Exercise 6: 21p

In this exercise you shall implement a self-checking test bench that communicates with the

device under test (DUT) using the SPI bus. The test bench shall stimulate the DUT, and verify

that the output is correct.

Communication with the DUT shall be implemented in a procedure. The procedure shall

emulate an SPI master. The procedure shall print the result of each test. The test bench shall

stop with a failure condition when a test does not pass (incorrect output is observed). Use the

procedure to show correct operation using op_fetch, op_put and op_pass commands.

Exercise 7: 6p

The SPI module will be connected to an SPI master running in a different clock domain (SPI

clock still running at 10MHz). Describe with words what would be the necessary

modifications to the SPI slave interface to ensure safe clock domain crossing.

(What functionality should be considered- which signals and modules should be involved,

etc.)

11

Exercise 8 14p

In this task we assume that a number of similar slaves, all utilizing the same FPGA

configuration described in this exam, all using the modifications described in Exercise 7 (thus

no clock domain crossing considerations here), each running on their own circuit board, will

be connected in series to the master, as shown in Figure 9. The commands the Master can

issue is (as described in exercise 4 code): NOP, put, fetch and pass.

 constant OP_NOP : std_logic_vector(WIDTH-1 downto 0) := x"00";

 constant OP_FETCH : std_logic_vector(WIDTH-1 downto 0) := x"01";

 constant OP_PUT : std_logic_vector(WIDTH-1 downto 0) := x"02";

 constant OP_PASS : std_logic_vector(WIDTH-1 downto 0) := x"03";

We assume that each slave is connected to its own sensor on their data_in port.

Figure 9: SPI devices in a series configuration

a) To what extent can they run without individual modifications?

i. Will this setup work electrically, or is modification necessary (if so, how)?

ii. Which commands can be used to provide consistent result? (explain)

(consistent in this context means that we know either what will happen, or who

provided the result)

We connect four devices, all sharing the same configuration, in a row similar to Figure 9,

having n = 4.

b) If possible, what would be the shortest possible sequence of op-codes the master

should send to…

i. … retrieve the data input from all the slaves

ii. … set the ouput on all slaves

iii. … set the output on slave 2 only

iv. … test that all slaves communicate by passing the byte 0x01

c) If all unused bits in the op_codes were used to individual addresses for the SPI

devices. How many slave devices could then be connected in series and still be read

individually? (We assume the Master will be able to drive the slave select signal).

12

Exercise 9 4p

In this task, we assume that a number of similar slaves, each having a seperate SS-signal, will

be connected in parallel to the master, as shown in Figure 10.

Figure 10: SPI devices in a parallel configuration

To what extent can they run without individual modifications…

a) Will this setup work electrically, or is modification necessary (if so, how)?

b) Which commands can be used to provide meaningful result?

